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CHAOTICITY FOR MULTICLASS SYSTEMS
AND EXCHANGEABILITY WITHIN CLASSES

CARL GRAHAM,∗ École Polytechnique, CNRS

Abstract

Classical results for exchangeable systems of random variables are extended to multiclass
systems satisfying a natural partial exchangeability assumption. It is proved that the
conditional law of a finite multiclass system, given the value of the vector of the empirical
measures of its classes, corresponds to independent uniform orderings of the samples
within each class, and that a family of such systems converges in law if and only if the
corresponding empirical measure vectors converge in law. As a corollary, convergence
within each class to an infinite independent and identically distributed system implies
asymptotic independence between different classes. A result implying the Hewitt–Savage
0–1 law is also extended.
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1. Introduction

Among many others, Kallenberg [9], Kingman [10], Diaconis and Freedman [4], and Aldous
[1] studied exchangeable random variables (RVs) with Polish state spaces. The related notion
of chaoticity (convergence in law to independent and identically distributed (i.i.d.) RVs) appears
in many contexts, such as statistical estimation, or the asymptotic study of interacting particle
systems or communication networks. It is behind many fruitful heuristics, such as the ‘molecular
chaos assumption’ (Stosszahlansatz) used by Ludwig Boltzmann to derive the Boltzmann
equation; see [3, Sections 2 and 4].

A sequence of finite exchangeable systems converges in law to an infinite system if and only
if the corresponding sequence of empirical measures converges to the directing measure of the
limit infinite system, given by the de Finetti theorem. Hence, chaoticity is equivalent to the
fact that the empirical measures satisfy a weak law of large numbers, for which Sznitman [13]
developed a compactness-uniqueness method of proof, yielding propagation of chaos results
for varied models of interest. Sznitman also devised a coupling method for proving chaoticity
directly. See [13] for a survey, and [5], [6], and [11] for some developments.

The above notions pertain to the study of similar random objects, but many systems in
stratified sampling, statistical mechanics, chemistry, communication networks, biology, etc.
involve varied classes of similar objects (which we call ‘particles’). See, for instance, [3,
p. 454] and the review papers [2], [6], [8], and [12].
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Chaoticity for multiclass systems and exchangeability within classes 1197

In this paper we consider natural notions of multi-exchangeability and chaoticity for such
multiclass systems, and extend the above results. These notions are explicit in [5, pp. 78, 81],
and implicit in [2], [3], [8], and [12], where the corresponding limit equations are directly
considered. Graham and Robert [7] extended Sznitman’s coupling method in this context.
For infinite classes, Aldous calls multi-exchangeability ‘internal exchangeability’ just before
[1, Corollary 3.9].

We prove that the conditional law of a finite multiclass system, given the value of the vector
of the empirical measures of its classes, corresponds to choosing independent uniform orderings
of the samples within each class, and that a family of such systems converges in law if and only
if the corresponding empirical measure vectors converge in law. We conclude by extending a
result which implies the Hewitt–Savage 0–1 law.

As a corollary, for a multi-exchangeable system, chaoticity within classes implies asymptotic
independence between classes; see Theorem 3, below. This striking result allows rigor-
ous derivation of limit macroscopic models from microscopic dynamics using Sznitman’s
compactness-uniqueness methods, and was a major goal of this paper.

We state as a ‘proposition’ any known result and as a ‘theorem’ any result we believe to be
new. All state spaces S are Polish, and the weak topology is used for the space of probability
measures P (S), which is also Polish, as are the products of Polish spaces. For k ≥ 1, we
denote by �(k) the set of permutations of {1, . . . , k}.

2. Some classical results

2.1. Finite and infinite exchangeable systems

For N ≥ 1, a finite system (XN
n )1≤n≤N of RVs with state space S is exchangeable if

L(XN
σ(1), . . . , X

N
σ(N)) = L(XN

1 , . . . , XN
N ) for all σ ∈ �(N).

Then, the conditional law of such a system, given the value of its empirical measure defined by

�N = 1

N

N∑
n=1

δXN
n
, (1)

corresponds to a uniform ordering of the N (possibly repeated) values occurring in �N (its
atoms, counted according to their multiplicity); see [1, Lemma 5.4, p. 38].

