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Abstract
There has been a continuous interest in multi-robot formation systems in the last few years due to several sig-
nificant advantages such as robustness, scalability, and efficiency. However, multi-robot formation systems suffer
from well-known problems such as energy consumption, processing speed, and security. Therefore, developers are
continuously researching for optimal solutions that can gather the benefits of multi-robot formation systems while
overcoming the possible challenges. A backbone process required by any multi-robot system is path planning. Thus,
path planning for multi-robot systems is a recent top research topic. However, the literature lacks a recent compre-
hensive review of path planning works designed for multi-robot systems. The aim of this review paper is to provide
a comprehensive assessment and an insightful look into various path planning techniques developed in multi-robot
formation systems, in addition to highlighting the basic problems involved in this field. This will allow the reader
to discover the research gaps that must be solved for a better path planning experience for multi-robot formation
systems. Finally, an illustrative comparative example is presented at the end of the paper to show the advantages
and disadvantages of some popular path planning techniques.

1. Introduction
Robots are considered to be a central pillar of the fourth industrial revolution. Within the last few decades,
robots have been widely involved in important tasks across various fields, including transportation,
healthcare, and the military. However, the developer’s ambitions were high aiming to maximize the
exploitation of robots and involve them in more sophisticated tasks. It has been noticed that some com-
plicated missions cannot be achieved by a single robot. This had led to propose robotic systems which
consist of multiple robots collaborating together as a fleet in formation to achieve certain tasks. However,
the idea of collaborative robotic systems was thought of as an impractical theoretical approach for several
decades due to the lack of computing capabilities, especially in networking. Today, the recent advance-
ments in computing capabilities have caused a great interest in the development of multi-robot formation
systems.

The idea of formation is inspired by the behavior of natural creatures such as fish schooling and bird
flocking where a number of animals utilize specific formations to provide protection from predators. In
a similar manner, a number of robots can operate in formation to achieve complex missions and provide
higher levels of autonomy. One of the first attempts to implement a multi-robot formation system was
conducted by Fukuda and Nakagawa in the late 1980s. The work was a reconfigurable robot in which its
formation shape can be modified based on the mission requirement [1]. Another remarkable project was
released by the Institute of Physical and Chemical Research in Japan. The project named the actor-based
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robots and equipments synthetic system. This was a system architecture to enable different robots to
jointly fulfill missions [2].

There are several advantages to adopting multi-robot formation systems. Efficiency is the main advan-
tage of multi-robot systems. Since several robots are operating in parallel, it is expected that the task
can be achieved quicker. Another advantage is the robustness where single-point failure is avoided. If a
robot fails, other robots can take over, and the task can still be completed. Moreover, some tasks cannot
be achieved with a single robot, and a combination of heterogeneous collaborative robots is required to
accomplish the mission. For example, a robotic system consists of unmanned aerial vehicles (UAVs) and
unmanned ground vehicles (UGVs) can be used to achieve an efficient surveillance task where the UAVs
can first scan the area to search for a specific ground object and then guide the UGVs to reach the object.
The importance of multi-robot systems has also emerged in the military sector. A report produced by the
Department of Defense (DoD) in the United States have planned a roadmap for Unmanned Integrated
Systems for the period within the years between 2011 to 2036. The report has clearly emphasized the
importance of increasing the use of unmanned vehicles in the future battlefield. The report indicated
that a considerable percentage of the budget of DoD department has already been allocated to develop
advanced unmanned vehicle systems. There is also a vision by the DoD department to develop seam-
less integration of unmanned vehicle systems with conventional military assets.1 Moreover, the Ministry
of Defence in the United Kingdom has also shown increasing interest in unmanned vehicles. The UK
Ministry of Defence has proposed the Unmanned Warriors project which involved more than 50 robots
working in various environmental domains. The Unmanned Warriors project aimed to showcase the
benefits of such technology to the future battlefield [3].

A backbone process required by an autonomous robotic system is path planning [4, 5]. Path planning
is the problem of finding an obstacle-free path to the desired destination. In contrast with trajectory plan-
ning, a path planning problem ignores the temporal evolution of motion which means neither velocities
nor acceleration is taken into account [6]. There are several indicators for a good path planning algo-
rithm. Some well-known indicators are the path length, the computational speed, the smoothness of
the path, the energy cost, and the safety. A good path planning algorithm should be able to produce a
high-quality path in terms of the length and the smoothness within the least energy cost and the shortest
execution time possible. However, improving these metrics at once is not a trivial process. A common
practice within path planning algorithms is to operate in an iterative manner. The more the iterations, the
shorter and smoother the obtained path. Another factor is the resolution of the map. Higher map reso-
lutions can help produce higher-quality paths. However, high-resolution maps will contain a substantial
amount of data, and therefore, the processing time required is expected to increase.

The previously described trade-off problem between execution speed and path quality is expected
to be more challenging for multi-robot systems. The reason is that adding more robots to the system
will naturally increase the processing efforts within the system, and therefore, the processing time will
automatically increase. Therefore, the path planning problem for robotic systems is a top research topic
in state-of-the-art robotics-related research problems [7–11].

There are several attempts to produce a review on path planning techniques designed for multi-robot
systems. However, the reviews published recently in the literature were limited to either reviewing only
a specific robot type such as UAV-based systems [12], and UGV-based systems [13], or neglecting the
formation control system which is an essential factor for multi-robot systems [13–15]. To the best of
the author’s knowledge, the literature lacks the presence of a recent study on the state-of-the-art path
planning techniques designed for multi-robot formation systems. Therefore, this paper presents a com-
prehensive review of the latest works in path planning techniques for multi-robot systems. In this paper,
the main focus is to classify multi-robot based on the formation type. There are different formation con-
figurations for multi-robot systems, including the leader–follower approach, the virtual approach, the
behavior-based approach, and the dynamic approach. However, some multi-robot systems do not follow
a specific formation. The goal of this paper is to list as much as multi-robot systems presented lately in

1US Military, Unmanned System Integrated Roadmap, FY2011-2036. Technical report, US Department of Defense (DoD),
2011.
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Figure 1. General classification of path planning techniques.

the literature. Therefore, a more-general classification system based on “decision-making” is presented
to be able to list more techniques. Based on “decision-making,” multi-robot systems can be classified
generally into centralized, decentralized, distributed, and hybrid systems.

