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The Minimal Resolution Conjecture for
Points on the Cubic Surface

M. Casanellas

Abstract. In this paper we prove that a generalized version of the Minimal Resolution Conjecture given

by Mustaţǎ holds for certain general sets of points on a smooth cubic surface X ⊂ P
3. The main tool

used is Gorenstein liaison theory and, more precisely, the relationship between the free resolutions of

two linked schemes.

1 Introduction

The Minimal Resolution Conjecture for points in projective spaces was first stated by

Lorenzini in [12]. Roughly speaking it says that the graded minimal free resolution

of a general set of t points in P
n has no ghost terms. This conjecture is known to hold

for n ≤ 4 ([1, 16]) and for large values of t for any n (cf. [11]), but it does not hold

in general. Eisenbud, Popescu, Schreyer, and Walter [6] proved that it fails for every

n ≥ 6, n 6= 9. Farkas, Mustaţǎ, and Popa introduced a generalized version of this
conjecture for points in arbitrary projective varieties (see [15] and [7]). Namely, if

X ⊂ P
n is any projective variety, the Minimal Resolution Conjecture for a general set

of t points Z on X predicts that the Betti numbers of the ideal of Z are completely
determined by those of the ideal of X (see [7] and Section 2 for a precise statement of

the conjecture). When X = P
n, this formulation of the conjecture coincides with the

conjecture formulated by Lorenzini.

This generalization of the Minimal Resolution Conjecture has been studied in [7]
and has been proven to hold for a general set of points of any sufficiently large degree

when X ⊂ P
n is a canonical curve. However, it always fails for sets of points on

curves of large degree (see [7]). Guiffrida, Maggioni, and Ragusa [9] proved that this

conjecture also holds for any general set of points when X is a smooth quadric surface

in P
3. In this paper we study the Minimal Resolution Conjecture for general sets of

points on a smooth cubic surface in P
3.

The goal of this paper is to prove that t general points on a smooth cubic surface

X ⊂ P
3 satisfy the Minimal Resolution Conjecture when t is equal to 3

2
a(a − 1) + a,

3
2
a(a − 1) + 2a, 3

2
a(a − 1) + a + 1 or 3

2
a(a − 1) + 2a + 1 for some a ∈ Z (see Theorem

3.2). We also give the precise minimal free resolutions of these sets of points. All these

sets of points happen to be level so, in particular, this result provides proofs to some

unjustified examples in [8] Appendix C (namely that 35, 36, 39, 41, and 42 general
points on the cubic surface are level). It also provides a partial answer to Question 7.5
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of [8] “If X is an integral arithmetically Cohen–Macaulay variety of dimension ≤ 5, and

Z is a general set of points on X, then does Z have the expected resolution? In particular,

is it true that Z is level if it is numerically possible?” and gives hope for an affirmative
answer to this question.

Whereas [15] and [7] used Koszul cohomology to study the Minimal Resolution

Conjecture for points on curves, the main tool used in this paper is Gorenstein liaison
theory. R. Hartshorne proved in [10] that a general set of points in the cubic surface

X can be Gorenstein linked in X to one point by a finite sequence of links. We make

use of the G-links he describes to track the minimal free resolutions of the sets of
points we are considering. It is a well known result in liaison theory that there is a

relationship between the free resolutions of two linked schemes, but one needs to be
careful because the minimality of the resolutions is not preserved in general.

Our initial motivation for studying the resolution of sets of points on the cubic

surface was the connection between level sets of points and Ulrich bundles in the
sense of [3], but this will be explained in a forthcoming paper.

The paper is organized as follows. In the next section we state the Minimal Reso-

lution Conjecture and provide the results of Gorenstein liaison theory needed for the
sequel. Section 3 is devoted to proving the main result of the paper.

2 Preliminaries

Throughout this section R denotes the polynomial ring in n + 1 variables over an
algebraically closed field k. Throughout the paper, for a subscheme Z ⊂ P

n
k we denote

by IZ ⊂ R its saturated ideal, i.e., IZ = ⊕t∈ZH0(P
n, JZ(t)). For any coherent sheaf

F over a projective scheme X ⊂ P
n, Hi

∗(F) denotes the sum ⊕t∈ZHi(X,F(t)). The
regularity reg(Z) of Z is defined to be the regularity of IZ , if Z 6= P

n and 1 otherwise.

The Hilbert polynomial of Z will be denoted as PZ .
The results of this paper deal with minimal free resolutions of graded R-modules.

We will always talk about graded minimal free resolutions over R.

Definition 2.1 If Z ⊂ P
n is a subscheme and

d• 0 → Fn+1
dn+1→ Fn

dn→ · · · → F1
d1→ R

d0→ R/IZ → 0

is the minimal free resolution of R/IZ , the Betti numbers bi, j(Z) are defined as

Fi = ⊕ j∈ZR(−i − j)bi, j (Z).

The Betti diagram of Z has in the ( j, i)-th position the Betti number bi, j(Z). The last

nontrivial row of the Betti diagram of Z is indexed by reg(Z) − 1 (see [5]).

Minimality criterion We recall that a free resolution

d• 0 → Fn+1
dn+1→ Fn

dn→ · · ·
d1→ F0

d0→ M → 0

is minimal if, after choosing a basis of the modules Fi , the matrices representing the

maps di do not have any non-zero scalar entry.
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Minimal Resolution Conjecture for points on embedded varieties (See [7].) Let
X ⊂ P

n be an irreducible projective variety of dimension ≥ 1 and denote by PX

its Hilbert polynomial. Let Z be a general set of z points in X. In this paper we say
that a statement holds for a general Z if there is a nonempty open subset of the family

of all Z’s for which the statement holds. We choose r such that PX(r−1) ≤ z < PX(r)

and assume that r ≥ reg(X) + 1. Then the Minimal Resolution Conjecture formulated
in [7] holds for the value z if for every set Z of z general points on X,

bi+1,r−1(Z)bi,r(Z) = 0 for all i.