An infinite system (Xn)n≥1 is exchangeable if every finite subsystem (Xn)1≤n≤N is
exchangeable. De Finetti’s theorem (see, e.g. [1], [4], [9], and [10]) states that such a system
is a mixture of i.i.d. sequences: its law is of the form

∫
P⊗∞ L�(dP),

where L� is the law of the (random) directing measure �, which can be obtained as

� = lim
N→∞

1

N

N∑
n=1

δXn almost surely (a.s.). (2)

Thus, laws of infinite exchangeable systems with state space S and laws of random measures
with state space P (S) are in one-to-one correspondence.

All this leads to the following fact; see [1, Proposition 7.20(b)] and [9, Theorem 1.2].
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Proposition 1. Let (XN
n )1≤n≤N for N ≥ 1 be finite exchangeable systems, and let �N be their

empirical measures (1). Then, we have

lim
N→∞(XN

n )1≤n≤N = (Xn)n≥1 in law,

where the limit is necessarily infinite exchangeable and its directing measure is denoted by �,
if and only if we have

lim
N→∞ �N = � in law.

A sequence (XN
n )1≤n≤N for N ≥ 1 is P-chaotic, where P ∈ P (S), if

lim
N→∞ L(XN

1 , . . . , XN
k ) = P⊗k for all k ≥ 1,

i.e. if it converges in law to an i.i.d. system of RVs of law P. The following corollary of
Proposition 1 is proved directly in [11, Proposition 4.2] and [13, Proposition 2.2].

Proposition 2. Let (XN
n )1≤n≤N for N ≥ 1 be finite exchangeable systems, let �N be their

empirical measures (1), and let P ∈ P (S). Then, the sequence is P-chaotic if and only if

lim
N→∞ �N = P in law

and, hence, in probability, since the limit is deterministic.

2.2. Multi-exchangeable systems

We assume that C ≥ 1 and that the state spaces Si for 1 ≤ i ≤ C are fixed. For a multi-index
N = (Ni)1≤i≤C ∈ N

C , we consider a multiclass system

(XN
n,i)1≤n≤Ni, 1≤i≤C, XN

n,i with state space Si , (3)

where XN
n,i is the nth particle, or object, of class i, and we say that it is multi-exchangeable if

its law is invariant under permutation of the particles within classes:

L((XN
σi(n),i )1≤n≤Ni, 1≤i≤C) = L((XN

n,i)1≤n≤Ni, 1≤i≤C) for all σi ∈ �(Ni).

This natural assumption means that particles of a class are statistically indistinguishable, and
obviously implies that (XN

n,i)1≤n≤Ni
is exchangeable for 1 ≤ i ≤ C. It is sufficient to check

that it is true when all σi but one are the identity. The empirical measure vector, (�N
i )1≤i≤C ,

with samples in P (S1) × · · · × P (SC), is given by

�N
i = 1

Ni

Ni∑
n=1

δXN
n,i

. (4)

We say that the multiclass system (Xn,i)n≥1, 1≤i≤C with infinite classes is multi-exchangeable
if every finite subsystem (Xn,i)1≤n≤Ni, 1≤i≤C is multi-exchangeable. Particles of class i form
an exchangeable system, which has a directing measure �i , and we call (�i)1≤i≤C the directing
measure vector.

The following result is given in [1] and is attributed to de Finetti. A remarkable fact is
conditional independence between different classes.

Proposition 3. ([1, Corollary 3.9].) Let (Xn,i)n≥1, 1≤i≤C be an infinite multi-exchangeable
system, and let �i be the directing measure of (Xn,i)n≥1. Given the directing measure vector
(�i)1≤i≤C , the Xn,i for n ≥ 1 and 1 ≤ i ≤ C are conditionally independent, and Xn,i has
conditional law �i .
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3. The extended results

We will extend the main results for exchangeable systems to multi-exchangeable systems,
which hold even though the symmetry assumption and resulting structure is much weaker.
Indeed, the symmetry order of the multi-exchangeable system, (3), is N1! . . . NC !, whereas the
symmetry order of an exchangeable system of the same size is the much larger (N1+· · ·+NC)!.

The following extension of [1, Lemma 5.4] (stated in words at the beginning of Section 2)
shows that, for a finite multi-exchangeable system, the classes are conditionally independent
given the vector of the empirical measures within each class. Hence, no further information
can be attained on its law by cleverly trying to involve what happens for different classes.

A statistical interpretation of this remarkable fact is that the empirical measure vector is
a sufficient statistic for the law of the system, the family of all such laws being trivially
parameterized by the laws themselves.

Theorem 1. Let (XN
n,i)1≤n≤Ni, 1≤i≤C be a finite multi-exchangeable system, as in (3). Then

its conditional law, given the value of the empirical measure vector (�N
i )1≤i≤C defined in (4),

corresponds to independent uniform orderings for 1 ≤ i ≤ C of the Ni values of the particles
of class i (possibly repeated), which are the atoms of the value of �N

i (counted with their
multiplicities).

Proof. Multi-exchangeability and the obvious fact that

�N
j = 1

Nj

Nj∑
n=1

δXN
n,j

= 1

Nj

Nj∑
n=1

δXN
σ(n),j

for all σ ∈ �(Nj )

imply that, for all g : P (S1) × · · · × P (SC) → R+ and fi : SNi

i → R+, we have

E

[
g((�N

j )1≤j≤C)

C∏
i=1

fi(X
N
1,i , . . . , X

N
Ni,i

)

]

= 1

N1!
∑

σ1∈�(N1)

. . .
1

NC !
∑

σC∈�(NC)

E

[
g((�N

j )1≤j≤C)

C∏
i=1

fi(X
N
σi(1),i , . . . , X

N
σi(Ni),i

)

]

= E

[
g((�N

j )1≤j≤C)

C∏
i=1

1

Ni !
∑

σ∈�(Ni)

fi(X
N
σ(1),i , . . . , X

N
σ(Ni),i

)

]

= E

[
g((�N

j )1≤j≤C)

C∏
i=1

〈
fi,

1

Ni !
∑

σ∈�(Ni)

δ(XN
σ(1),i

,...,XN
σ(Ni ),i

)

〉]
, (5)

where 〈·, ·〉 is the duality bracket between functions and measures, and the empirical measure

1

Ni !
∑

σ∈�(Ni)

δ(XN
σ(1),i

,...,XN
σ(Ni ),i

)

corresponds to exhaustive uniform draws without replacement among the atoms XN
1,i , . . . , X

N
Ni,i

of �N
i counted according to multiplicity, and, hence, is a function of �N

i . Since g is arbitrary,
the characteristic property of conditional expectation yields

E

[ C∏
i=1

fi(X
N
1,i , . . . , X

N
Ni,i

)

∣∣∣∣ (�N
i )1≤i≤C

]
=

C∏
i=1

〈
fi,

1

Ni !
∑

σ∈�(Ni)

δ(XN
σ(1),i

,...,XN
σ(Ni ),i

)

〉
,

which completes the proof, since the fi are arbitrary and the spaces Polish.
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This result and Proposition 3 lead to the following extension of Proposition 1. We denote
by limN→∞ the limit along a fixed arbitrary subsequence of N ∈ N

C such that min1≤i≤C Ni

goes to ∞.

Theorem 2. We consider a family of finite multi-exchangeable multiclass systems

(XN
n,i)1≤n≤Ni, 1≤i≤C, N ∈ N

C,

all of the form (3) with the same C ≥ 1 and state spaces Si , and the corresponding empirical
measure vectors (�N

i )1≤i≤C given in (4). Then we have

lim
N→∞(XN

n,i)1≤n≤Ni, 1≤i≤C = (Xn,i)n≥1, 1≤i≤C in law,

where the limit is necessarily infinite multi-exchangeable and its directing measure vector is
denoted by (�i)1≤i≤C , if and only if we have

lim
N→∞(�N

i )1≤i≤C = (�i)1≤i≤C in law.

Proof. Since the state spaces are Polish, it is enough to prove that, for arbitrary k ≥ 1 and
bounded continuous fi : Sk

i → R for 1 ≤ i ≤ C, we have

lim
N→∞ E

[ C∏
i=1

fi(X
N
1,i , . . . , X

N
k,i)

]
= E

[ C∏
i=1

fi(X1,i , . . . , Xk,i)

]
(6)

if and only if

lim
N→∞ E

[ C∏
i=1

〈fi, (�
N
i )⊗k〉

]
= E

[ C∏
i=1

〈fi, �
⊗k
i 〉

]
. (7)

Let (m)k = m!/(m − k)! = m(m − 1) · · · (m − k + 1) for m ≥ 1 and, for Ni ≥ k, let

�
N ,k
i = 1

(Ni)k

∑
1≤n1,...,nk≤Ni

distinct

δ(XN
n1,i ,...,X

N
nk,i )

denote the empirical measure for distinct k-tuples in class i, corresponding to sampling k times
without replacement among XN

1,i , . . . , X
N
Ni,i

. Theorem 1 implies that

E

[ C∏
i=1

fi(X
N
1,i , . . . , X

N
k,i)

]
= E

[
E

[ C∏
i=1

fi(X
N
1,i , . . . , X

N
k,i)

∣∣∣∣ (�N
i )1≤i≤C

]]

= E

[ C∏
i=1

〈fi, �
N ,k
i 〉

]
(8)

(which follows directly from (5) with g = 1 and the extensions of fi on SNi

i ), and Proposition 3
similarly implies that

E

[ C∏
i=1

fi(X1,i , . . . , Xk,i)

]
= E

[ C∏
i=1

〈fi, �
⊗k
i 〉

]
. (9)
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The corresponding empirical measure for sampling with replacement is given by

(�N
i )⊗k = 1

Nk
i

∑
1≤n1,...,nk≤Ni

δ(XN
n1,i ,...,X

N
nk,i )

= (Ni)k

Nk
i

�
N ,k
i + 1

Nk
i

∑
1≤n1,...,nk≤Ni

not distinct

δ(XN
n1,i ,...,X

N
nk,i )

,

and in total variation norm ‖µ‖ = sup{〈φ, µ〉 : ‖φ‖∞ ≤ 1} we have

‖(�N
i )⊗k − �

N ,k
i ‖ ≤ 2

Nk
i − (Ni)k

Nk
i

≤ k(k − 1)

Ni

, (10)

where we bound Nk
i − (Ni)k by counting k(k−1)/2 possible positions for two identical indices

with Ni choices and Nk−2
i choices for the other k − 2 positions. Hence, if (6) holds then (8),

(9), and (10) imply (7), and conversely, if (7) holds then (8), (9), and (10) imply (6). This
completes the proof.

Let Pi ∈ P (Si ) for 1 ≤ i ≤ C. We say that the family of finite multiclass systems such as
in Theorem 2 is (P1, . . . , PC)-chaotic if

lim
N→∞ L((XN

n,i)1≤n≤k, 1≤i≤C) = P⊗k
1 ⊗ · · · ⊗ P⊗k

C for all k ≥ 1.

This means that the multiclass systems converge to an independent system, in which particles
of class i have law Pi . We state a striking corollary of Theorem 2.

Theorem 3. We consider a family of finite multi-exchangeable multiclass systems such as in
Theorem 2, and let Pi ∈ P (Si ) for 1 ≤ i ≤ C. Then the family is (P1, . . . , PC)-chaotic if and
only if the (XN

n,i)1≤n≤Ni
are Pi-chaotic for 1 ≤ i ≤ C.

Proof. Since (Pi )1≤i≤C is deterministic, limN→∞(�N
i )1≤i≤C = (Pi )1≤i≤C in law if and

only if limN→∞ �N
i = Pi in law for 1 ≤ i ≤ C. We conclude using Theorem 2.

We finish with the following extension of [1, Corollary 3.10] and of the Hewitt–Savage 0–1
law. For k ≥ 1, we say that a set

B ⊂ S∞
1 × · · · × S∞

C

is k-multi-exchangeable if, for all permutations σi of {1, 2, . . . } leaving {k + 1, k + 2, . . . }
invariant, 1 ≤ i ≤ C, we have

(xn,i)n≥1, 1≤i≤C ∈ B ⇐⇒ (xσi(n),i )n≥1, 1≤i≤C ∈ B.

We define the multi-exchangeable σ -algebra

E =
⋂
k≥1

Ek, Ek = {{(Xn,i)n≥1, 1≤i≤C ∈ B} : B is k-multi-exchangeable},

and the multitail σ -algebra

T =
⋂
k≥1

Tk, Tk = σ((Xn,i)n≥k, 1≤i≤C).

Clearly, Tk+1 ⊂ Ek and, hence, T ⊂ E .
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Theorem 4. Let (Xn,i)n≥1, 1≤i≤C be an infinite multi-exchangeable system with directing mea-
sure vector (�i)1≤i≤C . Then

σ((�i)1≤i≤C) = T = E a.s.

If, moreover, the Xn,i are independent then P(A) ∈ {0, 1} for all A ∈ E .

Proof. Consideration of (2) yields σ((�i)1≤i≤C) ⊂ T a.s., and we have seen that T ⊂ E ;
hence, the first statement is true if E ⊂ σ((�i)1≤i≤C) a.s. Now, let A ∈ E . For every k ≥ 1,
since A ∈ Ek , there is some k-multi-exchangeable set Bk such that

A = {(Xn,j )n≥1, 1≤j≤C ∈ Bk},
and, hence, for all permutations σi of {1, 2, . . . } leaving {k + 1, k + 2, . . . } invariant,

(1A, Xσi(n),i )n≥1, 1≤i≤C = (1Bk
((Xn,j )n≥1, 1≤j≤C), Xσi(n),i )n≥1, 1≤i≤C

= (1Bk
((Xσj (n),j )n≥1, 1≤j≤C), Xσi(n),i )n≥1, 1≤i≤C

and the multi-exchangeability of (Xn,i)n≥1, 1≤i≤C implies that

L((1A, Xσi(n),i )n≥1, 1≤i≤C) = L((1Bk
((Xσj (n),j )n≥1, 1≤j≤C), Xσi(n),i )n≥1, 1≤i≤C)

= L((1Bk
((Xn,j )n≥1, 1≤j≤C), Xn,i)n≥1, 1≤i≤C)

= L((1A, Xn,i)n≥1, 1≤i≤C).

Thus, (1A, Xn,i)n≥1, 1≤i≤C is infinite multi-exchangeable, and Proposition 3 implies that the
(1A, Xn,i) are conditionally independent given (�̂i)1≤i≤C and have conditional laws �̂i , where
considering (2) we have

�̂i = lim
N→∞

1

N

N∑
n=1

δ(1A,Xn,i ) = δ1A
⊗ lim

N→∞
1

N

N∑
n=1

δXn,i
= δ1A

⊗ �i a.s.

Hence, for arbitrary k ≥ 1 and Borel sets Bn,i ⊂ Si for 1 ≤ n ≤ k and 1 ≤ i ≤ C,

P(Xn,i ∈ Bn,i : 1 ≤ n ≤ k, 1 ≤ i ≤ C | A, (�i)1≤i≤C)

= P(Xn,i ∈ Bn,i : 1 ≤ n ≤ k, 1 ≤ i ≤ C | (�̂i)1≤i≤C)

=
∏

1≤n≤k, 1≤i≤C

�i(Bn,i)

is a function of (�i)1≤i≤C , conditionally to which A and (Xn,i)n≥1, 1≤i≤C are thus independent.
Since A ∈ E is arbitrary, we deduce that E ⊂ σ((Xn,i)n≥1, 1≤i≤C) and (Xn,i)n≥1, 1≤i≤C are
conditionally independent given (�i)1≤i≤C , which implies that E ⊂ σ((�i)1≤i≤C) a.s. This
proves the first statement, from which the second follows since T is a.s. trivial if the Xn,i are
independent; see the Kolmogorov 0–1 law.

4. Concluding remarks

The important bound (10) is a combinatorial estimate of the difference between sampling
with and without replacement; see [1, Proposition 5.6] and [4, Theorem 13] for related results.
It is used in [4] to prove de Finetti’s theorem.
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The result stated in Theorem 3 can be used for proving (P1, . . . , PC)-chaoticity results, in
conjunction with Proposition 2 and Sznitman’s compactness-uniqueness methods for proof that
the empirical measures �N

i converge in law to Pi for 1 ≤ i ≤ C. This was the main motivation
for this paper, as can be seen by its title. In the reviewing process, the referee’s suggestions led
to a much improved and fuller study of multi-exchangeable systems.

The techniques developed in this paper could also extend convergence results, such as
[1, Proposition 7.20(a)] and [9, Theorem 1.3], suited for a family of multi-exchangeable systems
of fixed possibly infinite class sizes depending on a parameter. We refrain from doing so for
the sake of coherence.
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