The remaining of the paper is presented as follows. Section 2 introduces different path planning
techniques. Section 3 presents the latest path planning works published in the literature based on the
formation type adopted. Recent multi-robot papers based on the more-general classification system,
the decision-making, are presented in Section 4. Experimental analysis using different multi-robot path
planning techniques is presented in Section 5. Finally, the conclusion appears in Section 6.

2. Path planning techniques classification
Path planning is a computational problem that aiming to obtain sequential obstacle-free configurations
to the goal point. The most basic path planning scenario is to calculate an obstacle-free path from a
specified starting configuration to the goal configuration. In such a scenario, other “disturbances” or
complications such as terrain are neglected. The geometry of objects including the robot and obstacles
is presented in a two-dimensional or three-dimensional workspace.

Configuration space, obstacle-free space, goal space, and obstacle space are some well-known path
planning concepts. The configuration space represents the total set of all possible configurations (poses).
If the robot is treated as a sample point in a 2D map, then the pose of the robot can be expressed with
two parameters (x, y), and thus, the configuration space is a plane. On the other hand, if the orientation
of the robot is important to be addressed, then the robot must be presented as a 2D shape that can rotate
and translate. Therefore, the pose of the robot, in this case, should be expressed using three parameters
(x, y, θ ). The configuration space will be R2×OT(2), where OT(2) is the special orthogonal group of 2D
rotations. Finally, for UAVs, six parameters are used to describe the pose of the UAV (x, y, z) to specify
the location and the Euler angles (α, β, γ ) to describe the orientation. The configuration space for UAVs
is R3×OT(3).

The obstacle space is the set of configurations that are located within an obstacle or restricted area.
The complement of the obstacle space is the obstacle-free space which is the set of configurations located
within free space areas that the robot can safely navigate through. Finally, the goal space, which is a
subspace of the free space represents the desired configuration.

Path planning techniques can be divided mainly into classical approaches and artificial intelligence
(AI) approaches as shown in Fig. 1. Table I summarizes the advantages and disadvantages of popular
path planning techniques.

2.1. Classical approaches
It has been observed that some classical path planning approaches do not guarantee obtaining an
obstacle-free path. These methods are considered least desirable for real-time implementation, since

https://doi.org/10.1017/S0263574723000322 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000322


2082 Nour Abujabal et al.

Table I. Advantages and disadvantages of popular path planning techniques.

Technique Category Advantages Disadvantages
A∗, D∗ Grid-based Can always find a path

if exists
Can be time-consuming,

consumes a lot of
memory

RRT Sampling-based Can be fast No shortest path
guarantees

PRM Sampling-based Probabilistically
optimal

Narrow corridor
problem

Fast marching Potential field Execution speed Local minima problem
Recurrent neural

network
Neural network Scalable Requires huge

computing resources
Genetic algorithm Bio-inspired

techniques
Can work for large

and complex maps
Computationally

expensive

their main disadvantage is their high computational cost and inability to respond to environmental
uncertainty [16]. In this paper, the classical approaches will be classified into grid-based techniques,
sampling-based techniques, and artificial potential field techniques (APF).

2.1.1. Grid-based techniques
Grid-based approaches use multi-resolution grid data structures where object space is quantized into
a finite number of cells. Necessary operations are then performed on the quantized space [17]. Fast
processing time is a significant advantage of grid-based methods. However, the processing speed varies
based on the number of cells in each dimension of quantified space [18]. A∗ and D∗ algorithms are two
examples of grid-based path planning techniques [19].

A∗ algorithm is a well-known path search algorithm that was first introduced in 1963 [20]. It is an
extension of the Dijkstra technique with additional heuristic calculations to improve the performance
[21]. Although the A∗ algorithm is successfully implemented on 2D robotic systems, its implementa-
tion on 3D robotic systems is still challenging [22]. The main drawback of this algorithm is that it
requires a long computational time to find the shortest path [6]. Figure 2 illustrates an example of find-
ing an obstacle-free path using A∗ algorithm. D∗ algorithm is another grid-based approach that was first
proposed in 1994 as an improvement over the classical A∗ algorithm [23]. The abbreviation D stands for
“Dynamic” since it is similar to the A∗ algorithm except it is the dynamic variant of the A∗ algorithm.
The algorithm can be used to solve path planning problems in unknown environments [23]. On the other
hand, the time it takes to do a simulation increases as the problem becomes more complex [24]. Modified
versions such as D∗-Lite and Focussed D∗ have significantly replaced the conventional D∗ algorithm due
to the fast execution capabilities [25, 26].

2.1.2. Sampling-based techniques
Sampling-based algorithms select sample points randomly from the entire space. Whenever the line
separating two samples does not intersect with an obstacle, and the distance between these samples
does not exceed the predetermined maximum distance, the samples will be interconnected. After that,
the shortest path will be selected as the final path [27]. Rapidly exploring random trees (RRT) and
probabilistic RoadMap (PRM) are two of the most well-known sampling-based techniques [28].

The PRM algorithm generates the probable path in a short amount of time, which enables it to be used
in more reactive situations. However, it lacks smooth navigation since it wastes a lot of time preparing
paths that will never be used. [29]. Figure 3 shows an example of finding a feasible path using PRM
technique. On the other hand, the RRT approaches are widely used to solve single-query path planning
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Figure 2. Finding the obstacle-free path using the A∗ grid-based technique.
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Figure 3. Finding the obstacle-free path using a PRM planner.

problems. However, producing paths on huge dynamic maps remains a challenge for these approaches
[30]. The RRT∗N algorithm is presented in ref. [31]. The objective of this modified algorithm is to
improve the RRT algorithm’s processing speed. The RRT∗N algorithm was successfully expanded to
operate in a three-dimensional environment, demonstrating its ability to work with both dynamic and
static obstacles. Additionally, in order to solve the problem of high computation cost, various modifi-
cations of RRT have been proposed such as RRT-Connect algorithm [32], RRT∗ algorithm [33], and
Bi-RRT algorithm [34].

2.1.3. Potential field techniques
The APF algorithm is used to reach the target point and avoid obstacles by modeling the robot as a
charge point that is affected by the attractive force provided by the target point and repulsive forces
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Figure 4. Finding the obstacle-free path using the potential field method.

caused by obstacles [35]. The main advantage of this algorithm is its rapid convergence, as it may get
the final path with fewer computations than grid-based and sampling-based approaches [36]. Figure 4
illustrates an example of a path planning process using potential field method. However, since APF
methods are based on optimization techniques, they suffer from the local minima problem. The authors
in ref. [37] proposed a modified APF approach for multi-UAV systems. The suggested approach used
a distance factor and jump methodology to address common challenges such as unreachable goals in a
3D multi-UAV environment.

2.2. AI-based techniques
AI is a field of computer science and engineering that aims to create machines and systems that can
perform tasks that typically require human intelligence, such as visual perception, speech recognition,
decision-making, and language understanding. AI is widely used in robotic path planning to enable
robots to navigate through complex environments and complete tasks autonomously. AI is achieved
through a combination of techniques such as machine learning, computer vision, natural language
processing, and knowledge representation. Machine learning, in particular, is a method of teaching com-
puters to learn from data, without being explicitly programed. In other words, learning is the process
of automatically modifying an algorithm based on previous experiences without the need for human
intervention [38]. AI techniques including machine learning and computer vision are often used to
help robots identify and avoid obstacles, as well as to make decisions about which path to take. For
example, a robot equipped with AI might use machine learning algorithms to learn from previous
experiences and optimize its path planning over time. Additionally, computer vision algorithms can
be used to give the robot a sense of its environment, allowing it to detect and avoid obstacles in real
time.

A well-known machine learning approach is the artificial neural networks (ANNs). A neural network
is a type of machine learning model inspired by the structure and function of the human brain. It is
composed of interconnected layers of artificial neurons that process and transmit information, allowing
the network to learn and make decisions based on input data. AI is not explicit to mimicking human
behavior. For example, the bio-inspired techniques are a set of methodologies that take inspiration from
nature to design and develop new technologies and systems. These techniques aim to mimic the behavior,
structure, and function of natural systems, such as the human body, animals, and plants, to solve problems
in fields such as robotics, computer science, and engineering. In this paper, the AI-based approaches will
be subdivided into ANN-based algorithms and the bio-inspired algorithms.
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2.2.1. ANN-based algorithms
ANN is an operating model made up of a huge number of nodes that are connected to each other. Each
node represents an activation function, which is considered a specific output function. Each link between
two nodes represents a weighted value for the signal that passes through the connection, which is equiv-
alent to an ANNs memory [21]. Some of the characteristics that make ANN-based systems valuable in
the field of mobile robotic navigation are their ability to generalize, distributed representation, enormous
parallelism, fault tolerance, and learning ability [16]. However, ANN-based techniques have the disad-
vantage of being time-consuming, and the learning method may not be able to ensure convergence with
the optimal solution. Therefore, different methods are utilized with ANN models as a hybrid mechanism
to produce the optimum result during the robotic navigation process [39].

2.2.2. Bio-inspired techniques
Bio-inspired techniques, also known as biomimicry, are a set of methodologies that take inspiration
from nature to design and develop new technologies and systems. These techniques aim to mimic the
behavior, structure, and function of natural systems, such as the human body, animals, and plants, to
solve problems and improve performance in fields such as robotics, computer science, and engineering.
For example, bio-inspired robots can be designed to mimic the movement and sensory capabilities of
animals, such as snakes or insects, to improve their ability to navigate through difficult terrains. For path
planning, bio-inspired algorithms can be used to improve the efficiency and robustness of optimization
and search algorithms.

Population search optimization methods (PSOMs) are examples of bio-inspired techniques. A PSOM
technique uses multiple agents during each run to enhance the candidate agents so that better agents
can be produced for each iteration of improvements. Although these searching approaches are effective
at identifying encouraging spots in huge areas, they do not effectively exploit the search space’s vast
expanses [40]. Some examples of PSOM include particle swarm optimization (PSO) algorithm [41],
Bat algorithm [42], and genetic algorithm (GA) [43].

3. Formation control-based path planning
In this section, various recent path planning techniques are listed based on the adopted formation. The
advantages of each formation technique will be addressed in the corresponding section. Section 3.1
discusses the latest path planning techniques using leader–follower formation. Section 3.2 presents
the virtual formation path planning techniques. Behavior-based formation path planning techniques
are discussed in Section 3.3. Finally, dynamic formation path planning techniques are presented in
Section 3.4.

3.1. Leader–follower formation path planning
In the leader–follower approach, a single robot called the leader has full access to the navigation infor-
mation. Therefore, this leader moves along the predefined trajectory and the followers (the other robot)
follow the leader to the desired location. These followers don’t have any information about the path
and the final destination [3]. The advantages of the leader–follower approach are that: it is easy to be
designed and implemented, can be analyzed using standard control technique, efficient with respect
to communication within the system (fewer communication channels), and energy-saving mechanism.
The disadvantage of the leader–follower approach is that it is centralized control approach. Thus, it lacks
robustness where leader’s fault can penalize the whole formation and feedback from followers to a leader
is generally not applied in this approach [77, 78].

Leader–follower formation has been applied for various robotic systems including USVs, UAVs,
UGVs, and manipulators. Table II lists briefly various leader–follower techniques published recently
in the literature. For USV systems, the works in refs. [44, 45] have used fast marching (FM) as a path
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Table II. Summary of the works done based on the formation type.

Formation type Robot type Paper Year Technique Exp/Sim Comment
Leader–follower USV [44],

[45]
2015,
2016

Potential field Sim Efficient computational time. Cluttered
environment.