Mustaţǎ [15] proved that the first rows of the Betti diagram of a general set of

points Z on X coincide with the Betti diagram of X and that there are two extra
nontrivial rows at the bottom. He also gives lower bounds for the Betti numbers in

these last two rows, and the Minimal Resolution Conjecture states that these lower

bounds are attained for a general set of points. More precisely, his results can be
summarized as follows.

Theorem 2.2 ([7, Theorem 1.2]) Assume that Z ⊆ X is a general set of z points, with

PX(r − 1) ≤ z < PX(r) for some r ≥ m + 1, where m = reg X.

(i) For every i and j ≤ r − 2, we have bi, j(Z) = bi, j(X).

(ii) bi, j(Z) = 0, for j ≥ r + 1 and there is an i such that bi,r−1(Z) 6= 0.

(iii) If d = dim X, then for every i ≥ 0, we have bi+1,r−1(Z)−bi,r(Z) = Qi,r(z), where

Qi,r(z) =

d−1
∑

l=0

(−1)l

(

n − l − 1

i − l

)

∆
l+1PX(r + l) −

(

n

i

)

(z − PX(r − 1)).

In particular, bi+1,r−1(Z) ≥ max {Qi,r(z), 0} and bi,r(Z) ≥ max {−Qi,r(z), 0}.

In other words, for z ≥ PX(r − 1) and r ≥ m + 1 = reg(X) + 1, the Minimal

Resolution Conjecture is satisfied if and only if the minimal free resolution of Z has
no ghost terms (i.e., there are no identical free summands in two consecutive steps

of the resolution). Note that the Betti numbers of X do not overlap with those of Z

because we are requiring r ≥ m + 1. Indeed, the last row in the Betti diagram of X is

indexed by m − 1 while the part of the Betti diagram of Z that is not determined by

bi, j(X) occurs in the rows r − 1 and r. Here is an example of how the Betti numbers
of X determine those of Z if the Minimal Resolution Conjecture holds.

Example 2.3 Let Z be a set of z = 22 general points on a smooth cubic surface

X ⊂ P
3. As PX(t) =

3
2
t(t + 1) + 1 and reg(X) = 3, we take r = 4 so that PX(3) =

19 ≤ 22 < PX(4) = 31. According to Theorem 2.2, the first 2 rows of the Betti
diagram of Z coincide with the Betti diagram of X, and in rows 3 and 4 we have

b1,3 − b0,4 = 9, b2,3 − b1,4 = 12, b3,3 − b2,4 = 9, b4,3 − b3,4 = −3. If the Minimal
Resolution Conjecture holds for Z, one of the terms in each of these differences is 0.

Therefore, as bi, j(Z) is always positive and bi, j(Z) = 0 for i ≥ 4, the Betti diagram

should be as follows
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0 1 2 3

0 1 – – –

1 – – – –

2 – 1 – –

3 – 9 12 –

4 – – – 3

or, equivalently, the minimal free resolution should be

0 → R(−7)3 → R(−5)12 → R(−4)9 ⊕ R(−3) → IZ → 0.

In Theorem 3.2 we will prove that, indeed, 22 general points on a smooth cubic
surface satisfy the Minimal Resolution Conjecture.

Example 2.4 Mustaţǎ proved in [15] that when z = PX(r − 1) or z = PX(r) − 1,
the Minimal Resolution Conjecture holds for every X.

When X = P
n the Minimal Resolution Conjecture has been deeply studied and

is known to hold for n ≤ 4 (see [1, 16]). However, it fails in the middle of the
resolution for every n ≥ 6, n 6= 9. The conjecture is also known to hold for any set

of points on a smooth quadric surface in P
3. (See [9]; although this paper precedes

[15], they precisely prove that the minimal free resolution of any set of general points
on a smooth quadric X is completely determined by the Betti numbers of X.) It is

also known to hold, among other cases, for any set of general points on a canonical
curve X and to fail when X ⊂ P

n is a curve of large degree (cf. [7]).

The main tool we will use to study the Minimal Resolution Conjecture on the

cubic surface is Gorenstein liaison theory. A good reference for liaison theory is [14].
Here we just recall the definitions we need for this paper and some tools related to

Gorenstein liaison.

We recall that a scheme V ⊂ P
N is an arithmetically Cohen–Macaulay scheme

if its homogeneous coordinate ring is a Cohen–Macaulay ring (i.e., dim R/IV =

depth R/IV ). If V is of dimension d ≥ 1, V is arithmetically Cohen–Macaulay if
and only if Hi

∗(P
n, JV ) = 0 for i = 1, . . . , d. Any 0-dimensional scheme is arithmeti-

cally Cohen–Macaulay. An obvious fact that we will use throughout the paper is the

following: if C ⊂ P
n is arithmetically Cohen–Macaulay of dimension ≥ 1 and Z ⊂ C

is any subscheme, then IZ,C = H0
∗(JZ,C ) = IZ/IC .

A closed subscheme V ⊂ P
n of codimension c is arithmetically Gorenstein if its

coordinate ring R/IV is a Gorenstein ∗local graded ring (in the sense of [2]). This is
equivalent to saying that its saturated homogeneous ideal IV has a graded minimal

free R-resolution of the following type:

0 → R(−t) → Fc−1 → · · · → F1 → F0 → IV → 0.

In other words, V ⊂ P
n is arithmetically Gorenstein if and only if V is arithmetically

Cohen–Macaulay and the last module in the minimal free resolution of its saturated

ideal has rank one.
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Definition 2.5 ([14]) We say that two subschemes V1 and V2 of P
n are directly

Gorenstein linked, or simply directly G-linked, by an arithmetically Gorenstein scheme

G ⊂ P
n if IG ⊂ IV1

∩ IV2
and we have IG : IV1

= IV2
and IG : IV2

= IV1
.We say that V2

is the residual to V1 in G. When G is a complete intersection we talk about a CI-link.

Whenever V1 and V2 do not share any common component, the fact of being

directly G-linked by a scheme G is equivalent to saying that G = V1 ∪V2. Gorenstein

liaison studies the equivalence relation generated by G-links.

One of the most interesting properties preserved by a G-link is the free resolution.

To explain how it works we first recall the mapping cone procedure.

Lemma 2.6 (Mapping cone procedure [13]) Given a short exact sequence of finitely

generated R-modules

0 −→ A
α

−→ B −→ C −→ 0,

and free resolutions

e• 0 → Gn+1
en+1→ Gn

en→ · · ·
e1→ G0

e0→ A → 0

and

d• 0 → Fn+1
dn+1→ Fn

dn→ · · ·
d1→ F0

d0→ B → 0,

then the map α lifts to a map between the resolutions ξ• : e• −→ d•, and a free resolu-

tion for C is

0 → Gn+1
cn+2→ Gn ⊕ Fn+1

cn+1→ · · ·
c3→ G1 ⊕ F2

c2→ G0 ⊕ F1
c1→ F0

c0→ C → 0

where

ci+1 =

(

−ei 0
ξi di+1

)

, 1 ≤ i ≤ n.

The resolution of C produced in Lemma 2.6 above is not necessarily minimal even

if those of A and B are.

In the following lemma we recall how to pass from the free resolution of a scheme
to the free resolution of its residual in an arithmetically Gorenstein scheme.

Lemma 2.7 (see [14]) Let Z,Z ′ ⊂ P
n be two arithmetically Cohen–Macaulay sub-

schemes of codimension c directly G-linked by an arithmetically Gorenstein scheme G.

Let the minimal free resolutions of IZ and IG be

0 → Fc
dc→ Fc−1

dc−1
→ · · · → F1

d1→ IZ → 0

and

0 → R(−t)
ec→ Gc−1

ec−1
→ · · · → G1

e1→ IG → 0

respectively. Then the functor HomR(·,R(−t)) applied to a free resolution of IZ/IG gives

a free resolution of Z ′. In particular,

0 → F∨

1 (−t) → F∨

2 (−t) ⊕ G∨

1 (−t) → · · · → F∨

c (−t) ⊕ G∨

c−1(−t) → IZ ′ → 0

is a free resolution of IZ ′ (not necessarily minimal) obtained by mapping cone from the

resolutions of IG and IZ .
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3 Minimal Resolution Conjecture on the Cubic Surface

Let X be a smooth cubic surface in P
3 defined by a homogeneous cubic form f . From

now on R denotes the polynomial ring k[x0, . . . , x3] over an algebraically closed field
k and RX denotes the ring RX = R/( f ). When Z is a subscheme of X, IZ denotes its

saturated ideal in R and IZ,X ⊂ RX the ideal IZ/( f ) = H0
∗(JZ,X).

As the Hilbert polynomial of X is PX(t) =
3
2
t(t + 1) + 1, PX(t) general points on

X satisfy the Minimal Resolution Conjecture and so do PX(t) − 1 general points on

X (see Example 2.4). We are going to prove that other families of general points in X

satisfy the Minimal Resolution Conjecture.

Notation 3.1 We set the following notation.

(i) If t is a positive integer, Zt denotes a set of t general points in X.
(ii) m(a) =

3
2
a(a − 1) + a, n(a) =

3
2
a(a − 1) + 2a, o(a) =

3
2
a(a − 1) + a + 1,

p(a) =
3
2
a(a − 1) + 2a + 1 for any a ∈ Z.

(iii) C0 is any smooth conic on X, Γ any twisted cubic on X and L any of the 27 lines

in X.

(iv) H denotes a general hyperplane section of X.
(v) If C is a curve on X, HC will be a general hyperplane section of C and KC a

canonical divisor on C.

The curves C0, Γ and L are arithmetically Cohen–Macaulay curves and, according
to the proof of [10, Proposition 2.4], any arithmetically Cohen–Macaulay curve on

X is linearly equivalent to C0 + aHX , Γ + aH, L + aH or aH, for some a ∈ N. The
modules H0

∗(P
3, JC0 ,X), H0

∗(P
3, JΓ,X) and H0

∗(P
3, JL,X) are maximal Cohen–Macaulay

RX-modules and their minimal free R-resolutions are:

0 −→ R(−3)2 ϕ1
−→ R(−1) ⊕ R(−2) −→ IC0 ,X −→ 0,

0 −→ R(−3)3 ϕ2
−→ R(−2)3 −→ IΓ,X −→ 0,

0 −→ R(−2) ⊕ R(−3)
ϕ3
−→ R(−1)2 −→ IL,X −→ 0.

For certain matrices ψ j , the pairs (ϕ j, ψ j) are matrix factorizations of f (see [4]):
ϕ j · ψ j = f · Id, ψ jϕ j = f · Id, f = det(ϕ j) = det(ψ j), j = 1, 2, 3.

The degree and genus of smooth arithmetically Cohen–Macaulay curves C on X

are:

(1) d = 3a − 2, g =
1
2
(3a2 − 7a + 4) if C ∼ L + (a − 1)H.

(2) d = 3a − 1, g =
1
2
(3a2 − 5a + 2) if C ∼ C0 + (a − 1)H.

(3) d = 3a, g =
1
2
(3a2 − 3a) if C ∼ Γ + (a − 1)H.

(4) d = 3a, g =
1
2
(3a2 − 3a + 2) if C ∼ aH.

En each case, one of these curves moves on a linear system of dimension d+g−1. Note

that the degree and genus of an arithmetically Cohen–Macaulay curve C determine
the linear system in which C belongs. Indeed, the four possibilities above imply that

if two arithmetically Cohen–Macaulay curves on X have the same degree and genus,

they belong to the same linear system.
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The goal of this paper is to prove the following result.

Theorem 3.2 Let X ⊂ P
3 be a smooth cubic surface and consider the above notation.

Then, for a ≥ 3, the graded minimal free resolutions of m(a), n(a), o(a), and p(a)

general points on X are:

0 → R(−a − 3)a−1 → R(−a − 1)3a → R(−a)2a+1 ⊕ R(−3) → IZm(a)
→ 0,

0 → R(−a − 3)2a−1 → R(−a − 2)3a → R(−a)a+1 ⊕ R(−3) → IZn(a)
→ 0,

0 → R(−a − 3)a → R(−a − 1)3a−3 ⊕ R(−a − 2)3 → R(−a)2a ⊕ R(−3)

→ IZo(a)
→ 0,

0 → R(−a − 3)2a → R(−a − 2)3a+3 → R(−a)a ⊕ R(−a − 1)3 ⊕ R(−3)

→ IZp(a)
→ 0.

As a consequence, the Minimal Resolution Conjecture on X holds for m(a), n(a), o(a),

and p(a) whenever a ≥ 1.

Our results are based on the proof of a Proposition of Hartshorne ([10, Proposi-

tion 2.4]), where it is proved that any set of general points on X can be G-linked to a
point in X by a finite number of G-links. The main idea used to prove that result was

the following lemma.

Lemma 3.3 Let d, g be the degree and genus of a smooth arithmetically Cohen–

Macaulay curve D on X and let n, n′ ∈ N satisfy g ≤ n, n′ ≤ d + g − 1 and

n + n′
= deg(mHD − KD) for some m. Then n (respectively n′) general points on

X lie on a smooth arithmetically Cohen–Macaulay curve C in the linear system |D| and

there is a divisor G ⊂ C linearly equivalent to mHC − KC which links n general points

to n′ general points.

Proof See the proof of [10, Proposition 2.4].

Remark 3.4. (a) In applying Lemma 3.3 it will be important to keep in mind that, for

an arithmetically Cohen–Macaulay curve C on X, the couple (d, g) of degree and
genus of C determines the linear system in which C belongs (see the paragraph

preceding Theorem 3.2).

(b) In the hypothesis of Lemma 3.3, n (respectively n′) general points on X form a
general divisor of degree n on C. However, the results of [15] for general points

on curves do not apply to prove the Minimal Resolution Conjecture for m(a),

n(a), o(a) or p(a).

We follow the proof of [10, Proposition 2.4] in reverse order: we perform links to

obtain larger sets of points. In this way and according to [10, Proposition 2.4], we
can pass from Zm(a−1) general points on X to Zm(a+1) general points by the following

sequence of G-links in X:

• First link: Zm(a−1) is G-linked to Zn(a−1) by an arithmetically Gorenstein set of

points G linearly equivalent to (a− 1)HC on a smooth curve C linearly equivalent

to (a − 1)H on X.
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• Second link: Zn(a−1) is G-linked to Zo(a) by an arithmetically Gorenstein set of
points G linearly equivalent to (2a − 2)HC − KC on a smooth curve C linearly

equivalent to C0 + (a − 1)H on X.
• Third link: Zo(a) is G-linked to Zp(a) by an arithmetically Gorenstein set of points

G linearly equivalent to (2a− 1)HC −KC on a smooth curve C linearly equivalent

to Γ + (a − 1)H on X.
• Fourth link: Zp(a) is G-linked to Zm(a+1) by an arithmetically Gorenstein set of

points G linearly equivalent to 2aHC −KC on a smooth curve C linearly equivalent

to C0 + aH on X.

This sequence of linkages will allow us to deduce the minimal free resolution of
Zm(a+1) from that of Zm(a−1). To do this we need the following four results corre-

sponding to the four links mentioned above:

Proposition 3.5 (First link) Assume that the ideal IZm(a) ,X ⊂ RX of m(a) =
3
2
a(a − 1) + a general points on X has the following graded minimal free resolution

over R

0 → R(−a − 3)a−1 → R(−a − 1)3a → R(−a)2a+1 → IZm(a),X → 0.

Then the ideal IZn(a),X ⊂ S of n(a) =
3
2
a(a−1)+2a general points on X has the following

minimal free resolution over R:

0 → R(−a − 3)2a−1 → R(−a − 2)3a → R(−a)a+1 → IZn(a),X → 0.

Proposition 3.6 (Second link) Assume that the ideal IZn(a−1),X ⊂ RX of n(a − 1) =
3
2
(a − 2)(a − 1) + 2a − 2 general points on X has the following minimal free resolution

over R

0 → R(−a − 2)2a−3 → R(−a − 1)3a−3 → R(−a + 1)a → IZn(a−1),X → 0.

Then the ideal IZo(a),X of o(a) =
3
2
a(a − 1) + a + 1 general points on X has the following

minimal free resolution over R :

0 → R(−a − 3)a → R(−a − 1)3a−3 ⊕ R(−a − 2)3 → R(−a)2a → IZo(a),X → 0.

Proposition 3.7 (Third link) Assume that the ideal IZo(a),X of o(a) =
3
2
a(a−1)+a+1

general points on X has the following minimal free resolution over R :

0 → R(−a − 3)a → R(−a − 1)3a−3 ⊕ R(−a − 2)3 → R(−a)2a → IZo(a),X → 0.

Then the ideal IZp(a) ,X of p(a) =
3
2
a(a − 1) + 2a + 1 general points on X has a minimal

free resolution over R:

0 → R(−a − 3)2a → R(−a − 2)3a+3 → R(−a)a ⊕ R(−a − 1)3 → IZp(a) ,X → 0.
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Proposition 3.8 (Fourth link) Assume that the ideal IZp(a) ,X of p(a) =
3
2
a(a − 1) +

2a + 1 general points on X has the following minimal free R-resolution:

0 → R(−a − 3)2a → R(−a − 2)3a+3 → R(−a)a ⊕ R(−a − 1)3 → IZp(a) ,X → 0.

Then the ideal IZm(a+1),X of Zm(a+1) general points on X has a minimal free resolution over

R:

0 → R(−a − 4)a → R(−a − 2)3a+3 → R(−a − 1)2a+3 → IZm(a+1),X → 0.

Assuming the four propositions, we prove the theorem as follows.

Proof of Theorem 3.2 For a = 1, 2 and 3 we are considering the following number

of general points on X: m(1) = 1, n(1) = o(1) = 2, p(1) = 3,m(2) = 5, n(2) =

7, o(2) = 6, p(2) = 8,m(3) = 12, n(3) = 15, o(3) = 13, p(3) = 16. These are also
general points in P

3 and therefore the Minimal Resolution Conjecture is known to

hold. Moreover, for a = 3 their minimal free resolutions correspond to the ones

given in the statement of the theorem.

For a ≥ 4 we shall first prove the following claim:

Claim. For a ≥ 2 the resolution of Zm(a) in X is the one given in Proposition 3.5, i.e.,

(1) 0 → R(−a − 3)a−1 → R(−a − 1)3a → R(−a)2a+1 → IZm(a),X → 0.

Proof of Claim We proceed by induction on a and we start by proving that it is true
for a = 2 and a = 3.

a = 2: m(2) general points in X are 5 general points in P
3. Therefore Zm(2) has the

following graded minimal free resolution:

0 → R(−5) → R(−3)5 → R(−2)5 → IZm(2)
→ 0.

Using the mapping cone procedure applied to the free resolutions of the ideals in the
exact sequence

0 → IX → IZm(2)
→ IZm(2) ,X → 0,

we obtain that the minimal free resolution of IZm(2) ,X coincides with (1) for a = 2.

a = 3: m(3) = 12 general points in P
3 lie on a smooth cubic surface. Their

minimal free resolution is

0 → R(−6)2 → R(−4)9 → R(−3)8 → IZm(3)
→ 0.

Then we apply the mapping cone construction to the following commutative dia-
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gram:
0 → IX −→ IZm(3)

→ IZm(3) ,X → 0
x





x





R(−3)
ξ1

−→ R(−3)8
x





x





0 R(−4)9
x





R(−6)2
x





0

As f is one of the generators of IZm(3)
, when we write the map ξ1 as a matrix we

see that it contains a non-zero scalar entry. Therefore, in the resolution of IZm(3) ,X

obtained by mapping cone, there is one term R(−3) that can be split off, giving the
desired minimal free resolution.

a ≥ 4: We assume that the resolution of Zm(a−2) in X is (1) for a − 2. Then

Proposition 3.5 holds for a−2, and so n(a−2) satisfies the hypothesis of Proposition
3.6. This in turn implies that the hypothesis of Proposition 3.7 is satisfied for a − 1

and that of Proposition 3.8 also holds for a − 1. Therefore we obtain the desired
minimal free resolution for IZm(a),X and hence the claim is proved.

Now the Theorem immediately follows for m(a) by applying the horseshoe lemma
(cf. [17] 2.2.8) to the following diagram

0 → IX −→ IZm(a)
−→ IZm(a) ,X −→ 0

x





x





R(−3) R(−a)2a+1
x





x





0 R(−a − 1)3a
x





R(−a − 3)a−1
x





0

The resolution obtained is minimal for a ≥ 3 (but not for a = 2).
We now prove the theorem for n(a), o(a) and p(a). The claim above and Propo-

sitions 3.5–3.8 provide us minimal free resolutions for IZn(a),X when a ≥ 2 and for

IZo(a),X , IZp(a) ,X when a ≥ 3. The horseshoe lemma gives us the desired minimal free
resolutions for n(a), o(a) and p(a) when a ≥ 3.

The hard work is proving the four propositions.

Proof of Proposition 3.5 n = m(a) and n′
= n(a) satisfy the hypotheses of Lemma

3.3 with d = 3a and g = 1/2(3a2 − 3a + 2) (which are the degree and genus of a
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curve C ∼ aH) because n + n′
= deg(aHC ). Therefore Zm(a) and Zn(a) are directly

CI-linked on a smooth curve C ∼ aH by G ∼ aHC and IG ⊂ R has the following

minimal free resolution

0 → R(−2a − 3) → R(−2a) ⊕ R(−a − 3)2 → R(−a)2 ⊕ R(−3) → IG → 0.

By the mapping cone construction applied to the commutative diagram

0 → IG
i

−→ IZm(a)
−→ IZm(a)

/IG → 0

e1

x



 d1

x





R(−a)2 ⊕ R(−3)
ξ1

−→ R(−a)2a+1 ⊕ R(−3)

e2

x



 d2

x





R(−2a) ⊕ R(−a − 3)2 ξ2
−→ R(−a − 1)3a

e3

x



 d3

x





R(−2a − 3)
ξ3

−→ R(−a − 3)a−1
x





x





0 0

we obtain the following free resolution of IZn(a)
(see Lemma 2.7):

0 → R(−a − 3)2a+1 ⊕ R(−2a) → R(−a − 2)3a ⊕ R(−a − 3)2 ⊕ R(−2a)

→ R(−a)a+1 ⊕ R(−3) → IZn(a)
→ 0.

The generators of IG can be taken in the set of minimal generators of IZm(a)
, so the

map ξ1 has non-zero scalar entries. This implies that the summand R(−a − 3)2 ⊕
R(−2a) in the free resolution above can be split off. Therefore, a minimal free reso-

lution for IZn(a)
is

0 → R(−a − 3)2a−1 → R(−a − 2)3a → R(−a)a+1 ⊕ R(−3) → IZn(a)
→ 0.

The mapping cone construction applied now to the exact sequence 0 → IX →
IZn(a)

→ IZn(a),X → 0 gives the desired minimal free resolution for IZn(a),X .

Before proving Proposition 3.6 we need the following lemma.

Lemma 3.9 Let C be a curve in X linearly equivalent to C0 + aH and let G be an

effective divisor on C linearly equivalent to 2aHC − KC . Then the minimal free R-

resolution of IG,C is

0 → R(−2a−4) → R(−a−3)⊕R(−a−2)⊕R(−2a−1) → R(−a−1)2 → IG,C → 0.
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Proof As C ∼ C0 + aH, we have that IC,X
∼= H0

∗(X, JC0
(−a)) and therefore we know

the R- resolution of IC,X . Thus we can apply the horseshoe lemma to the following

diagram

0 → IX −→ IC −→ IC,X −→ 0
x





x





R(−3) R(−a − 1) ⊕ R(−a − 2)
x





x





0 R(−a − 3)2
x





0

and we obtain the following minimal free R-resolution for R/IC :

0 → R(−a − 3)2 → R(−a − 1) ⊕ R(−a − 2) ⊕ R(−3) → R → R/IC → 0.

As C is an arithmetically Cohen–Macaulay curve, applying Hom( · ,R(−4)) to this

exact sequence we obtain a minimal free resolution for the canonical module ωC =

Ext2
R(R/IC ,R(−4)):

0 → R(−4) → R(a − 3) ⊕ R(a − 2) ⊕ R(−1) → R(a − 1)2 → ωC → 0.

When we shift this resolution by −2a we obtain the desired minimal free resolution
for H0

∗(OC (KC − 2aHC )) ∼= IG,C :

0 → OP3(−2a−4) → R(−a−3)⊕R(−a−2)⊕R(−2a−1) → R(−a−1)2 → IG,C → 0.

Proof of Proposition 3.6 n = n(a − 1) and n′
= o(a) satisfy the hypotheses of

Lemma 3.3 with d = 3a − 1, g = 1/2(3a2 − 5a + 2) because n + n′
= deg((2a −

2)HC − KC ) for a curve C ∼ C0 + (a − 1)H. Therefore there is a smooth curve
C ∼ C0 + (a − 1)H so that n(a − 1) general points on X and o(a) general points on

X are G-linked by G ∼ (2a − 2)HC − KC on C.

According to Lemma 3.9, the minimal free resolution of IG,C is

0 → R(−2a− 2) → R(−a − 2) ⊕ R(−a − 1) ⊕ R(−2a + 1) → R(−a)2 → IG,C → 0.

On the other hand, the mapping cone procedure applied to the following exact

sequence

0 → IC,X → IZn(a−1),X → IZn(a−1),C → 0

gives us the minimal free R-resolution of IZn(a−1),C :

0 → R(−a − 2) → R(−a) ⊕ R(−a − 1)3a−2 → R(−a + 1)a → IZn(a−1),C → 0.
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Now we apply the mapping cone construction to the following commutative dia-
gram:

0 −→ IG,C
i

−→ IZn(a−1),C −→ IZn(a−1),C/IG,C −→ 0

e1

x




d1

x





R(−a)2 ξ1
−→ R(−a + 1)a

e2

x




d2

x





R(−a − 1) ⊕ R(−a − 2)
ξ2

−→ R(−a − 1)3a−2 ⊕ R(−a)

⊕R(−2a + 1)

e3

x



 d3

x





R(−2a − 2)
ξ3

−→ R(−a − 2)2a−1
x





x





0 0

Writing ξ2 in matrix form we shall prove that the first column of ξ2 has a non-zero

scalar entry. We assume that the first column of ξ2 is











l

0
...
0











for some linear form l, and

we will arrive at a contradiction. Choosing a basis, we may denote the first column

of e2 by

(

L1

L2

)

, the first column of d2 by











x1

x2

...

xa











, and the entries of ξ1 by











p1 q1

p2 q2

...
...

pa qa











.

Then the equality d2ξ2 = ξ1e2 implies that

(2) xi l = piL1 + qiL2

for all i ∈ {1, . . . , a}. Note that, according to the proof of Lemma 3.9, L1, L2 are

given by the curve C.
We now consider two different possibilities: either l, L1, L2 form a complete inter-

section in R or l = αL1 + βL2 for some α, β ∈ k.

If l, L1, L2 form a complete intersection, then (2) implies that pi ∈ (l, L2) and
qi ∈ (l, L1) for all i ∈ {1, . . . , a}. Thus, if ( f1, . . . , fa) ⊂ R/IC are the generators of

IZn(a−1),C , we obtain that both generators of IG,C belong to (l, L1, L2) ⊂ R/IC because
they are defined by the product

( f1, . . . , fa)











p1 q1

p2 q2

...
...

pa qa











.
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But this implies that IG,C ⊆ (l, L1, L2), which is impossible because G is formed by
two sets of general points in C.

If l = αL1 + βL2, then we can change the generators of IG,C = (x, y) in order to
make L1 or L2 equal to l. Let us assume L2 = l and the other case can be treated analo-

gously. From equation (2) we obtain in this case that pi ∈ (L2) for all i ∈ {1, . . . , a}
and in particular IG,C ⊂ (L2, y). As L2, y do not form a complete intersection in
R/IC , there is an associated prime of (L2, y) of height 1. But this associated prime

would contain a prime appearing in the primary decomposition of IG,C and this is

impossible because all of them have height 1 in R/IC .
In both cases we obtain a contradiction. Therefore there is a non-zero scalar entry

in ξ2 and, in particular, in the resolution of IZn(a−1),C/IG,C
∼= IZn(a−1)

/IG obtained by
the mapping cone, one term R(−a − 1) can be split off. Lemma 2.7 then gives the

desired minimal free resolution for IZo(a)
.

Before proving Proposition 3.7 we need the following result.

Lemma 3.10 Assume that the ideal IZo(a),X of o(a) =
3
2
a(a − 1) + a + 1 general points

Zo(a) on X has the following minimal free resolution over R :

0 → R(−a − 3)a → R(−a − 1)3a−3 ⊕ R(−a − 2)3 → R(−a)2a → IZo(a),X → 0.

Then Zo(a) lies on a smooth curve C ∼ Γ + (a − 1)H on X and H0
∗(JZo(a),C ) has the

following minimal free resolution:

0 → R(−a − 3)a → R(−a − 1)3a → R(−a)2a → H0
∗(JZo(a),C ) → 0.

Proof As dim |Γ + (a − 1)H| = 3a + 1/2(3a2 − 3a) − 1 ≥ o(a), any set of o(a)

general points lies on a smooth curve C ∼ Γ + (a − 1)H. As C is an arithmetically
Cohen–Macaulay curve, we have the following exact sequence

0 → H0
∗(JC,X)

i
→ H0

∗(JZo(a),X) → H0
∗(JZo(a),C ) → 0.

We can lift the map i to the minimal free resolutions of IZo(a),X and IC,X to get a com-

mutative diagram:

0 → H0
∗(JC,X)

i
−→ H0

∗(JZo(a),X) → H0
∗(JZo(a),C ) → 0

x



 d1

x





R(−a − 1)3 ξ1
−→ R(−a)2a

Φ

x



 d2

x





R(−a − 2)3 ξ2
−→ R(−a − 2)3 ⊕ R(−a − 1)3a−3

x



 d3

x





0 R(−a − 3)a
x





0
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and the mapping cone construction gives a free resolution

0 → R(−a − 3)a ⊕ R(−a − 2)3 → R(−a − 1)3a ⊕ R(−a − 2)3 → R(−a)2a

→ H0
∗(JZo(a),C ) → 0,

that is not necessarily minimal. In order to prove that the terms R(−a − 2)3 can be
split off we need to check that if, after choosing a basis, we write ξ2 = ( σΛ ), where σ
is a 3 × 3 matrix of scalars and Λ is a (3a − 3) × 3 matrix of linear homogeneous
entries, then σ has rank 3.

Let us assume that σ has rank ≤ 2 instead. Then there is a combination of its

columns that gives the 0 column. We can assume (after changing basis if necessary)
that the first column of σ is zero. We write the matrix corresponding to d2 as

(

δ D
)

(where δ is a 2a × 3 matrix and D a 2a × (3a − 3) matrix),

the first column of Λ as











l1
l2
...

l3a−3











and the first column of Φ as





ϕ1

ϕ2

ϕ3



 .

Then from the equality
(

δ D
)

(

σ
Λ

)

= ξ1Φ

applied to the first column of ξ2 and Φ we obtain that

(3) D ·











l1
l2
...

l3a−3











= 0 in R/(ϕ1, ϕ2, ϕ3).

As the matrix Φ has determinant f , the ideal (ϕ1, ϕ2, ϕ3) might have either height 2

or 3 in R. We consider each case separately:
Case 1: height (ϕ1, ϕ2, ϕ3) = 3.
In this case, in the ring R/(ϕ1, ϕ2, ϕ3) each li is equal to some linear form l̄ multi-

plied by some constant ci . Therefore (3) becomes

l D ·











c1

c2

...

c3a−3











= 0 in R/(ϕ1, ϕ2, ϕ3).

As l is a non-zero divisor in R/(ϕ1, ϕ2, ϕ3),we have that

D ·











c1

c2

...
c3a−3











= 0 in R/(ϕ1, ϕ2, ϕ3).
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This means that there exists a k-linear combination of the columns of D̄ that gives the
0 column in R/(ϕ1, ϕ2, ϕ3). Changing basis if necessary, we can assume that there is

a column in the matrix D whose entries belong to the ideal (ϕ1, ϕ2, ϕ3).
Let p be the point corresponding to the ideal p = (ϕ1, ϕ2, ϕ3) (note that this is a

point in X because f is the determinant of Φ, so f ∈ p). We split the resolution of

IZo(a),X into short exact sequences:

0 → R(−a − 3)a → R(−a − 1)3a−3 ⊕ R(−a − 2)3 d2→ E → 0(4)

0 → E → R(−a)2a → IZo(a),X → 0(5)

and we are going to check how these sequences behave when we tensor by Rp. First,
we need to prove the following claim.

Claim. p is not a point in Zo(a)

Proof of claim If p were a point in Zo(a), then it would be a point in the curve C.

Then, tensoring the minimal free resolution of H0
∗(JC,X) by Rp, we obtain that Φp is

an isomorphism. But this is a contradiction since the entries of a column of Φ belong

to p, so the claim is proved.

As p /∈ Zo(a), we have that RX/IZo(a),X⊗RRp = 0 and in particular

TorR
i (RX/IZo(a),X ,Rp) = 0

for i ≥ 0. From this we also obtain that IZo(a),X⊗RRp is isomorphic to RX⊗RRp.
From the exact sequence 0 → IX = ( f ) → R → RX → 0 we obtain that

TorR
1 (RX,Rp) = 0.
Now localizing the exact sequence 0 → IZo(a),X → RX → RX/IZo(a),X → 0 and using

the vanishing of the Tor groups above, we get that Tori(IZo(a),X ,Rp) = 0 for i = 1, 2.
Thus, after tensoring sequence (5) by ⊗RRp we obtain the following short exact

sequence:

(6) 0 → E⊗RRp → R2a
p
→ IZo(a),X⊗RRp → 0

Moreover, since Tor2(IZo(a),X,Rp) = 0 and TorR
1 (R,Rp) = 0, we obtain from se-

quence (5) that Tor1(E,Rp) = 0. Therefore, we have the following short exact se-

quence after localizing sequence (4):

(7) 0 → Ra
p
→ R3a

p

d2⊗RRp

−→ E⊗RRp → 0.

Now we are going to prove that E⊗RRp is a free Rp-module. To prove this we need to
check that the local cohomology modules Hi

mp
(E⊗RRp) vanish for i ≤ 2, where mp is

the maximal ideal of the ring Rp. It follows immediately from sequence (7) that these
modules are zero for i = 0, 1. Moreover, from the exact sequence (6), taking into

account the isomorphism IZo(a),X⊗RRp
∼= RX⊗RRp, we obtain that H2

mp
(E⊗RRp) = 0

because depth(RX⊗RRp) = 2.
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Therefore, E⊗RRp is a free module and the exact sequence (7) splits. But this
contradicts the fact that a column of d2 has all its entries in the ideal p.

Case 2: height (ϕ1, ϕ2, ϕ3) = 2.

Let us assume that (ϕ1, ϕ2, ϕ3) = (ϕ1, ϕ2) (the other cases are similar). Then
(ϕ1, ϕ2) is the ideal of a line in X.

From (3) we see that in R/(ϕ1, ϕ2), (l1, l2, . . . , l3a−3)Dt = 0. The ideal

(l1, l2, . . . , l3a−3) has height at most 2 in R/(ϕ1, ϕ2). Performing a base change if
necessary we can assume that (l1, l2, . . . , l3a−3) = (l1, l2). The case where l1 ∈ (l2) or

vice versa is easier and left to the reader.

The columns of Dt are syzygies of (l1, l2, . . . , l3a−3). This means that Dt = Z.T
where Z is the following (3a − 3) × (3a − 4) matrix



















l2 z2
1 z3

1 · · · z3a−4
1

−l1 z2
2 z3

2 · · · z3a−4
2

0 z2
3 0 · · · 0

0 0 z3
4 · · · 0

...
...

...
. . .

...

0 0 0 · · · z3a−4
3a−3



















,

zi
j ∈ k, and T is a (3a − 4) × (2a) matrix of polynomials in R/(ϕ1, ϕ2). Considering

the following constant vector

µ =

(

1, 0,−
z2

1

z2
3

,−
z3

1

z3
4

, . . . ,−
z3a−4

1

z3a−4
3a−3

)

,

we have that Dµt
= Tt Ztµt is equal to

Tt











−l2
0
...

0











.

Therefore Dµt has each entry in the ideal (ϕ1, ϕ2, l2). After doing a base change we

can assume that the entries of one of the columns in D all lie in the ideal (ϕ1, ϕ2, l2)
(or any other linear form instead of l2 if the reader bothers about too many base

changes). We consider the point p defined by this ideal which is a point in the line

given by ϕ1, ϕ2. It cannot be a point of Zo(a) because the points of Zo(a) were general
points in X, so none of them can lie in one of the 27 lines of X. The rest of the proof

in this case follows by localizing at p, exactly as we did in case 1.

Therefore, in both cases we obtain that the rank of σ must be 3, which in turn
implies that the term R(−a − 2)3 in the resolution of H0

∗(JZo(a),C ) is redundant.

Now we are ready to prove Proposition 3.7.
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Proof of Proposition 3.7 n = o(a) and n′
= p(a) satisfy the hypotheses of Lemma

3.3 with d = 3a and g = 1/2(3a2 − 3a) because n + n′
= deg((2a − 1)HC − KC ) for

a curve C ∼ Γ + (a − 1)H. Therefore, there exists a smooth curve C ∼ Γ + (a − 1)H

and an arithmetically Gorenstein scheme G ∼ (2a − 1)HC − KC so that Zo(a) and

Zp(a) are linked by G on C. Then on the curve C, Zo(a) + Zp(a) is linearly equivalent

to (2a − 1)HC − KC . From Lemma 3.10 we have a minimal free resolution of the
R-module M = H0

∗(OC (−Zo(a))):

0 → R(−a − 3)a → R(−a − 1)3a → R(−a)2a → H0
∗(OC(−Zo(a))) → 0.

As M is a Cohen–Macaulay module we can dualize applying Hom( · ,R(−4)) and we

obtain a minimal free resolution of Ext2(M,R(−4)):

(8) 0 → R(a − 4)2a → R(a − 3)3a → R(a − 1)a → Ext2(M,R(−4)) → 0.

By local duality Ext2(M,R(−4)) is isomorphic to H2
m

(M)∨, which at the same time

is isomorphic to H1
∗(OC(−Zo(a)))∨. By Serre duality we have H1

∗(OC(−Zo(a)))∨ ∼=
H0

∗(OC(Zo(a) + KC )). But as Zo(a) + KC ∼ −Zp(a) + (2a − 1)HC , twisting (8) by

R(−2a + 1) we obtain a minimal free resolution of H0
∗(OC (−Zp(a))). Now we apply

the horseshoe lemma to the following diagram:

0 → H0
∗(JC,X) −→ H0

∗(JZp(a) ,X) −→ H0
∗(JZp(a) ,C ) −→ 0

x





x





R(−a − 1)3 R(−a)a
x





x





R(−a − 2)3 R(−a − 2)3a
x





x





0 R(−a − 3)2a
x





0

and we obtain the desired minimal free resolution (note that it is already minimal

because no terms can be split off.)

Before proving Proposition 3.8 we need the following result.

Lemma 3.11 Let C ⊂ X be a smooth curve linearly equivalent to C0 + aH containing

Zp(a). If the minimal free resolution of IZp(a) ,X is

0 → R(−a − 3)2a → R(−a − 2)3a+3 → R(−a)a ⊕ R(a − 1)3 → IZp(a) ,X → 0,
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then the minimal free resolution of IZp(a) ,C is:

0 → R(−a − 3)2a+2 → R(−a − 2)3a+4 → R(−a)a ⊕ R(−a − 1)2 → IZp(a) ,C → 0.

Proof We know both the minimal free resolution of IC,X and IZp(a) ,X , so we apply the

mapping cone procedure to the following commutative diagram:

0 → IC,X
i

−→ IZp(a) ,X → IZp(a) ,C → 0

e1

x



 d1

x





R(−a − 1) ