ON THE ABSOLUTE CESARO SUMMABILITY FACTORS OF TRIGONOMETRIC SERIES

by NIRANJAN SINGH
(Received 15th August 1966)

1.1 Let $\sum_{0}^{\infty} a_{n}$ be any given infinite series with s_{n} as its n-th partial sum. We write

$$
S_{n}^{\alpha}=\sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v}, \alpha>-1,
$$

and

$$
\sigma_{n}^{\alpha}=\frac{S_{n}^{\alpha}}{A_{n}^{\alpha}}
$$

where

$$
A_{n}^{\alpha}=\binom{n+\alpha}{n}
$$

If $\left\{\sigma_{n}^{\alpha}\right\}$ is a sequence of bounded variation, that is to say,

$$
\begin{equation*}
\sum_{1}^{\infty}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|<\infty \tag{1.1.1}
\end{equation*}
$$

then we say that $\sum_{0}^{\infty} a_{n}$ is summable $|C, \alpha|$. By virtue of the identity (1)

$$
t_{n}^{\alpha}=n\left(\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right)
$$

where t_{n}^{α} is the (C, α) mean of the sequence $\left\{n a_{n}\right\}$, the condition (1.1.1) becomes

$$
\sum_{1}^{\infty} \frac{\left|t_{n}^{\alpha}\right|}{n}<\infty
$$

1.2 Concerning the almost everywhere summability $|C, \alpha|\left(\alpha>\frac{1}{2}\right)$ of the trigonometric series

$$
\sum_{1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{1}^{\infty} A_{n}(x)
$$

Wang (4) in 1941 proved the following theorem.
Theorem A. If

$$
\sum_{n=2}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)(\log n)^{1+\varepsilon} \quad(\varepsilon>0)
$$

converges, then the trigonometric series $\sum_{n=1}^{\infty} A_{n}(x)$ is summable $|C, \alpha|\left(\alpha>\frac{1}{2}\right)$ almost everywhere.

This result of Wang has been subsequently generalized by Ul'yanov (6). He proved the following theorem.

Theorem B. If

$$
\sum_{1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) W_{n}<\infty
$$

then $\sum_{n=1}^{\infty} A_{n}(x)$ is summable $|C, \alpha|\left(\alpha>\frac{1}{2}\right)$, where $\left\{W_{n}\right\}$ is a positive monotonic increasing sequence of numbers such that $\sum_{1}^{\infty} \frac{1}{n W_{n}}<\infty$.

It is clear from the condition of Theorem B that W_{n} cannot be taken to be $\log n$. It has also been shown by Wang (5) that in his theorem ε cannot be taken to be zero.

In this note we obtain a further generalization of the above theorem. We shall prove the following in which it is possible to take W_{n} to be $\log n$.
2.1. Theorem. Let $\left\{W_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be two positive sequences such that $\left(\frac{W_{n}}{\lambda_{n}^{2}}\right)$ is a monotonic increasing sequence * and

$$
\sum_{1}^{\infty} \frac{\lambda_{n}^{2}}{n W_{n}}<\infty
$$

If

$$
\sum_{1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) W_{n}<\infty
$$

then $\sum_{1}^{\infty} A_{n}(x) \lambda_{n}$ is summable $|C, \alpha|\left(\alpha>\frac{1}{2}\right)$ almost everywhere.
It may be remarked that Theorem B is a particular case $\lambda_{n}=1$ of our theorem. Also, if we take $W_{n}=1$ and $\lambda_{n}=\frac{1}{(\log n)^{\frac{1}{2}+\varepsilon}}$, then our theorem includes the following theorem of Pati (2).

Theorem C. If $\sum_{1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)<\infty$, then

$$
\sum_{2}^{\infty} \frac{A_{n}(x)}{(\log n)^{\frac{1}{2}+\varepsilon}} \quad(\varepsilon>0)
$$

is summable $|C, \alpha|\left(\alpha>\frac{1}{2}\right)$ almost everywhere.
2.2 We require the following lemmas for the proof of our theorem.

Lemma 1 (3). If $\left\{F_{n}(t)\right\}$ is a sequence of positive, monotonic increasing functions, defined in the interval (a, b), and $\Sigma F_{n}(b)$ is convergent, then $\Sigma F_{n}^{\prime}(t)$ converges almost everywhere in (a, b).

[^0]Lemma 2 [6, p. 40]. Let $\{W(n)\}$ be a positive and non-decreasing function in $\left[n_{0}, \infty\right]$. Then the series $\sum_{m=n_{0}}^{\infty} \frac{1}{m W(m)}$ and $\sum_{m=n_{0}^{2}}^{\infty} \frac{1}{m W\left(m^{\frac{1}{2}}\right)}$ converge or diverge simultaneously.

3.1 Proof of the Theorem. Let

$$
T_{n}^{\alpha}(x)=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v A_{v}(x) \lambda_{v}
$$

Then we have to prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n}^{\alpha}(x)\right|
$$

converges almost everywhere.
By virtue of Lemma 1, it is sufficient to show that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{2 \pi}\left|T_{n}^{\alpha}(x)\right| d x
$$

converges.
Now *

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|T_{n}^{\alpha}(x)\right| d x & \leqq C\left(\int_{0}^{2 \pi}\left\{T_{n}^{\alpha}(x)\right\}^{2} d x\right)^{\frac{1}{2}} \\
& \leqq \frac{C}{n^{\alpha}}\left(\int_{0}^{2 \pi}\left\{\sum_{v=1}^{n} A_{n-v}^{\alpha-1} \lambda_{v}, v^{2} . A_{v}(x)\right\}^{2} d x\right)^{\frac{1}{2}} \\
& \leqq \frac{C}{n^{\alpha}}\left(\sum_{v=1}^{n}\binom{\alpha+n-v-1}{n-v}^{2} v^{2} \lambda_{v}^{2}\left(a_{v}^{2}+b_{v}^{2}\right)\right)^{\frac{1}{2}} \\
& \leqq \frac{C}{n^{\alpha}}\left(\sum_{v=1}^{n}(n-v)^{2 \alpha-2} v^{2} \lambda_{v}^{2}\left(a_{v}^{2}+b_{v}^{2}\right)\right)^{\frac{1}{2}} \\
& \leqq \frac{C}{n^{\alpha}}\left(\sum_{v=1}^{\left[n^{1 / 2}\right]}+\sum_{v=\left[n^{1 / 2}\right]+1}^{n}\right)^{\frac{1}{2}} \\
& \leqq \frac{C}{n^{\alpha}}\left\{\left(\sum_{v=1}^{\left[n^{1 / 2}\right]}\right)^{\frac{1}{2}}+\left(\sum_{v=\left[n^{1 / 2}\right]+1}^{n}\right)^{\frac{1}{2}}\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{2 \pi}\left|T_{n}^{\alpha}(x)\right| d x \leqq C \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}}\left\{\left(\sum_{v=1}^{[n / 2]}\right)^{\frac{1}{2}}+\left(\sum_{v=\left[n^{2} /\right]+1}^{n}\right)^{\frac{1}{2}}\right\} \\
=\Sigma_{1}+\Sigma_{2}, \text { say }
\end{aligned}
$$

* We denote by C a positive constant independent of n but not necessarily the same at each occurrence.

We have

$$
\begin{aligned}
\Sigma_{1} & \leqq C \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}}\left(\sum_{v=1}^{\left[n^{n} / 2\right]}(n-v)^{2 \alpha-2} \frac{v^{2} \lambda_{v}^{2}}{W_{v}}\right)^{\frac{1}{2}} \\
& \leqq C \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}} n^{\alpha-1} \leqq C
\end{aligned}
$$

by virtue of the fact that $\left\{\frac{\lambda_{v}^{2}}{W_{v}}\right\}$ is a decreasing sequence.

$$
\begin{aligned}
& \Sigma_{2} \leqq C \sum_{n=1}^{\infty} \frac{\lambda_{\left[n^{1 / 2]}\right.}}{n^{\frac{1}{2}}\left(W_{[n / 2 / 2}\right)^{\frac{1}{2}}} \frac{1}{n^{\alpha+\frac{1}{2}}}\left\{\sum_{v=\left[n^{1 / 2}\right]+1}^{n}(n-v)^{2 \alpha-2} W_{v} . v^{2}\left(a_{v}^{2}+b_{v}^{2}\right)\right\}^{\frac{1}{2}} \\
& \leqq C\left(\sum_{n=1}^{\infty} \frac{\lambda_{\left[n^{1 / 2]}\right.}^{2}}{n W_{[n / 2]}}\right)^{\frac{1}{2}}\left\{\sum_{n=2}^{\infty} \frac{1}{n^{2 \alpha+1}} v=\left[\sum_{n / 2 /]+1}^{n}(n-v)^{2 \alpha-2} v^{2} W_{v}\left(a_{v}^{2}+b_{v}^{2}\right)\right\}^{\frac{1}{2}}\right. \\
& \leqq C\left(\sum_{n=1}^{\infty} \frac{\lambda_{n}^{2}}{n W_{n}}\right)^{\frac{1}{2}}\left\{\sum_{n=1}^{\infty} \frac{1}{n^{2 \alpha+1}} \quad \sum_{v=\left[n^{1} / 2\right]+1}^{n}(n-v)^{2 \alpha-2} v^{2} W_{v}\left(a_{v}^{2}+b_{v}^{2}\right)\right\}^{\frac{1}{2}} \\
& \leqq C\left(\sum_{n=1}^{\infty} \frac{1}{n^{2 \alpha+1}} \sum_{v=1}^{n}(n-v)^{2 \alpha-2} v^{2} W_{v}\left(a_{v}^{2}+b_{v}^{2}\right)\right)^{\frac{1}{2}},
\end{aligned}
$$

by lemma 2 and the hypothesis of the theorem.
And therefore

$$
\begin{aligned}
\Sigma_{2}^{2} & \leqq C \sum_{v=1}^{\infty} v^{2} W_{v}\left(a_{v}^{2}+b_{v}^{2}\right) \sum_{n=v}^{\infty}(n-v)^{2 \alpha-2} n^{-2 \alpha-1} \\
& \leqq C \sum_{v=1}^{\infty} v^{2} W_{v}\left(a_{v}^{2}+b_{v}^{2}\right)\left(\frac{1}{v^{2}}\right) \\
& \leqq C \sum_{v=1}^{\infty} W_{v}\left(a_{v}^{2}+b_{v}^{2}\right) \\
& \leqq C
\end{aligned}
$$

by the hypothesis of the theorem and the fact that

$$
\sum_{n=v}^{\infty}(n-v)^{2 \alpha-2} n^{-2 \alpha-1}=O\left(\frac{1}{v^{2}}\right)
$$

for $\alpha>\frac{1}{2}$.
This completes the proof of the theorem.
It would like to express my sincerest gratitude to Dr. S. M. Mazhar for his kind help and constant encouragement during the preparation of this note.

REFERENCES

(1) E. Kogbetliantz, Sur les séries absolument sommables per la méthodes des moyennes, Bulletin de Sciences Mathematiques, (2), 49 (1925), 234-256.

THE ABSOLUTE CESARO SUMMABILITY FACTORS

(2) T. Pati, The absolute summability factors of infinite series, Duke Math. Journal 21 (1954), 271-283.
(3) A. Rajchman and S. Saks, Sur la derivabilité des fonctions monotones, Fundamenta Mathematicae, 4 (1923), 204-213.
(4) F. T. Wang, Note on the absolute summability of Fourier series, J. London Math. Soc. 16 (1941), 174-176.
(5) F. T. Wang, The absolute Cesaro-summability of trigonometric series, Duke Math. Journal 9 (1942), 567-572.
(6) P. L. Ul'yanov, Solved and unsolved problems in the theory of trigonometric and orthogonal series, Russian Math. Surveys, 19 (1964), 1-62.

Department of Mathematics and Statistics, Aligarh Muslim University, Aligarh (UP)
India.

[^0]: * In the original draft the monotonicity of $\left\{W_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ was assumed separately. The author is grateful to the referee for this improvement.