[46] 2016 Grid-based Exp Jellyfish removal.
[47] 2022 Potential field Sim Used adaptive fuzzy logic sliding mode

control method.
UAV [48],

[49]
2015,
2021

Potential field Sim Used fast marching square method.

UGV [50] 2012 Grid-based Both Localization in uncertain environments.
[51],
[52],
[53]

2014,
2013,
2019

Potential field [51] Both, [52,
53] Sim

[51] Used ARO optimization. [52] Voroni
fast marching.

[54],
[55],
[56],
[57],
[58]

2022,
2019,
2021,
2016,
2022

AI-based [55] Exp, [54,
56–58] Sim

Q-Learning algorithm. [55] Integer
programming. [56] Bayesian optimization
and Monte Carlo. [57] Artificial immune
network. [58] Ant colony optimization
(ACO).

[59],
[60],
[61]

2002,
2012,
2015

Other [59, 60] Exp,
[61] Sim

[59] Kmodynamic randomized motion
planner. [60] Wifi-based positioning. [61]
Adversarial formation.

Manipulator [62] 2022 Potential field Both Grasping application.
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Table II. Continued.

Formation type Robot type Paper Year Technique Exp/Sim Comment
Virtual UAV [63] 2015 Potential field Sim –

UGV [64] 2021 Grid-Based Exp Parcel moving in warehouses.
[65] 2019 Other Both Circle-packing algorithm.

Behavior UGV [66] 2010 Potential field Both Assist the firefighters.
[67] 2017 Grid-based Sim Basic Theta∗ and LIAN for smart relocation

tasks.
[68] 2021 AI-based Sim Used reinforcement learning

Dynamic Heterogeneous [69] 2017 Sampling-based Both Used constrained optimization method.
Static and moving obstacles.

UGV [70] 2014 Sampling-Based Both Clutter environment.
[71] 2005 Grid-Based Both Dynamic environment.
[72] 2013 Potential field Both Static and dynamic obstacles in uncertain

conditions.
[73] 2016 AI-based Both Used PSO for dynamic obstacles.
[74] 2014 AI-based Sim Artificial immune algorithm.
[75] 2019 Other Sim Configuration of a multifunctional modular

robot.
UAV [76] 2014 Potential field Sim Virtual leader and behavioral approach.

“Exp/Sim” column refers to “Experimental/Simulation.”
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Figure 5. A leader–follower experiment conducted in ref. [145].

planning technique, while in ref. [46] Theta∗ technique has been used. In ref. [44], the FM proposed
algorithm has achieved efficient computational time compared to competitive path planning systems.
Another potential filed technique was proposed in ref. [47]. In ref. [46], the authors have utilized Theta∗

as a path planning technique for the proposed robotic system with the objective of extracting jellyfish
from the sea. The authors have proposed a new mechanism named angular rate-constrained path planning
system to solve the problem of minimum turning radius which is a known drawback of leader–follower
approaches. The jellyfish removal process was successfully tested at Masan Bay in South Korea.

On the other hand, the works in refs. [48, 49] have implemented leader–follower UAV systems using
potential field methods. UAV systems operate in a 3D environment which requires more processing
time due to the huge amount of data to be processed. Therefore, the works in refs. [48, 49] have adopted
potential field techniques which are known for fast execution. In ref. [48], the authors have used the fast
marching square (FM2) algorithm which is a potential field technique.

Finally, the literature has shown a larger number of papers proposing UGV leader–follower systems
compared to USV and UAV systems. Variety path planning techniques were applied, including grid-
based [50], potential field [51–53], optimization and machine learning [54–58], and other techniques
[59–61]. Examining localization tasks in uncertain environments is the objective of the authors in ref.
[50]. They have used both simulations and experiments in order to check the performance of the pro-
posed technique. On the other hand, the proposed leader–follower techniques in refs. [51–53] have used
the potential field method as a path planning technique. In addition to the potential field method, the
asexual reproduction optimization method has been used in ref. [51] to enhance the performance of the
proposed path planning system, while in ref. [52], Voronoi FM method was proposed as a path planning
technique. Another path planning category used in leader–follower UGV systems is the optimization and
machine learning methods [54–57]. Q-Learning algorithm was utilized by the authors of [54], while the
Integer Programming method was used in ref. [55]. Moreover, the work in ref. [56] implemented the
Bayesian optimization and Monte Carlo simulations to achieve the path planning tasks. Finally, artificial
immune networks were used in ref. [57] as a path planning technique. The literature has shown other
path planning techniques adopted by leader–follower UGV systems such as Kmodynamic randomized
motion planner (MP) algorithm [59], Wifi-based positioning algorithm [60], and adversarial formation
algorithm [61]. Fig. 5 shows a leader–follower experiment. In ref. [62], the fingers of an end effector of
a manipulator were treated as stand-alone robots. Therefore, a leader–follower approach based on FM2

was implemented on UR3 robot to achieve grasping application.
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3.2. Virtual formation path planning
The formation design in the virtual structure approach considers all the N number of robots in the
formation as a single rigid structure. Each robot in the formation is provided with the desired trajectories.
Then a control scheme works on maintaining the formation by minimizing the error between the virtual
structure and the current robot position. The advantage of this approach is that its structure depends
on the feedback of the position of each robot. Thus, it is capable of identifying the faulty robots in the
formation unlike the leader–follower approach. The disadvantage in this approach is that the obstacle
avoidance mechanism is not easy to be implemented [78, 79].

Virtual formation path planning has been used in UAV [63] and UGV [64, 65] systems. As shown in
Table II, a limited number of works have focused on virtual formation techniques. In ref. [63], the APF
method integrated with the extra control force is proposed. In order to solve the multi-UAV formation
path planning issue, the virtual target point and the virtual velocity rigid body were presented based on
this approach. The simulation results proved the path planning method’s efficiency and the availability
of realistic path following. On the other hand, virtual formation path planning has been used in [2, 3]
for UGV systems. In ref. [64], a graph-based approach for moving cooperative rectangular parcels in a
warehouse utilizing unicycle robots is introduced. After the box has been securely fastened and moved,
a virtual formation leader is created in the middle of the box, which eliminates the requirement for indi-
vidual robot path planning. Experimental results have shown that the proposed approach is time-efficient
and user-friendly. In ref. [65], an arbitrarily shaped control strategy is introduced for avoiding obstacles
problem in a tough unknown environment. To avoid narrow paths and corners, a swarm-like architec-
ture is established by creating an arbitrarily shaped virtual region followed by a series of packed circles.
Simulation and experimental results have been presented to show the performance of the suggested
controllers.

3.3. Behavior-based formation path planning
The behavior-based approach utilizes numerous behaviors for each robot. A final control action takes
place based on the weighting of the relative importance of each behavior. The importance of each behav-
ior is identified based on sensory inputs such as obstacle avoidance, goal-seeking, and formation keeping
[79, 80]. The main advantages of this approach is that it is capable of dealing with multi-task missions.
Furthermore, the approach is suitable to be used in an unknown or dynamic environment. The main dis-
advantages of the approach are related to the difficulty in mathematically expressing the system behavior.
Moreover, it is difficult to prove and guarantee the system stability [3].

Behavior-based formation path planning is typically used to fulfill multi-task missions in unknown or
dynamic environments. However, the main drawback is that it is difficult to prove and guarantee system
stability. Therefore, the behavior-based formation has been mostly implemented within UGV systems
[66–68]. Table II summarizes numerous behavior-based techniques that have been recently discussed in
the literature. In ref. [66], a group of autonomous assistant mobile robots has been developed to help
firefighters in scouring the warehouse in the case of a fire. The robots assist firefighters on the scene by
pointing out potential obstructions and preserving communication links. Therefore, robots must be able
to fulfill particular behaviors such as remaining in a group. The potential field method is adopted here
to control the generated model. On the other hand, the behavior-based technique proposed in ref. [67]
utilized a grid-based method to solve the smart relocation task for UGV systems. The authors used basic
Theta∗ and limited angle algorithms as path planning techniques to produce smooth paths. Finally, a
machine learning path planning method based on reinforcement learning is proposed in ref. [68]. As part
of the robot path planning process in an unknown environment, reinforcement learning is used to apply
the robot’s behavioral decisions and to improve its predictive abilities. A visual simulation platform has
been developed in order to enable researchers to test multi-robot motion control algorithms.

3.4. Dynamic formation
The dynamic formation refers to the robotic systems that modify its formation type during operation
due to some special needs. The dynamic formation is used to improve the efficiency and reliability of
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the formation. The dynamic concept signifies the robustness of the formation. Although the dynamic
formation is widely used in UGVs, it is also very useful for UAVs and heterogeneous robotic systems.
Table II lists a number of dynamic formation techniques that have been recently addressed in the lit-
erature. For example, the work in ref. [69] presented a team of UAVs and mobile manipulators that
collaboratively carry an object. The performance of the proposed object transport approach was tested
experimentally and through simulations. A sampling-based and nonlinear optimization technique have
been applied in 2D and 3D environments to avoid static and moving obstacles. In addition, the authors
in ref. [76] proposed a dynamic formation path planning for UAV systems using the hybrid virtual and
behavioral approach schema. The proposed formation control strategy was based on the potential field
method to solve the local minima problem.

More works have been focused on UGV dynamic formation systems [70–75]. In order to achieve the
intended formation goal, several path planning techniques have been applied. In ref. [70], RRT algo-
rithm was used as a path planning technique for mobile robots in order to operate autonomously in a
cluttered environment. The proposed method has successfully addressed collision avoidance and for-
mation forming problems through simulations and experiments. In addition, some works have applied a
path planning technique in a dynamic environment containing static and moving obstacles using simula-
tions and experiments such as A∗ algorithm [71] and FM square [72]. Some dynamic formation systems
have adopted meta-heuristic optimization techniques such as PSO [73] and artificial immune algorithm
[74]. Finally, the robotic system proposed in ref. [75] had successfully implemented a dynamic forma-
tion system for a group of modular robots. Modular robots are self-reconfigurable robots with variable
morphology. They are made up of distinct modules to form a kinematic structure. Their flexible design
enables such robots to adjust their shape to be able to fulfill the task. The challenge is to form the
required kinematic structure in real time. The work in ref. [75] addressed the time problem and aimed to
reduce the time required for the formation of the modular robot configuration using analytical geometry
methods.

4. Decision-making-based path planning
The previous section has listed the latest multi-robot path planning systems based on the adopted for-
mation style. However, some multi-robot systems do not consider a specific formation style. To have
a comprehensive review paper of the latest multi-robot path planning techniques published in the lit-
erature, a more-general classification method is adopted in this section based on the decision-making
approach. Based on the decision-making approach, multi-robot systems can be classified into central-
ized, decentralized, distributed, and hybrid decision-making approaches. The basis of this classification
strategy is the determination of the entities that are mainly responsible to process and control the multi-
robot system. In the centralized approach, a central processing unit which can be a stand-alone computer
or a robot is the responsible entity for controlling the system. On the other hand, within a decentralized
strategy, each robot has its own controller and acts based on its own processed data. In the distributed
decision approach, the robots are involved in the planning process of the system, but there is no central
agent to compute the plans. Finally, the hybrid decision-making approach refers to the robotic sys-
tems that apply multiple decision-making approaches at once. Using such a classification approach, any
multi-robot system can be classified into one of the decision-making approaches.

However, there is still a reasonable connection between formation-based classification and decision-
making-based classification. Since the decision-making-based classification is a more-general classifi-
cation strategy, different formation styles can be classified as a certain decision-making approach, but
not vice versa. Therefore, all of the techniques listed in Section 3 can be classified in this section into one
of the decision-making approaches. In general, the leader–follower formation style can be considered
a centralized decision-making approach, since the plans and the control of the system are performed
in a centralized entity which is the leader robot. The virtual formation style in which the robots are
treated as a moving rigid body can be considered a distributed decision-making approach, since the
universal plan of the system is determined by a collaborative mechanism performed by the individual
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robots. The behavior-based formation style can be considered as a decentralized approach, since each
robot plans individually according to a specific behavior such as line following, wall following, avoid-
ing obstacles, and goal following. Finally, the dynamic formation style can be naturally mapped to the
hybrid decision-making strategy. On the other hand, not all multi-robot systems that adopt a certain
decision-making approach are committed to a specific formation style. Thus, this section aims to list
recent multi-robot techniques that do not adhere to a known formation style and classify them based on
the decision-making approach.

In this section, recent decision-making-based path planning techniques are listed. Section 4.1 dis-
cusses the latest path planning techniques based on the centralized-based decision. Section 4.2 presents
the decentralized decision path planning techniques. Distributed decision path planning techniques are
discussed in Section 4.3. Finally, hybrid decision-making path planning techniques are presented in
Section 4.4. The main path planning works done based on the decision type is given are summarized in
Table III.

4.1. Centralized decision path planning
Centralized architectures contain a central control agent which can be a stand-alone computer or a robot.
The control agent has global information about the environment as well as the information of every robot.
This enables the central agent to communicate with all robots. The main advantage of the centralized
architecture is that the central control agent has a global view of the world, whereby globally optimal
plans can be produced. On the other hand, this architecture is typical for a small number of robots and
ineffectual for large teams with a high number of robots. In addition, it is not robust in relation to dynamic
environments or failures in communications and other uncertainties. In the case of a malfunction of the
central control agent, a new agent must be available, or else the entire team will be disrupted [77].

Based on the aforementioned drawbacks, centralized decision-making has been applied to a limited
number of works related to UGV systems [81–88]. In ref. [81], the task allocation was performed using
a GA, and the path planning was performed using the A ∗ algorithm. The authors in ref. [82] proposed
a hybrid algorithm to discover the optimal trajectory of the path for multi-mobile robots in a cluttered
environment using improved particle swarm optimization (IPSO) and differentially perturbed velocity
(DV) algorithm. According to the experimental and simulation findings, the suggested IPSO-DV out-
performs IPSO and DE in terms of optimal trajectory path length and arrival time. However, the works
in refs. [83, 84] proposed a centralized architecture for trajectory planning in a dynamic environment
based on the APF technique. An approach that relies on an external path planner for general configura-
tion spaces was proposed in ref. [85]. The approach decoupled the problem into a set of sub-problems
whose solutions can be sequentially executed. The implementation showed that the algorithm is able
to solve problems with many robots and a low degree of coupling. Finally, the literature has shown
other path planning techniques adopted by centralized decision path planning for UGV systems such as
centralized decoupled algorithm [86], PUSH-AND-SWAP approach [87], and two-level partition-based
algorithm [88].

4.2. Decentralized decision path planning
In the decentralized control strategy, each robot makes its own decisions based on its measurements.
Thus, several independent controllers are used to control the robots rather than a single centralized
control scheme. Consequently, this strategy provides higher robustness than the centralized strategy
to be used with large-scale systems. The disadvantages of this strategy are related to the coordination
difficulty that might occur [77, 141, 142].

A large base of decentralized decision path planning research has been focused on UGVs rather than
UAVs. For UAV systems, the authors in ref. [89] proposed a potential field path planning technique
that constructs closed pathways for any coverage task such as environmental mapping or surveillance
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Table III. Summary of the path planning works done based on the decision type.

Decision type Robot type Paper Year Technique Exp/Sim Comment
Centralized UGV [81] 2016 Grid-based Sim A∗ was the main algorithm. GA has been

used for task allocation.
[82] 2016 Hybrid algorithm Both IPSO and DV algorithm.
[83],
[84]

2012,
2020

Potential field Sim Dynamic environments.

[85],
[86],
[87],
[88]

2009,
2011,
2011,
2013

Other Sim [85] Optimal decoupling into sequential
plans,

[86] centralized decoupled algorithm,
[87] PUSH_AND_SWAP approach,
[88] two-level partition-based algorithm.

Decentralized UAV [89] 2014 Potential field Both Voronoi-based cost function
UGV [90],

[91],
[92]

2012,
2020,
2021

AI-based [90, 91] Sim and
[92] Both

[90] Genetic algorithm.
[91] CNN and GNN.
[92] DCCP and CBF-CLF.

[93],
[94],
[95],
[96],
[97],
[98]

2016,
2017,
2020,
2005,
2016,
2006

Potential field [93, 96] Both,
[94, 95] Sim, and
[97, 98] Exp

[93] Vector field method.
[94] Used the decentralized approach.
[96] Switched local potentials.
[97] MSFM technique.
[98] Vector field algorithm.

[99],
[100]

2011,
2019

Grid-based Both CA method.
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Table III. Continued.

Decision type Robot type Paper Year Technique Exp/Sim Comment
[101],
[102]

2015,
2013

Hybrid technique [101] Both and
[102] Sim

[101] Repulsive function (potential field
method), A∗ algorithm, and UKF.

[102] Potential-based genetic algorithm.
[103] 2011 Sampling-based Both Decentralized multi-agent rapidly exploring

random tree (DMA-RRT) algorithm.
[104],
[105],
[106]

2010,
2013,
2009

Other Sim [104] Rough mereological theory.
[105] Artificial moments.
[106] Dynamic priority strategy.

Distributed UAV [107],
[108],
[109],
[110]

2020,
2017,
2019,
2019

AI-based [107, 109] Sim
and
[108, 110] Exp

[107] Military and civilian tasks.
[108] Surveillance, inspection, and rescue

tasks.
[109] Formation for reconnaissance and

attack.
[110] Fleet formation control and target

tracking.
[111],
[112]

2018,
2013

Optimization [111] Exp
[112] Sim

[111] Lin–Kernighan–Helsgaun heuristic
algorithm.

[112] Hierarchical control structure.
[113] 2020 Grid-based Sim MCPP-MLCT method.
[114] 2016 Other Sim Tangent circle method.

UGV [115],
[116]

2019,
2014

Potential field Sim [115] Static and dynamic obstacles.
[116] Used the rotational vector field

method.
[117],
[118]

2002,
2018

[117] A∗ algorithm.
[118] Used CGD algorithm.
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Table III. Continued.

Decision type Robot type Paper Year Technique Exp/Sim Comment
[119],
[120],
[121],
[122]

2016,
2013,
2020,
2017

Grid-based [117], [118],
[119] Both,
[120–122] Sim

[119] Bellman–Ford algorithm.
[120] Rescue missions.
[121] SaG algorithm.

[123],
[124],
[125]

2008,
2017,
2018

[123] Parallel differential evolution
algorithms.

[124, 125] Artificial bee colony algorithm.
[126],
[127],
[128],
[129]

2017,
2016,
2017,
2016

AI-based [123], [124],
[125], [126, 128,
129] Sim, [127]
Both

[126, 128] D2PSO algorithm.
[127] Also used improved gravitational

search algorithm (IGSA).
[129] Also used bacterial foraging (BFOA).

Heterogeneous [130],
[131],
[132],
[133]

2015,
2019,
2020,
2015

AI-based Sim [130] Kernel sequence enumeration (KSE)
algorithm.

[131] Modified ant colony optimization
(MACO) and genetic algorithm (GA).
[132] Improved dragonfly algorithm (DA).
[133] Simulated annealing algorithm.

[134] 2017 Other Exp SLAM.
Hybrid decision Satellite [135] 2020 AI-based Sim Used genetic algorithm.

UGV [136] 2010 AI-based Both Static and dynamic obstacles.
[137] 2019 Grid-based Sim Complex and crowded environments.
[138],
[139]

2022,
2014

Other [138] Sim,
[139], Exp

[138] Autonomous driving application.
[139] Any-Com ISS algorithm.

WSN [140] 2014 Other Sim (HADCC) algorithm. Energy efficient.
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using gradient descent of a Voronoi-based cost function. However, in order to minimize the uncer-
tainty of localization, the authors in ref. [143] proposed an optimization path planning algorithm called
the online optimization perceptual strategy. On the other hand, different decentralized decision path
planning techniques have been applied to UGV systems, including optimization and machine learning
[90–92], potential field [93–98], cellular automaton (CA) method [99, 100], hybrid algorithms [101,
102], sampling-based [103], and other techniques [104–106].

Several optimization and machine learning techniques were proposed such as GA [90], convolutional
neural network, graph neural network algorithm [91], datagram congestion control protocol, and control
barrier and Lyapunov function [92]. Potential field-based techniques were implemented to a number of
works with different algorithms such as vector field algorithm [93, 98], switched local potentials [96],
and multi-stencils FM technique [97] to deal with the path planning task. The main objective in ref.
[94] is to ensure the safety of robots while they interact with each other. The UGV formation system
is considered as a network with a decentralized architecture. Each robot performs path planning based
on a potential field approach. In addition, the work in ref. [95] focused on combining a decentralized
architecture with an APF technique to coordinate the motion of the robots. CA method was proposed in
refs. [99, 100] to solve the path planning problem in a cooperative robotic team. The proposed method
was implemented and tested in a real system using mobile robots.

Furthermore, the work in refs. [101, 102] utilized decentralized decision path planning using a hybrid
technique. In ref. [101], a composite local path planning method was proposed using a repulsive function,
A ∗ algorithm, and unscented Kalman filter (UKF). The repulsive function in the potential field method
was used to avoid collisions between robots and obstacles. On the other hand, the A ∗ algorithm assisted
the robots to find the optimal path. Moreover, an error estimator based on UKF was used to ensure
that each robot’s path deviation during navigation is kept to a minimum. In addition, another hybrid
technique for a UGV swarm system was proposed in ref. [102] using a potential-based GA. The proposed
algorithm consists of a global path planner (GPP) and a MP. The GPP searches for a path that the swarm
robots should follow from the start to the goal within a Voronoi diagram of the workspace. The MP
is developed using a GA algorithm based on artificial potential models. The potential functions are
used to keep robots away from obstacles and to keep the robotic swarm within a certain distance from
each other. In ref. [103], an algorithm based on a sampling-based method called decentralized multi-
agent RRT algorithm was presented to handle the path planning for a multi-agent system in a complex
environment. Finally, there are different path planning techniques adopted by decentralized decision
strategy for UGV system such as rough mereological theory [104], artificial moments method [105],
and dynamic priority strategy [106].

4.3. Distributed decision path planning
The distributed control strategy is a modified version of the decentralized control strategy. The only
difference is the communication channel between each robot in the formation. This structure overcomes
the difficulty in coordination but requires a high amount of communication [77, 144].

Several robotic systems have adopted the distributed decision path planning strategy ranging from
UAVs [107–114], UGVs [115–129], and even heterogeneous (UAV-UGV) systems [130–134]. The PSO
algorithm was commonly used as a path planning tool for several UAV applications for distributed deci-
sion systems such as military and civilian tasks [107], surveillance, inspection, and rescue tasks [108],
formation for reconnaissance and attack [109], and fleet formation control and target tracking [110].
Other optimization algorithms were also adopted such as Lin–Kernighan–Helsgaun heuristic algorithm
[111] and hierarchical control structure [112]. In ref. [113], a grid-based algorithm named multi-robot
coverage path planning-multiple land cover types method was proposed to develop a distributed decision
path planning system.

On the other hand, the literature has shown that UGV systems have intensively focused on distributed
systems [115–129]. In ref. [115], the authors utilized the APF method to navigate through an environ-
ment with static and dynamic obstacles. The authors in ref. [116] have also used an APF-based technique
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(a)

(b)

(c)

Figure 6. A comparison between (a) centralized, (b) decentralized, and (c) distributed robotic systems.

named the rotational vector field method. Grid-based path planning algorithms were also adopted to
create a distributed decision system, including A ∗ algorithm [117] and chessboard-shaped grid division
algorithm [118]. Graph-based algorithms were also adopted such as Bellman–Ford algorithm [119] and
SplitAndGroup (SaG) algorithm [121]. However, most proposed systems have integrated some optimiza-
tion and machine learning algorithms as part of the pathfinding process [123–129]. The most successful
optimization technique was the PSO algorithm [126–129]. The reason can be attributed to the fast exe-
cution speed of the algorithm, which is highly recommended for distributed systems. In refs. [126, 128],
a variation of the PSO algorithm named dynamic distributed PSO algorithm was utilized in a distributed
system. Other optimization and machine learning techniques were also implemented within other works
such as parallel differential evolution algorithms [123] and artificial bee colony algorithm [124, 125].
Figure 6 shows a comparison between centralized, decentralized, and distributed robotic systems.

4.4. Hybrid decision-making
Hybrid decision-making refers to the robotic systems that apply multiple decision-making approaches at
once. Hybrid decision-making has been applied to a limited number of works. Some types of robots that
have used hybrid decision systems are satellites [135], UGVs [136–139], and wireless sensor networks
(WSNs) [140]. The work in ref. [135] compared centralized and decentralized approaches to space-
craft formations during reconfiguration. It was developed under the paradigms of cluster autonomy and
safe maneuverability. The GA was used as a path planning approach. As a result, while decentralized
architecture helps the algorithm to run faster, it also means that inter-satellite communication traffic is
increased.

Regarding UGV systems, the authors in ref. [139] experimentally evaluated a distributed central-
ized multi-robot path planning algorithm called Dynamic Team Any-Com ISS. They aimed to develop
solutions to a multi-robot path planning problem that are guaranteed to be complete, resilient to commu-
nication failure, and flexible enough to accommodate different team sizes. In ref. [136], a path planning
approach was presented to coordinate UGVs in an environment with static and dynamic obstacles. The
pathfinding problem was modeled as a constrained optimization problem, and the motion plan to avoid
dynamic obstacles was implemented through an online technique. In ref. [137], the D ∗ Lite algorithm
was proposed to deal with complex and crowded environments. A new hybrid-based formation robotic
system has been proposed in ref. [140]. The new technique named hybrid advance distributed central-
ized clustering (HADCC) algorithm was proposed as an energy-efficient path planning technique for
WSN networks in ref. [140]. The proposed HADCC is based on hybrid cluster head selection algorithm.
Moreover, an advance network topology is implemented to execute the proposed model.

5. Illustrative example
This section presents multi-robot path planning tests on four different maps using A∗, RRT, and PRM
techniques. Figures 7, 8 and 9 show the paths that were obtained using A∗ and PRM, respectfully.
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Figure 7. A∗ paths obtained under different maps.

Figure 8. RRT paths obtained under different maps.

Figure 9. PRM paths obtained under different maps.

Table IV shows a comparative study between A∗ and PRM in terms of the average path length and
the processing time. It is widely known in the path planning community that there is a critical trade-off
problem between path length and the quality of the path. The quality of an obstacle-free path is exam-
ined using two attributes, the path length, and the smoothness of the path. It is challenging to obtain a
smooth short path in a real-time manner.

Table IV shows the time quality results obtained using different parameters. The time quality trade-
off is clear in the table. Shorter paths need a longer execution time. For example, the shortest path
obtained in Table IV is 98.2 meters when adopting PRM. This record has also achieved the longest
processing time of 4.20 s. For A∗, the parameter G refers to the resolution of the grid to be used. It is
expected that increasing the grid resolution will result in obtaining higher quality paths, however, with
the cost of increased processing time. The reason is that higher-resolution maps will contain more points
to be processed, and therefore, the time is expected to increase. This fact is valid based on Table IV.
Increasing the resolution size from 100x100 to 250x250 increases the processing time from 0.51 to
2.56 s. On the other hand, the length of the path has decreased from 104.5 meters to 100.4 meters. For
RRT, the parameter S refers to the step size of the planner. Based on Table IV, the step size parameter
does not affect the processing time of the technique.

The PRM technique has a critical parameter which is the number of samples denoted by N in Table IV.
Increasing the number of samples will increase the probability to obtain a shorter path, but with a cost of
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Table IV. Comparative study between A∗, RRT, and PRM in terms of the average path length and the
average processing time.

Map Technique Parameter AVG. path length (m) AVG. processing time (s)
Map 4 A∗ G = 100x100 104.5 0.51

G = 150x150 102.1 0.94
G = 200x200 101.2 1.22
G = 250x250 100.4 2.56

RRT S = 20 135.3 0.23
S = 30 130.20 0.20
S = 40 129.40 0.20
S = 50 124.31 0.20

PRM N = 50 120.5 0.42
N = 100 119.6 1.50
N = 150 99.3 2.65
N = 200 98.2 4.20

increased execution time. Based on Table IV, increasing the number of samples from 50 to 200 decreases
the length of the obtained path from 120.5 to 98.2 meters. However, the execution time required increases
from 0.42 to 4.20 s.

Table IV shows that the RRT technique has achieved the best processing speed. However, it is known
that RRT path is not as smooth as the paths obtained using A∗ (Fig. 7) and PRM (Fig. 9). Smoothness
is an important attribute, especially for controllers. After obtaining an obstacle-free path, a controller is
responsible for tracking the path of the robot. It is easier for a controller to track a smooth path than a
non-smooth path such as the path obtained by RRT.

6. Conclusions
This paper has presented a comprehensive review of the latest path planning techniques proposed for
multi-robot systems. First, a general introduction to path planning techniques was presented. Then,
the latest path planning works were presented based on the formation control strategy. After that,
state-of-the-art decision-making-based path planning techniques including centralized and decentral-
ized techniques were listed. Finally, some path planning simulations were presented to provide a quick
comparison between different path planning techniques. This research has highlighted that there are a
few number of recent works done in the area of virtual and behavior formation systems, especially for
UAV systems. In addition, the literature shows a lack in the number of robotic systems that proposed het-
erogeneous systems. Mentioning such research gaps in the field of path planning for multi-robot systems
is critical for future development and enhancement.

Supplementary materials. To view supplementary material for this article, please visit https://doi.org/10.1017/
S0263574723000322.
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