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A Hamiltonian and action principle formalism for deriving three-dimensional gyroviscous
magnetohydrodynamic models is presented. The uniqueness of the approach in
constructing the gyroviscous tensor from first principles and its ability to explain the
origin of the gyromap and the gyroviscous terms are highlighted. The procedure allows
for the specification of free functions, which can be used to generate a wide range of
gyroviscous models. Through the process of reduction, the noncanonical Hamiltonian
bracket is obtained and briefly analysed.
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1. Introduction

The importance of finite Larmor radius (FLR) effects in plasma physics is well
documented (Braginskii 1958; Roberts & Taylor 1962; Braginskii 1965; Rosenbluth &
Simon 1965; Liley 1972; Callen et al. 1987; Hazeltine & Meiss 1992; Mikhailovskii 1992;
Hazeltine & Waelbroeck 1998; Sulem & Passot 2008; Hosking & Dewar 2016; Goedbloed,
Keppens & Poedts 2019). A broad class of models that incorporate FLR effects are those
that fall under the fluid category, i.e. the momenta of the underlying particles are integrated
out to yield mean field theories that describe the evolution of physical quantities such as
density, fluid velocity, etc. The advantage of the fluid formalism stems from the fact that
the complex dynamics of a multiparticle system is reduced to a few dynamical equations
that are capable of accurately capturing its essential properties.

Fluid models that include FLR effects are often constructed by incorporating kinetic
effects, e.g. by moving from particle phase-space coordinates to guiding centre coordinates
(Hasegawa & Wakatani 1983; Hsu, Hazeltine & Morrison 1986; Brizard 1992; Smolyakov,
Pogutse & Hirose 1995; Belova 2001); models with FLR contributions incorporate kinetic
effects of importance such as Landau damping and gyroradius averaging (Hammett,
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Dorland & Perkins 1992; Beer & Hammett 1996; Snyder, Hammett & Dorland 1997; Waltz
et al. 1997; Snyder & Hammett 2001; Staebler, Kinsey & Waltz 2005; Madsen 2013).
A second approach involves expansions in the smallness of the Larmor radius as compared
to a characteristic length scale of the system and the imposition of closures for higher-order
moments (Macmahon 1965; Kennel & Greene 1966; Bowers 1971; Pogutse, Smolyakov &
Hirose 1998; Goswami, Passot & Sulem 2005; Simakov & Catto 2006; Ramos 2005a,
2007; Passot & Sulem 2007; Ramos 2010, 2011; Passot, Sulem & Hunana 2012; Passot,
Sulem & Tassi 2017; Pfefferlé, Hirvijoki & Lingam 2017). A third method uses the
Hamiltonian framework to construct full and reduced magnetohydrodynamic (MHD)
models endowed with FLR and other effects (Morrison & Hazeltine 1984; Morrison,
Caldas & Tasso 1984; Hsu et al. 1986; Hazeltine, Hsu & Morrison 1987; Brizard et al.
2008; Tassi et al. 2008; Izacard et al. 2011; Waelbroeck & Tassi 2012; Comisso et al.
2013; Lingam & Morrison 2014; Lingam 2015b,c; Passot, Sulem & Tassi 2018). One of
the chief advantages of Hamiltonian methods, as explained in the forthcoming sections, is
that they are amenable to the extraction of naturally conserved quantities (the Casimirs)
and analysing equilibria and stability.

The Hamiltonian formalism is deeply entwined with its twin approach, building models
from an action principle – together, we will refer to them as the Hamiltonian and action
principle (HAP) approach.1 The HAP formalism has a long history in fluid dynamics
and plasma physics – examples of seminal publications prior to the 20th century include
Lagrange (1789), Clebsch (1857), von Helmholtz (1858), Clebsch (1859), Hanke (1861)
and Kirchhoff (1876).2 A summary of modern developments in this area can be found
in the reviews by Serrin (1959), Truesdell & Toupin (1960), Seliger & Whitham (1968),
Arnold (1978), Morrison (1982), Holm et al. (1985), Morrison (1998), Arnold & Khesin
(1998), Morrison (2005), Holm (2008), Morrison (2009), Lingam (2015d), Sudarshan &
Mukunda (2016), Morrison (2017), Tassi (2017) and Webb (2018).

Using the action formalism has many advantages. For a starter, each term in the action
has a clear physical meaning, which is not always the case when equations of motion have
been derived using phenomenological or ad hoc assumptions. Another advantage is that
theories derived from action principles are naturally energy conserving. In some cases,
equations of motion that had not been derived using the HAP formalism were erroneously
believed to conserve energy (see e.g. Scott 2005, 2007; Kimura & Morrison 2014; Tronci
et al. 2014). In addition, by performing an appropriate Legendre transformation, one can
recover the Hamiltonian formalism, which is endowed with several advantages of its own.
For a review of action principles in MHD models, we refer the reader to Newcomb (1962),
Holm, Marsden & Ratiu (1998), Morrison (2009), Lingam (2015d), Webb (2018) and for
the Hamiltonian formalism to Morrison & Greene (1980), Morrison (1982), Holm et al.
(1985), Morrison (1998, 2005) and Tassi (2017). In particular, we mention its significance
in studying symmetric MHD and its properties (Andreussi, Morrison & Pegoraro 2010,
2012, 2013, 2016) and in constructing and analysing reduced MHD models (Morrison
& Hazeltine 1984; Hazeltine et al. 1987; Kuvshinov, Pegoraro & Schep 1994; Krommes
& Kolesnikov 2004; Waelbroeck, Hazeltine & Morrison 2009; Tassi et al. 2010b;

1We intend this abbreviation to encompass all of the forms of action principles (Hamilton’s principle, the phase space
action, various constrained variational principles, etc.) and both canonical and noncanonical Hamiltonian descriptions.
The HAP approaches of the present paper are Hamilton’s principle yielding Lagrange equations, which is here trivially
related to the phase space action, the canonical Hamiltonian formulation in the Lagrange variable description, and the
noncanonical Eulerian variable description.

2Augustin-Louis Cauchy presented a Lagrangian formulation of three-dimensional incompressible hydrodynamics
in a seminal, albeit forgotten, work in 1815 (Frisch & Villone 2014); see also Frisch, Grimberg & Villone (2017).
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Tassi, Grasso & Pegoraro 2010a; Waelbroeck & Tassi 2012; Keramidas Charidakos,
Waelbroeck & Morrison 2015; Tassi et al. 2018; Tassi 2019).

Earlier we outlined different methods by which FLR effects can be incorporated into
fluid models. It is worth noting that the Hamiltonian methods invoke the use of an
interesting device – the gyromap, which was discovered in Morrison et al. (1984) and
subsequently employed in the likes of Hazeltine et al. (1987) and Izacard et al. (2011). The
gyromap is essentially a noncanonical transformation that maps the phase space to itself,
and its chief advantage stems from the fact that it renders the noncanonical bracket of the
gyroviscous MHD model identical to that of classical ideal MHD bracket (Morrison &
Greene 1980) when expressed in terms of the new set of noncanonical variables; we will
elaborate upon this point later in the paper.3 The origin of the gyromap was not properly
understood until an action principle analysis in Morrison, Lingam & Acevedo (2014) was
applied to a specific two-dimensional (2-D) model, which assumed a particular ansatz for
the internal energy and the gyromap. In this paper, we generalize the work of Morrison
et al. (2014) to three dimensions, and present generic results in terms of freely specifiable
functions. Furthermore, when we choose a particular ansatz for our FLR fluid model, we
will use the physical principles of Larmor gyration to motivate the choice in detail. We
will refer to this magnetofluid model as gyroviscous magnetohydrodynamics (GVMHD).

The paper is organized as follows. In § 2, we outline the necessary tools for carrying
out an action formulation of three-dimensional (3-D) GVMHD. Then we proceed to build
the action in § 3, where we motivate the reasoning behind the gyroviscous term. In § 4,
the relevant equations of motion are presented and a particular choice of the gyroviscous
ansatz is constructed. In § 6, we present the equivalent Hamiltonian formalism of this
model. In § 6.2, we derive the GVMHD bracket and highlight the differences compared
with 3-D ideal MHD. Finally, we summarize our results in § 7. Some of the salient
auxiliary calculations are presented in the appendices.

2. The Lagrangian-variable approach to the action principle

In the first part of this section, we briefly describe Hamilton’s principle of stationary
action. In the second part, we highlight and outline the Lagrangian picture, and present a
systematic methodology for moving to the more commonly used Eulerian picture.

2.1. Hamilton’s principle of stationary action
The process involved in constructing the action for fluid models has been well known since
Lagrange (1789). Once the generalized coordinates qk(t) are chosen, where k runs over all
possible degrees of freedom, the action is determined via

S[q] =
∫ t1

t0

dtL (q, q̇, t) , (2.1)

with L representing the Lagrangian. It must be noted that S is a ‘functional’, i.e. its domain
and range are functions and real numbers, respectively. Hamilton’s principle states that
that the equations of motion are the extrema of the action, i.e. we require δS[q]/δqk = 0,
where the functional derivative is defined as follows:

δS[q; δq] = dS[q + εδq]
dε

∣∣∣∣
ε=0

=:
〈
δS[q]
δqi

, δqi

〉
. (2.2)

3The gyromap is a coordinate change from one set of dynamical variables to another. Its origin and usefulness will
be expounded in § 6.
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The continuum version is very similar to the discrete case since the discrete index k is
replaced by a continuous one, which we denote by a. The coordinate q is a function
of a and t, and tracks the location of a fluid particle labelled by a. We also note the
following important quantities which are used throughout the paper: the deformation
matrix ∂qi/∂a j =: qi

, j and the corresponding determinant, the Jacobian, J := det(qi
, j).

The volume evolves in time via
d3q = J d3a, (2.3)

and the area is governed by

(d2q)i = J aj
, i(d

2a)j, (2.4)

where J aj
, i is the transpose of the cofactor matrix of qj

, i. The quantities and the relations
introduced above can be used to generate a wide range of identities. One can find a detailed
discussion of these, for example, in Serrin (1959), Morrison (1998) and Bennett (2006).

2.2. Two representations: the Lagrangian and the Eulerian points of view
The Lagrangian position q evolves in time and is entirely characterized by its label a. But
the fluid parcels are not solely determined by the position alone; they can also carry with
them a certain density, entropy and magnetic field. As the fluid moves along its trajectory,
these quantities are also transported along with it, and are consequently characterized
only by the label a as well. We will refer to these quantities as attributes. As the label
a is independent of time, these attributes serve as Lagrangian constants of motion. The
subscript 0 will be used to label the attributes, in order to distinguish them from their
Eulerian counterparts.

Let us now consider the Eulerian picture. All Eulerian fields depend on the position r :=
(x1, x2, x3) and time t, which can both be measured in the laboratory. As a result, we shall
refer to these fields as observables. Moving from the Eulerian to Lagrangian viewpoint
and vice versa is accomplished with the Lagrange–Euler maps which we describe below
in more detail.

The Eulerian velocity field v(r, t) is the velocity of the fluid element at a location r and
time t. If we seek to preserve the equivalence of the Lagrangian and Eulerian pictures, this
must also equal q̇(a, t). As a result, it is evident that we require q̇(a, t) = v(r, t), where
the dot indicates that the time derivative is obtained at fixed label a. However, there is
a discrepancy since the left-hand side is a function of a and t, while the right-hand side
involves r and t. This conundrum is resolved by noting that the fluid element is at r in the
Eulerian picture, and at q in the Lagrangian one. Hence, we note that r = q(a, t), which
implies that a = q−1(r, t) =: a(r, t) upon inversion. As a result, our final Lagrange–Euler
map for the velocity is

v(r, t) = q̇(a, t)|a=a(r,t) . (2.5)

Now we consider the attributes defined earlier, which we have noted are carried along by
the fluid. The first attribute is the entropy of the fluid particle, which we shall label s0. For
ideal fluids, one expects the entropy to remain constant along the fluid trajectory. In other
words, the Eulerian specific entropy s(r, t)must also remain constant throughout, implying
that s = s0. Apart from entropy, the magnetic stream function ψ for 2-D GVMHD
(Andreussi et al. 2013; Morrison et al. 2014) also obeys this property.

Next, we can consider attributes which obey a conservation law similar to the density.
The conservation law in this case is that of mass conservation. The attribute is denoted
by ρ0(a) and the observable by ρ(r, t). The statement of mass conservation in a
given (infinitesimal) volume amounts to ρ(r, t) d3r = ρ0(a) d3a. Using (2.3) we obtain
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ρ0 = ρJ . As a result, we have found the Lagrange–Euler map for ρ. There exist other
attribute-observable pairs in the literature, which also possess similar conservation laws,
such as the entropy density.

In the case of magnetofluid models, it is often advantageous to introduce the magnetic
field attribute B0(a). In the case of ideal magnetofluid models, the conservation law of
frozen-in magnetic flux is applicable. In algebraic terms, this amounts to B · d2r = B0 ·
d2a, and from (2.4) we obtain J Bi = qi

, j B j
0.

In all of the above expressions, the picture is still incomplete since we need to remove
the a-dependence of the attributes. In a manner similar to that undertaken for the velocity,
we evaluate the attributes at a = q−1(r, t) =: a(r, t). This completes our prescription, and
one can fully determine the observables once we are provided the attributes in conjunction
with the Lagrangian coordinate q.

We may also represent the Lagrange–Euler map in an integral form, which
permits a more intuitive interpretation. We shall start with the assumption that the
attribute-observable relations are found via appropriate conservation laws. We have stated
before that one moves from the Lagrangian to the Eulerian picture by ‘plucking out’ the
fluid element that happens to be at the Eulerian observation point r at time t. Such a process
is accomplished mathematically via the delta function δ(r − q(a, t)). For instance, we see
that the density can be treated as follows:

ρ(r, t) =
∫

D
d3a ρ0(a)δ (r − q (a, t))

= ρ0

J

∣∣∣∣
a=a(r,t)

. (2.6)

Further below, we will also use a new variable, the canonical momentum density M c =
(Mc

1,Mc
2,Mc

3), which is related to its Lagrangian counterpart via

M c(r, t) =
∫

D
d3a Π(a, t)δ (r − q(a, t))

= Π(a, t)
J

∣∣∣∣
a=a(r,t)

. (2.7)

For ideal MHD, the canonical momentum density is Π(a, t) = (Π1,Π2,Π3) = ρ0q̇. It is
worth noting that Π(a, t) can be found from the Lagrangian through Π(a, t) = δL/δq̇ and
does not necessarily equal ρ0q̇ in general. One can also construct such integral relations
for the entropy and the magnetic field. We refer the reader to Morrison et al. (2014) for a
more detailed discussion along these lines.

3. Action principle for a generic magnetofluid

The first part of this section is devoted to a brief description of the procedure outlined
in Morrison (2009) and Morrison et al. (2014) for constructing action principles for
magnetofluid models. Some of the advantages have been highlighted in the introduction,
and others can be found in, for example, Morrison (2009) and Morrison et al. (2014). Then,
we proceed to construct our action and motivate our choice of terms along the way.

3.1. The general action
The domain of integration D is chosen to be a subset of R

3. Central to our formulation
is the Lagrangian coordinate q : D → D, which we shall assume to be a well-behaved
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function with the required smoothness, invertibility, etc. Next we need to specify our set
of observables, or alternatively our set of attributes. For our models, we work with E =
{v, ρ, σ,B} where σ = ρs is the entropy density. Finally, we shall impose the Eulerian
closure principle, which is necessary for our model to be ‘Eulerianizable’. Mathematically,
this principle amounts to the action being fully expressible in terms of the Eulerian
observables. Physically, the principle states that our theory must be solely describable
in terms of physically meaningful quantities, the observables, and must also give rise to
equations of motion in terms of these observables. As a result, we require our action to be
given via

S[q] :=
∫

T
dt
∫

D
d3aL (q, q̇, ∂q/∂a) =: S̄[E]. (3.1)

As per the Eulerian closure principle, this amounts to finding an action S̄ = ∫
T dt

∫
D d3r L̄

in terms of the Eulerian observables. The presence of the bar indicates that the action and
the Lagrangian density are expressed solely in terms of the observables.

3.2. Constructing the gyroviscous action
The first step in the process involves the construction of the kinetic energy, which must
also satisfy the closure principle. Using the analogy with particle mechanics, we know
that it equals

Skin :=
∫
T

dt
∫

D
d3a

1
2
ρ0|q̇|2 =

∫
T

dt
∫

D
d3r

1
2
ρ|v|2, (3.2)

where the last equality is obtained by using relations outlined in § 2.2.
The internal energy per unit mass is a function of the entropy density and the density,

and in Eulerian terms it can be represented by U(ρ, σ ). Using the inverse Lagrange–Euler
maps, we can construct the Lagrangian internal energy density accordingly,

Sint :=
∫
T

dt
∫

D
d3a ρ0U

(
ρ0

J ,
σ0

J

)

=
∫
T

dt
∫

D
d3r ρU (ρ, σ ) . (3.3)

The next step is the construction of the magnetic energy, and we use the same process
outlined for the internal energy, viz. we determine the Eulerian term and obtain the
Lagrangian version consequently through the Lagrange–Euler map,

Smag :=
∫
T

∫
D

d3r
1
2
|B|2,

=
∫
T

dt
∫

D
d3a

1
2J qi

, j q i
, k B j

0Bk
0. (3.4)

The magnetic energy is actually |B|2/8π in CGS units but we drop the factor of 4π
henceforth by scaling it away through the adoption of Alfvénic units.

Now we are ready to construct the most important term which will be responsible for
the gyroviscosity. The gyroviscous term is taken to be linear in q̇ and is given by

Sgyro =
∫
T

dt
∫

D
d3a q̇ · Π	 =

∫
T

dt
∫

D
d3r v · M	. (3.5)

In other words, we operate under the premise that Π	 is solely a functional of q and t. As
the Eulerian perspective is inherently endowed with physical variables (e.g. density and
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magnetic field), we will focus on the Eulerian equivalent of Π	; from the Eulerian closure
principle we obtain the relation

M	 = Π	(a, t)
J

∣∣∣∣
a=a(r,t)

. (3.6)

The complete action functional is now given by

S = Skin − Sint − Smag + Sgyro. (3.7)

The action of (3.7) is general, but not the most general second-order (in v) action that
satisfies the Eulerian closure principle. For example, the term Skin could be generalized
by replacing its integrand with ρ0G|q̇|2/2|a = ρG(ρ, σ,B)|v|2/2 and the integrand of Sint
could be replaced by ρ0U|a = ρU(ρ, σ,B), a form that was shown in Morrison (1982) to
allow for anisotropic pressure. Here both G and U could be arbitrary functionals (including
derivatives) of their arguments. Similarly the term Smag could be generalized.

The Eulerian canonical momentum density is defined via (2.7), which can be computed
by finding the Lagrangian canonical momentum using Π(a, t) = δL/δq̇ and Eulerianizing
it. Upon doing so, we arrive at the so-called gyromap, a device introduced in Morrison
et al. (1984) as follows:

M c := ρv + M	 = M + M	. (3.8)

The benefit of employing the gyromap and its natural origin will be discussed in § 6 and
further explicated in appendix B.

So far we have only required M	 to satisfy the closure principle, i.e. that it be expressible
in terms of the subset {ρ, σ,B} ⊂ E, including all possible Eulerian derivatives. Given
that M	 is a momentum density, arising perhaps from underlying gyration of particles, a
natural assumption is that it has the magnetization form

M	 = ∇ × L	, (3.9)

i.e. we assume that M	 is divergence-free. Since we are interested in a gyroviscosity due
to gyromotion, this is a physically reasonable assumption. However, one could replace
(3.9) by a Helmholtz decomposition for a more general collisionless viscosity. The present
choice is also motivated in part by the realization in Morrison et al. (1984) and Morrison
et al. (2014) that this choice is consistent with existing 2-D gyroviscous models. Because
M	 has the units of momentum density, from which we see that the quantity J 	 ∝
(q/m)M	 resembles a current density. If one assumes that the fluid ‘particles’ possess
a finite magnetic moment, it follows that the fluid must have a finite magnetization.
In other words, one may identify J 	 with the magnetization current density, which is
divergence-free (Jackson 1998) and the current through an area depends on flux through
a bounding curve. Are other choices possible and do any of them conserve angular
momentum? Perhaps an even simpler way of envisioning the ansatz for M	 is that it must
emerge from the gyration of particles. In pictorial terms, this gyration is reminiscent of the
effect generated by the curl of a vector field, which motivates our choice of M	. Further
grounds for assuming this particular expression are described in Morrison et al. (2014, § 5).
With this ansatz, evidently ∇ · M c = ∇ · M , since the second term vanishes. Note that the
right-hand side of this expression appears in the continuity equation, and we see that one
could also replace it by the left-hand side if we operate with M	 = ∇ × L	. Furthermore,
dimensional analysis permits the identification of L	 with the angular momentum density.

As we have reduced the question of determining L	, we must ask ourselves as to whether
any further simplifications are feasible. Once again, we can resort to physical intuition
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to gain an idea of what L	 might look like. Without further special assumptions about
the fluid, e.g. it having some intrinsic or extrinsic direction, the vectorial character of
L	 must come from B or from the set of gradients of the observables; these and their
cross products are the only vectors available. Thus, for example, a general form for L	

could be composed of a linear combination of these vectors with coefficients dependent
on ρ, σ and |B|. If we assume L	 constitutes an internal angular momentum density of
some kind associated with particle gyration, then it is reasonable to posit that it would
tend to align with the magnetic field B. Moreover, in the limit of a large magnetic field, the
corresponding gyroradii would become small, owing to which the fluid particle may not
be significantly affected by gradients on these scales. Combining the preceding arguments
leads to the generic form

L	 = F (ρ, σ, |B|)B. (3.10)

In § 4.2 we will argue for further specification of the properties of (3.10).
With the choice of (3.10), the gyroviscous term of the action, expressed in terms of the

observables is given by

Sgyro =
∫
T

dt
∫

D
d3r v · ∇ × [BF (ρ, σ, |B|)]

=
∫
T

dt
∫

D
d3r FB · ∇ × v, (3.11)

where the second equality follows from integrating by parts and neglecting the boundary
term. We shall use the latter operation consistently throughout the rest of the paper. Now
that we have constructed the gyroviscous term, we note that it is still generic since there is
considerable freedom in the choice of F .

4. The equations of motion and the choice of ansatz

In this section, we shall present the equations of motion and discuss the origin of the
gyroviscous terms, and why a specific choice of the free function F emerges in a natural
manner.

4.1. The equations of motion
The equations for the density, entropy density and the magnetic field can be determined via
the attributes/observables relations defined through the appropriate conservation laws and
the Lagrange–Euler maps. The entropy density and the density obey similar laws, given
by

∂ρ

∂t
+ ∇ · (ρv) = 0, (4.1)

∂σ

∂t
+ ∇ · (σv) = 0. (4.2)

The equation governing the magnetic field is

∂B
∂t

+ B (∇ · v)− (B · ∇) v + (v · ∇)B = 0, (4.3)

which can be recast into the more familiar induction equation if ∇ · B = 0 is satisfied. If
the constraint is obeyed, then we obtain

∂B
∂t

= ∇ × (v × B) . (4.4)
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The dynamical equation for the momentum is derived from δS = 0, and is thus equal to

∂

∂t

(
ρvk

)+ ∂j

[
ρv jvk +

(
p + |B|2

2

)
δjk − B jBk

]

− ∂j

[
B · (∇ × v)

(
ρ
∂F
∂ρ

+ σ
∂F
∂σ

+ |B| ∂F
∂|B| − F

)
δjk

]

+ ∂j

[
B · (∇ × v)

(
∂F
∂|B|

B jBk

|B|
)]

+ ∂j

[
εkjiBi

(
∂F
∂ρ

∂ρ

∂t
+ ∂F
∂σ

∂σ

∂t
+ ∂F
∂|B|

B
|B| · ∂B

∂t

)]
+ ∂j

[
εkjiF

∂Bi

∂t

]

− ∂j
[
εljiFBl

(
∂kv

i
)− εkliFB j

(
∂lv

i
)] = 0, (4.5)

where repeated indices indicate summation (as per the Einstein convention), and we have
employed the standard relationship between the internal energy and the scalar pressure p.
We note that (4.5) can be obtained in two different ways from the action. The first is to
follow the conventional variation with respect to q and obtain it accordingly. The second
method involves the use of the procedure outlined in Frieman & Rotenberg (1960) and
Newcomb (1962) and is described in appendix A. For our model, (4.1)–(4.3) and (4.5)
constitute the complete set of dynamical equations.

Before discussing the ansatz in more detail, a few observations regarding (4.5) are in
order. The second term occurring in the first line of this equation represents the ideal
MHD momentum flux (enclosed in square brackets), which is seen from the absence of
F in it. The second and third lines contain terms that are purely symmetric under the
interchange k ↔ j. The fourth line contains terms that are wholly antisymmetric under
k ↔ j. The fifth (and final) line contains terms that are neither purely symmetric nor purely
antisymmetric. As a result, we see that the entire momentum flux tensor is not symmetric,
as opposed to the ideal MHD tensor, or the 2-D gyroviscous tensor for the specific model
considered in Morrison et al. (2014). Note that we refer to the terms from line two onwards
as gyroviscous because they are expressed in terms of the velocity shear, akin to viscous
hydrodynamics. The gyroviscous tensor thus obtained above can be compared against the
general expression(s) presented in Ramos (2005b). Furthermore, these effects arise from
charged particle gyration – the latter aspect is explored below.

4.2. The origin of the gyroviscous ansatz
In § 3.2, we briefly outlined the process involved in constructing a generic gyroviscous
term. Now, we shall draw upon further physics to select a specific choice for the ansatz.

First, let us suppose that we start out with the notion of an internal angular momentum
L	. In order to understand where this angular momentum originates, we recall an identity
from electromagnetism which relates the angular momentum to the magnetic moment via
the gyromagnetic ratio, (2m)/e. If we consider a two-species model of ions and electrons,
then the ions will play the dominant role, owing to their higher mass. Hence, we know that
L	 = (2m/e)μ. The magnetic moment μ is typically an adiabatic invariant in plasmas,
and its magnitude is given by |μ| = mv2

⊥/2|B|, which is proportional to P⊥/|B| where
P⊥ denotes the perpendicular component of the (anisotropic) pressure. But, the magnetic
moment is a vector and the most natural way to construct a vector is through the unit vector
of the magnetic field. Putting these results together, we find that a natural ansatz (albeit a
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specific one) for L	 is given by

L	 = α
m
2e

P⊥
|B|2 B, (4.6)

where α is a dimensionless proportionality constant, which can be arbitrarily specified; in
the ensuing analysis, we set α = 1 for simplicity. By comparison with the more general
ansatz outlined in § 3.2, we find that they are identical when F = α(m/2e)P⊥/|B|2.

The function P⊥ is a function of σ , ρ and |B|. For a more detailed discussion of the
anisotropic pressure, we refer the reader to Kimura & Morrison (2014). It is defined as

P⊥ = ρ2 ∂U
∂ρ

+ ρ|B| ∂U
∂|B| , (4.7)

an expression that first appeared in Morrison (1982), where U is the internal energy that
is a function of ρ and σ , but also of the magnetic field; see also Hazeltine, Mahajan &
Morrison (2013). If we wish to forgo anisotropy, then we assume that U is independent
of B, and hence the second term in the above term vanishes. This assumption was used in
deriving the equation of motion (4.5) since the internal energy introduced in (3.3) had no
B-dependence. Such an assumption also leads to the pressure tensor becoming isotropic,
given by the first term of (4.7) alone.

In summary, the ansatz constructed was chosen such that the gyroviscosity (and
consequently the momentum transport) arises via the gyration of charged particles, thereby
lending the term its name. The fact that momentum transport could take place via such
gyrations was first noted by Chapman & Cowling (1970) and Kaufman (1960) in the 1950s
and 1960s. This principle was applied to incompressible gyrofluids in Newcomb (1972,
1973, 1983) and compressible gyrofluids in Morrison (2009) and Morrison et al. (2014),
who showed that this specific ansatz yielded results that were fully compatible with the
2-D version of the Braginskii tensor (Braginskii 1965).

Lastly, we note that substituting (4.6) in (3.8) after employing M	 = ∇ × L	 will yield
a number of extra terms with the same dimensions as M = ρv. Hence, if one divides
the expression throughout by ρ, the contributions arising from M	 have the dimensions
of velocity and possess physical interpretations. The first term, which is proportional to
(B × ∇P⊥)/|B|2, amounts to the diamagnetic drift velocity. The second term, which is
proportional to P/|B|3(B × ∇|B|) is analogous to the ∇|B| drift velocity for charged
particles. This correspondence has been pointed out in Morrison et al. (1984, § 6).

5. Angular momentum conservation and its ramifications

In this section, we discuss the chief unusual property of our model – the lack of an
‘orthodox’ angular momentum conservation, and its resolution. We also present a brief
illustration of its ramifications in an astrophysical context.

5.1. Constructing a hybrid conserved angular momentum
When we perform the constrained variation of our action, we recover

∂Mc
i

∂t
+ ∂jTij = 0,

Tij = Mc
i vj − ∂L

∂
(
∂jvk

) (∂ivk)+ ∂L
∂Bi

Bj + δij

[
L − ∂L

∂Bk
Bk − ∂L

∂ρ
ρ

]
.

⎫⎪⎬
⎪⎭ (5.1)

Additional details can be found in Holm et al. (1998, equations (7.6)–(7.8)) and Lingam
& Morrison (2014, § 3). Note that the Lagrangian density L in the above expression
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refers to the one present in (3.7). A rather unusual fact emerges if one inspects the
above energy-momentum tensor: when one considers ideal MHD, or even Hall and
extended MHD, the tensor Tij is symmetric. In turn, this ensures that the angular
momentum M = r × ρv is conserved. However, this is evidently not the case for the above
energy-momentum tensor.

This fact is not unusual because a number of hydrodynamic models are known to possess
asymmetric energy-momentum tensors. In particular, if the constituent ‘particles’ (which
may be fluid parcels) have an internal degree of freedom (i.e. spin), the energy-momentum
tensor of the fluid will manifest a non-symmetric component (Papapetrou 1949; Snider
& Lewchuk 1967; Olmsted & Snider 1976; Dewar 1977; Evans 1979; Kopczyński 1990;
Lingam 2015a). Examples of hydrodynamic models with asymmetric energy-momentum
tensors include ferrohydrodynamics (Rosensweig 1985; Billig 2005) and nematics (de
Gennes & Prost 1993). Although many core plasma models are characterized by
symmetric energy-momentum tensors (Pfirsch & Morrison 1985; Similon 1985), other
plasma models feature asymmetric energy-momentum tensors (e.g. Brizard 2010a). In
consequence, not all components of the angular momentum will be conserved, although
the toroidal component is conserved in such models (Scott & Smirnov 2010).

To resolve this, we will adopt the procedure delineated in McLennan (1966). We
begin with the observation that the first expression in (5.1) remains invariant under the
transformations Mc

i → Mc
i + ∂jΣij and Tij → Tij − ∂Σij/∂t. Let us suppose that we choose

∂Σij/∂t to be the antisymmetric part of Tij, thereby ensuring that Tij − ∂Σij/∂t is purely
symmetric. Hence, by utilizing this choice of Σij, we find that

∂Σij

∂t
= TA

ij = 1
2

(
Tij − Tji

) = εijkτk, (5.2)

where τ has the units of torque density and is given by

τk = 1
2

[
εkabMc

avb + m
2e

P⊥
|B|2 (Bk∂lvl − Bl∂kvl)

]
. (5.3)

The first term in the above expression is M c × v, which can also be expressed as M	 × v
since ρv × v = 0. The second and third terms are proportional to (∇ · v)B and (∇v) · B,
respectively. Since we know that τ behaves as a torque density, let us define a dynamical
variable S such that ∂Sk/∂t = τk; this constitutes a relation that mirrors the conventional
torque-angular momentum relation in classical mechanics. Using this in (5.2), we find
that Σij = εijkSk. With these ingredients, we can now construct a symmetric momentum
conservation law as follows:

∂Mtot
i

∂t
+ ∂jTS

ij = 0, (5.4)

with TS
ij representing the symmetric energy-momentum tensor and Mtot

i = Mc
i + εijk∂jSk.

As the resultant energy-momentum tensor is symmetric, it follows that the corresponding
angular momentum r × M tot is conserved.

The ramifications of S are manifold. It can be interpreted as an intrinsic angular
momentum density generated from the torque density (5.3). This is consistent with prior
works (Papapetrou 1949; Snider & Lewchuk 1967; Olmsted & Snider 1976; Dewar 1977;
Evans 1979; Kopczyński 1990) that outlined the connections between intrinsic angular
momentum and a non-symmetric energy-momentum tensor. A second justification arises
from M tot = M c + ∇ × S , implying by dimensional analysis that S has the dimensions
of angular momentum density. If we define M int = ∇ × S , we see that ∇ · M int = 0.
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The kinship between M	 and M int is obvious as they are both generated via an internal
angular momentum mechanism and are divergence-free.

Let us now summarize our results. We defined a dynamical variable S such that it obeys
∂Si/∂t = τi where τ is given by (5.3), and it emerges from the antisymmetric part of the
original energy-momentum tensor. We also find that the new momentum M tot = M +
(M	 + M int) yields a symmetric momentum tensor (which is the symmetric part of the
old one). Using the expressions for M	 and M int, we have

M	 + M int = ∇ × (
L	 + S

)
. (5.5)

Hence, we can define a composite intrinsic angular momentum J = L	 + S , akin to the
total angular momentum in quantum mechanics (Weinberg 2015). The introduction of
J yields M tot = M + ∇ × J , which is simple in form and has an immediate physical
interpretation. The angular momentum corresponding to M tot is conserved, and is given
by r × M tot. Hence, the total angular momentum defined below is an invariant,∫

d3r [r × M + r × (∇ × J )] . (5.6)

Before proceeding further, some major aspects concerning the 2-D GVMHD model
described in Morrison et al. (1984) and Morrison et al. (2014) merit further explication.
To begin with, we can rewrite (5.1) as follows:

∂Mi

∂t
+ ∂jT̃ij +

[
∂M	

i

∂t
+ ∂j

(
M	

i vj
)] = 0, (5.7)

where we have introduced the new energy-momentum tensor

T̃ij = ρvivj − ∂L
∂
(
∂jvk

) (∂ivk)+ ∂L
∂Bi

Bj + δij

[
L − ∂L

∂Bk
Bk − ∂L

∂ρ
.ρ

]
. (5.8)

The first key point worth highlighting here is that Morrison et al. (1984, 2014) adopted:
(i) a specific equation of state (EOS) for P⊥ wherein P⊥/|B| was a Lie-dragged scalar
density; and (ii) the choice B = Bzẑ for the magnetic field. These two conditions
collectively ensured that L	 had only one component and that the components of M	

behaved as scalar densities that underwent Lie-dragging; in other words, the term inside
the square brackets of (5.7) vanishes identically for the 2-D GVMHD model.

The second essential point is that 2-D GVMHD did not include any variables that were
Lie-dragged as vector densities of rank unity. In contrast, the magnetic field in 3-D MHD
and GVMHD plays this role (Morrison 1982; Lingam & Morrison 2014),4 but Bz in 2-D
GVMHD is a Lie-dragged scalar density as seen from Morrison et al. (1984, equation
(3)); to put it differently, Bz in 2-D GVMHD is advected the same way as the plasma
density ρ. Thus, the terms in (5.8) involving Bi are rendered irrelevant because they were
derived under the assumption that the magnetic field is a Lie-dragged vector density.
Hence, these two facts collectively ensure that the only potential source of asymmetry
in the energy-momentum tensor of 2-D GVMHD is the second term on the right-hand
side of (5.8). When one utilizes the particular EOS for this model in conjunction with

4Alternatively, if one considers the Hodge dual of the magnetic field, it constitutes an example of a Lie-dragged
two-form (Tur & Yanovsky 1993).
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Mz = 0 and B = Bzẑ, it can be shown (Morrison et al. 1984, 2014) that the gyroviscous
term of 2-D GVMHD yields the contribution

T (2D−GV)
ij = m

2e
P⊥
Bz

Njlik∂kvl, Njlik = δjkεli − δliεjk, (5.9a,b)

to the energy-momentum tensor, which turns out to be fully symmetric.
The above discussion serves to illustrate how and why the energy-momentum tensor

of the simplified 2-D GVMHD model of Morrison et al. (1984, 2014) is symmetric in
nature. However, in order to achieve this symmetry, a number of restrictions on the EOS
as well as the magnetic field and momentum density had to be imposed. When all of these
constraints are relaxed, which is the case for 3-D GVMHD, one finds that an asymmetric
energy-momentum tensor is obtained.

5.2. An illustration of the formalism
We have already noted earlier that the kinetic angular momentum r × M is not conserved.
However, we have seen that the angular momentum described in (5.6) is conserved.
Together, these imply that the rate of loss (or gain) of the kinetic angular momentum
r × M is precisely equal to the rate of gain (or loss) of the intrinsic angular momentum J .
Let us recall that S comprises a part of J , and we know that ∂Si/∂t = τi where τ is given
by (5.3). The first term in (5.3) reduces to M	 × v, as noted earlier. It is worth mentioning
that the additional two terms are quite different, but exhibit a similar scaling. Hence, we
shall use only the first term in our subsequent analysis. The total torque (denoted by T̃ ) is
found by integrating this term over the volume, and thus gives rise to the scaling

T̃ =
∫

M	 × v d3r ∼ m
e

(
P⊥
|B|
)
ΩR3, (5.10)

where we have dropped the numerical factors and used a characteristic velocity of ΩR,
with R denoting the radius of the (spherical) object. It is evident that the scaling will be
entirely determined by the EOS that is adopted.

Next, let us evaluate the spin-down rate, by using the relation T̃ = IΩ̇ , from classical
mechanics. The moment of inertia, dropping all numerical factors, is approximately
MR2 ∼ ρR5. Using this in (5.10), we find that

Ω̇ ∼ m
e

(
P⊥
ρ|B|

)
ΩR−2. (5.11)

The above relation indicates that Ω̇ ∝ Ω (holding other quantities fixed). The EOS
depends only on ρ, s and |B| and hence we can conclude that the relation Ω̇ ∝ Ω is
likely to be independent of the choice of the EOS. If we treat ρ and R to be independent
variables, i.e. by choosing M to be the dependent variable, one can also conclude that
Ω̇ ∝ R−2 will be independent of the EOS. The characteristic time tc = Ω/Ω̇ , is expected
to be independent of Ω and is given by

tc ∼ e
m

(
ρ|B|
P⊥

)
R2, (5.12)

and we see that it is proportional to R2, when the other parameters are held constant.
The Chew–Goldberger–Low EOS for P⊥ (Chew, Goldberger & Low 1956) is of particular
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interest since the characteristic time tc and the rate Ω̇ are both independent of the density
and the magnetic field, thereby demonstrating an unexpected universality. The resulting
spin-down corresponds to the dissipation of kinetic angular momentum, which must
imply that there is a corresponding increase in the intrinsic angular momentum J (which
comprises the other fluid variables).

The spin rates of low-mass stars are found to slow down by approximately two orders
of magnitude over a span of 109 years (Scholz 2009). Modelling stellar spin-down is
important for a multitude of reasons, including the fact that the older stars (with lower
rotation rates) display lower activity in general, which has numerous ramifications for
planetary habitability (Lingam & Loeb 2018, 2019). We can estimate the characteristic
time by choosing solar parameters (i.e. a solar-type star) for an order-of-magnitude
calculation. In particular, we substitute |B| ∼ 10−4 T, R ∼ 7 × 108 m and T ∼ 5.8 × 103

K (Priest 2014) in (5.12), which yields tc ∼ 3 × 106 years. The two leading candidates
invoked to explain stellar spin-down, star-disk and stellar wind braking, operate on time
scales of ∼106–107 years and ∼108 years, respectively (Bouvier et al. 2014, § 4.1). Hence,
we see that our semiquantitative estimate is comparable to these two time scales, and may
therefore constitute a viable mechanism for governing angular momentum evolution of
solar-mass stars.

The issue of angular momentum losses in protostars is another closely related topic
(Bodenheimer 1995; Matt & Pudritz 2005; Hartmann, Herczeg & Calvet 2016) which
might also be resolvable through the same mechanism. We emphasize that the heuristic
treatment in this subsection has primarily relied on simple scaling arguments, and a
complete picture can only emerge through the synthesis of rigorous analytical models
and numerical simulations. We note that this only represents the tip of the iceberg – other
potential applications include pulsar braking, transport in accretion discs and associated
phenomena. In the realm of fusion, we note that the formalism developed herein may prove
to be useful in explaining intrinsic rotation observed in tokamaks (Gürcan et al. 2007;
de Grassie 2009; Diamond et al. 2013; Rice 2016).

6. The Hamiltonian description and the origin of the gyromap

In this section, we shall outline some of the basic principles underlying noncanonical
Hamiltonian dynamics. The literature on this subject is considerable, and we refer the
reader to Morrison (1998) for a comprehensive introduction.

6.1. The Lagrangian view point and the Lagrange–Euler map
First, note that the Hamiltonian can be obtained from the Lagrangian via a Legendre
transform, akin to the usual process in particle mechanics. The Hamiltonian is given by

H[q,Π] =
∫

D
d3a q̇ · Π − L, (6.1)

where

L[q̇, q] =
∫

D
d3aL (q, q̇, ∂q/∂a) , (6.2)

with L defined so that the action of (3.7) is given by S = ∫
T dt L. Consequently, the

canonical momentum is given by

Π = δL
δq̇

= ρ0q̇ + Π	, (6.3)
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and we see that we have a field theory counterpart to the finite-dimensional case for
particle motion in a magnetic field where the kinetic momentum differs from the canonical
momentum, here with the role of the vector potential being played by Π	. Thus (6.1) gives
the Hamiltonian

H =
∫

D
d3a

( |Π − Π	|2
2ρ0

+ ρ0U
(
ρ0

J ,
σ0

J

)
+ 1

2J qi
, j q i

, k B j
0Bk

0

)
. (6.4)

This Hamiltonian (6.4) together with the canonical Poisson bracket,

{F,G} =
∫

D
d3a

(
∂F
∂q

· ∂G
∂Π

− ∂G
∂q

· ∂F
∂Π

)
, (6.5)

generates the Hamiltonian equations of motion in Lagrangian variables for our class of
3-D GVMHD models as follows:

q̇ = {q,H} = δH
δΠ

and Π̇ = {Π,H} = −δH
δq
, (6.6)

equations equivalent to the Euler–Lagrange equations obtained via δS = 0.
Now, one can use the Lagrange–Euler maps to convert both the Hamiltonian and

the bracket into Eulerian variables. The procedure is described in the next section. We
will see that the origin of the gyromap lies in (6.3) and how this expression relates to
different choices of Eulerian variables. The bracket obtained in terms of any of these
choices is endowed with Lie algebraic properties (Morrison 1998), most importantly the
Jacobi identity, but it does not possess the canonical form of (6.5) because the Eulerian
variables are not a set of canonical variables. As a result, one refers to the Hamiltonian
and the bracket as being noncanonical in nature, and indeed one version is identical to that
originally given in Morrison & Greene (1980).

As the Lagrange–Euler maps are not one-to-one, the noncanonical brackets are
degenerate in general, which gives rise to the existence of invariants – the Casimirs. The
theory of Casimir invariants has been studied quite extensively (Morrison 1998, 2005;
Holm 2008), but there are still unresolved subtleties regarding their incompleteness, see
for example Yoshida, Morrison & Dobarro (2014) and Yoshida & Morrison (2014, 2016).

The Casimirs also possess several advantages of their own, such as variational principles
for Eulerian equilibria of the form

δF := δ(H + λC) = 0, (6.7)

where C represents any combination of all the known Casimirs. This procedure is known
as the energy–Casimir method. Once the equilibria are known, the following symmetric
operator can be constructed:

Λjk := δ2F
δψ jδψ k

, (6.8)

where F is defined in (6.7) and the ψ denote the Eulerian (noncanonical) variables. The
energy–Casimir method states that the positive-definiteness of this operator is a sufficient
condition for stability, although there are mathematical intricacies involved (Holm et al.
1985; Rein 1994; Batt, Morrison & Rein 1995; Morrison 1998; Yoshida et al. 2003). Thus,
the Eulerian noncanonical Hamiltonian description we obtain allows for implementation
of such energy principles, although we will not pursue this application here.
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6.2. The gyro-bracket
We shall choose our new set of observables to be the Eulerian variables {M c, ρ, σ,B},
where M c was defined in (3.8). The reason for this choice will soon become obvious.
Recall that the Lagrange–Euler maps can be expressed in an integral form, as they were
for the density ρ and canonical momentum density M c in (2.6) and (2.7), respectively.
The remaining Eulerian variables are given by

σ =
∫

D
d3aδ (r − q) σ0(a), (6.9)

B j =
∫

D
d3aδ (r − q) q j

,kB
k
0(a). (6.10)

We use these expressions to obtain the noncanonical bracket from the canonical
counterpart by the functional chain rule. Any functional of the Eulerian observables can
be expressed in terms of Π and q; hence to delineate, we denote functionals of Π and q
by F̄ and those in terms of the observables by F, and note symbolically that F̄ = F ◦ E;
consequently,
∫

D
d3a

[
δF̄
δΠ

· δΠ + δF̄
δq

· δq
]

=
∫

D
d3r

[
δF
δM c · δM c + δF

δB
· δB + δF

δρ
δρ + δF

δσ
δσ

]
.

(6.11)
From (2.6), we can conclude that

δρ = −
∫

D
d3aρ0∇δ (r − q) · δq, (6.12)

and similar identities can be found for (2.6), (2.7), (6.9) and (6.10) as well. We substitute
these identities into (6.11) and carry out integrations by parts, followed by a subsequent
change in the order of integration. This results in terms that are dotted with δq and terms
dotted with δΠ on both the left- and right-hand sides of the expression. As δq and δΠ are
independent, these terms must balance and thereby we obtain relationships between the
Eulerian and Lagrangian functional derivatives. The algebra involved is complicated, but
quite straightforward, and we refer the reader to Morrison (2009) for a more pedagogical
version. The final bracket that we obtain is found to be

{F,G} = −
∫

d3r

[
Mc

i

(
δF
δMc

j
∂j
δG
δMc

i
− δG
δMc

j
∂j
δF
δMc

i

)

+ ρ

(
δF
δMc

j
∂j
δG
δρ

− δG
δMc

j
∂j
δF
δρ

)
+ σ

(
δF
δMc

j
∂j
δG
δσ

− δG
δMc

j
∂j
δF
δσ

)

+ Bi

(
δF
δMc

j
∂j
δG
δBi

− δG
δMc

j
∂j
δF
δBi

)
+ Bi

(
δG
δB j

∂i
δF
δMc

j
− δF
δB j

∂i
δG
δMc

j

)]
. (6.13)

By inspection, one notices that the bracket derived above is exactly the same as the 3-D
ideal MHD bracket (Morrison & Greene 1980); however, here the canonical momentum
M c replaces the kinetic momentum M = ρv.

Since the bracket (6.13) uses M c as one of its observables, we must express our
Hamiltonian in terms of this observable (and the others) as well. Because of the closure
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principle we know this is possible; indeed, (6.4) in Eulerian variables becomes

H =
∫

d3r

[∣∣M c − M	
∣∣2

2ρ
+ ρU (ρ, σ, |B|)+ |B|2

2

]
. (6.14)

The Hamiltonian of (6.14) with the bracket of (6.13) generates our class of 3-D GVMHD
models in the form

∂E

∂t
= {E,H}. (6.15)

On account of the fact that M = M c − M	, the energy has the form identical to that of
ideal MHD. This is analogous to the fact that the kinetic energy for a charged particle in
a magnetic field is identical to that for a free particle. Hence, there is a choice: one can
either work with the standard ideal MHD bracket and the more complicated Hamiltonian
of (6.14) in terms of the canonical momentum M c, or work with a complicated bracket
written in terms of the variable M , the conventional variable of magnetofluid theories,
and the simpler ideal MHD Hamiltonian. To obtain the bracket in terms of M we can use
the gyromap (3.8), M = M c − M	, in another chain rule calculation to transform from
M c to the variable M . This is worked out in appendix B for the case M	 = ∇ × (FB),
giving rise to a complicated Poisson bracket.

Given that the noncanonical Poisson bracket in terms of M c is the same as that of ideal
MHD, it possesses the same Casimir invariants as the ideal MHD case if we replace M
with M c. This use of the gyromap to obtain Casimirs, which first appeared in Morrison
et al. (1984) and subsequently in other cases (Hazeltine et al. 1987; Izacard et al. 2011;
Lingam & Morrison 2014; Morrison et al. 2014), differs from most of the prior studies
that have sought to derive Casimirs and other conserved invariants via the HAP approach
using a variety of methods, see for example Morrison (1982, 1998), Padhye & Morrison
(1996a,b), Hameiri (2004) and Webb et al. (2014a, b) for a comprehensive discussion of
the same.

So, for our present general gyroviscous models, the gyromap tells us that the
M-independent Casimirs of ideal MHD will be unchanged, an example being the
magnetic helicity

∫
d3r A · B. On the other hand, the cross-helicity and other M-dependent

invariants are modified by the replacement M → M c. Thus, the new cross-helicity
Casimir is given by

∫
d3r

M c · B
ρ

=
∫

d3r
(M + M	) · B

ρ
(6.16)

=
∫

d3r
[
v · B +

(F
ρ

)
B · ∇ × B

]
. (6.17)

Equation (6.16) is conserved for any choice of M	 that satisfies the closure principle with
a provision similar to that for conservation of the usual helicity of MHD, viz. that the flow
be barotropic. In (6.17) we have inserted the special case of M	 = ∇ × L	 with (3.10). The
second term of (6.17) is proportional to the current helicity density, which is encountered
regularly in the context of MHD (Moffatt 1978; Krause & Raedler 1980; Brandenburg
& Subramanian 2005; Rincon 2019) and Hall MHD (Mininni, Gómez & Mahajan 2003;
Lingam & Mahajan 2015; Lingam & Bhattacharjee 2016a,b; Mahajan & Lingam 2015,
2020) turbulence and dynamo theory.
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7. Conclusions

As we have noted in the introduction, there exist many approaches for constructing FLR
models, each with their own advantages and disadvantages. In this paper, we present a
HAP formalism that allows us to generate gyroviscous 3-D MHD models.

The action formalism allows us to clearly motivate and introduce the gyroviscous
term, which is expressed in terms of a freely specifiable function. However, by using a
combination of simple physical reasoning and prior results, we show that there exists
a natural choice for this function, the 2-D limit of which exhibits consistency with the
Braginskii gyroviscous tensor. We also show that the gyromap – a mathematical construct
used to map back and forth between complicated Hamiltonians and easy brackets and
vice versa – emerges naturally in this framework. The HAP formalism also has the
distinct advantage of generating energy-conserving models from first principles, and all
our models presented conserve both energy and momentum. Through the process of
reduction, we recover the noncanonical bracket for this model, and a method for finding
the Casimirs is elucidated.

One of the central results that emerged in this work was that the 3-D gyroviscous models
do not conserve the orthodox angular momentum r × M . We have presented a procedure
for symmetrizing the momentum tensor via the construction of a hybrid momentum M tot.
It is shown that the associated angular momentum r × M tot is conserved. This procedure
leads to the natural introduction of an intrinsic (spin) angular momentum which is likely to
possess crucial ramifications in fusion and astrophysical plasmas; an example of the latter
is briefly discussed.

The prospects for future work are manifold. The first, and perhaps the most important
from a conceptual and mathematical standpoint, is to explore the putative violation of
angular momentum conservation on a Lagrangian level. The second entails the application
of this framework to astrophysical and fusion systems, and thereby assess whether the
ensuing results are consistent with observations. The third involves a detailed comparison
with other known gyroviscous tensors, such as those formulated by Braginskii (1965),
Mikhailovskii & Tsypin (1971), Liley (1972), Catto & Simakov (2005), Ramos (2005a,b,
2010, 2011) and Simakov & Molvig (2016).5 This is an ongoing effort, but preliminary
results along this direction suggest that the symmetric part of our gyroviscous tensor might
be compatible with results obtained by some of these authors, but at present we conclude
that the 3-D version of Branginskii’s gyroviscosity tensor probably does not emerge
from an action principle. A comprehensive analysis is reserved for future publications.
The comparison is more tedious (albeit feasible) for the full 3-D case in comparison
with the 2-D case considered in Morrison et al. (1984), because the latter possessed a
simple governing equation for the pressure, and it involved only two components of the
momentum density and a single component of the magnetic field.

Our model was centred on the introduction of gyroviscosity into the ideal MHD
model. However, given that several variants of extended MHD possess Lagrangian and
Hamiltonian formulations (Keramidas Charidakos et al. 2014; Abdelhamid, Kawazura
& Yoshida 2015; Lingam, Morrison & Miloshevich 2015a; Lingam, Morrison & Tassi
2015b; D’Avignon, Morrison & Lingam 2016; Lingam, Abdelhamid & Hudson 2016a;
Lingam, Miloshevich & Morrison 2016b; Burby 2017; Miloshevich, Lingam & Morrison
2017), it would seem natural to utilize the gyromap and thus formulate the gyroviscous
contributions for this class of models; after doing so, their equilibria and stability can

5The stress tensor computed by Liley (1972) does not rely on the large-B assumption, and reduces to the Braginskii
gyroviscous tensor in the small-gyroradius limit (Hosking & Marinoff 1973); see also Hosking & Dewar (2016, § 2.8,
2.9).
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be obtained by using the HAP approach along the lines of Andreussi et al. (2010, 2012,
2013, 2016), Morrison et al. (2014) and Kaltsas, Throumoulopoulos & Morrison (2017,
2018, 2020) where the stability of a variety of equilibria is analysed using Lagrangian,
energy–Casimir and dynamically accessibility methods. Likewise, this approach could
also be extended to relativistic MHD and XMHD models with HAP formulations
(D’Avignon, Morrison & Pegoraro 2015; Grasso et al. 2017; Kawazura, Miloshevich &
Morrison 2017; Coquinot & Morrison 2020; Ludwig 2020). We mention in passing that
it would be interesting to explore how the time-dependent regauging of Andreussi et al.
(2013) can be used to produce or remove the M	-effects, in a manner analogous to how
rotation can produce or remove effects of the magnetic field using Larmor’s theorem.

Finally we mention a most basic extension of the present work. Our class of gyroviscous
action principles were physically motivated, yet ultimately ad hoc. An alternative would
be to start from a more basic model, such as the Vlasov–Maxwell system, and derive a
gyroviscous action by asymptotic procedures. A natural starting point would be the Low
Lagrangian (Low 1958) – see also Morrison & Pfirsch (1989) and Morrison (2005) – and
then reduce from phase space ‘fluid’ element variables of that theory to the usual fluid
element that we have denoted here by q(a, t). This would deviate from the usual historical
approaches, which encompass most of the early literature, where one proceeds from
ordering kinetic equations. Whichever route is taken, one typically uses intuition obtained
from finite-dimensional particle orbit dynamics in given strong magnetic fields, and the
associated drifts, in order to make approximations, often mixing up discrete particle orbit
ideas with field theoretic perturbations. It was argued in Morrison, Vittot & de Guillebon
(2013) that a more consistent approach is to remain within the field theoretic framework,
and it would appear prima facie that the Low Lagrangian is a natural framework for doing
this. With this approach one could relate M	 consistently to magnetization and other drifts
on the fluid level. We hope to pursue this issue and others in the future.
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Appendix A. An Euler–Poincaré approach to the 3-D gyromap

The Lagrange–Euler maps, when expressed in an integral form, are given by (2.6) and
(2.7). Instead of M c, we can also use the velocity as our observable, and it possesses the
following Lagrange–Euler map:

v(r, t) =
∫

D
d3aδ (r − q) q̇(a, t)J , (A 1)

which is equivalent to v = q̇, with the right-hand side evaluated at a = q−1(r, t). The
central idea is to express the Eulerian variations in terms of the Lagrangian ones, and
thereby recover the equations of motion conveniently. The approach has classical roots,
appeared in the plasma literature in the works of Frieman & Rotenberg (1960), Katz (1961),
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Low (1961), Lundgren (1963), Calkin (1963), Merches (1969) and Newcomb (1962, 1972,
1973, 1983). The formalism was recast into geometric/group theoretic language in Holm
et al. (1998), who gave it the title of the ‘Euler–Poincaré’; this paper was motivated to
a degree by what the authors called the ‘Arnold program’ (Arnold 1966). It should be
pointed out that general variational principles of this form appeared in the early work of
Hamel (1904). The method has subsequently been applied to very many systems, including
kinetic theory (Cendra et al. 1998), complex fluids (Gay-Balmaz & Ratiu 2009), reduced
magnetofluid models (Brizard 2010b) and hybrid fluid-kinetic models (Holm & Tronci
2012; Tronci & Camporeale 2015; Burby & Tronci 2017; Close, Burby & Tronci 2018).

Let us illustrate this procedure by using the magnetic energy density as our example. We
shall adopt the notation employed in Andreussi et al. (2013) for convenience, where the
Lagrangian displacement δq is denoted by ξ and its Eulerianized counterpart is denoted
by η. From (3.4), we know that

δSmag =
∫
T

dt
∫

D
d3r B · δB, (A 2)

where we have invoked the Eulerian closure principle. The final step lies in expressing
δB in terms of η, which has been undertaken in Frieman & Rotenberg (1960) (see also
Andreussi et al. 2013), which we list as follows:

δB = −∇ × (B × η) . (A 3)

Upon using this in (A 2) and integrating by parts, we recover the J × B term, which is
exactly the term arising in ideal MHD.

Upon applying the Euler–Poincaré method to (3.7), it can be verified that one does
indeed recover (4.5) as our final result.

Appendix B. The noncanonical gyroviscous bracket

In (6.13), we presented the gyroviscous bracket in terms of the canonical momenta Mc

and the rest of the observables. The correspondence of the gyroviscous bracket with the
ideal MHD bracket was also noted.

However, it is much more common to express noncanonical brackets in terms of the
kinetic momentum M = ρv, which we shall undertake here. In order to do so, we shall
use the gyromap, discussed in § 3.2,

M c = M + M	 = M + ∇ × (FB) , (B 1)

which can be easily rearranged to yield M = M c − M	. We shall now use the familiar
concept that a given functional can be expressed in any set of (independent) observables.
We denote by F the functional in terms of M c and the rest of the observables, and by F̃,
the functional in terms of M and the rest. Since we know that F ≡ F̃, another chain rule
calculation starts from

δF =
∫

D
d3r

[
δF
δM c · δM c + δF

δB
· δB + δF

δρ
δρ + δF

δσ
δσ

]

=
∫

D
d3r

[
δF̃
δM

· δM + δF̃
δB

· δB + δF̃
δρ
δρ + δF̃

δσ
δσ

]
= δF̃, (B 2)

and by using the gyromap, we find that

δM = δM c − ∇ × [δ (FB)] , (B 3)
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and by substituting this into (B 2), integrating by parts and eliminating the resultant
boundary terms, we finally recover the following relations:

δF
δM c = δF̃

δM
,

δF
δρ

= δF̃
δρ

− B ·
(

∇ × δF̃
δM

)
∂F
∂ρ
,

δF
δσ

= δF̃
δσ

− B ·
(

∇ × δF̃
δM

)
∂F
∂σ

δF
δB

= δF̃
δB

−
[

B ·
(

∇ × δF̃
δM

)]
∂F
∂|B|

B
|B| −

(
∇ × δF̃

δM

)
F .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 4)

We can now recover the bracket in terms of M from (6.13), by implementing the following
two successive steps.

(i) First, replace the Mc
i in the first line of (6.13), prior to the functional derivatives, with

(B 1). This ensures that only M and the other observables are present.
(ii) Next, the functional derivatives occurring in (6.13) should be replaced with the

relations delineated in (B 4).
We shall not list the final bracket in its entirety since its complexity is clearly

self-evident.6 Hence, this illustrates the advantage of the gyromap in facilitating a much
simpler bracket. Simply through the process of inspection, it would have been almost
impossible to construct the bracket in terms of M or to find the variable M c that simplified
the bracket.

The Hamiltonian, in terms of M , is much simpler as seen from the following expression:

H =
∫

d3r
[ |M |2

2ρ
+ ρU (ρ, σ )+ |B|2

2

]
. (B 5)

In other words, the resultant Hamiltonian is exactly identical to the total energy associated
with ideal MHD (Morrison & Greene 1980; Freidberg 2014; Goedbloed et al. 2019).

We note, that any choice for M	 that satisfies the Eulerian closure principle will, under
an analogous transformation, yield a complicated bracket in terms of M , yet one that
reduces to the MHD bracket of Morrison & Greene (1980) when the variable M c is used.
Thus, for any choice we have the same trade-off between Hamiltonian and bracket.
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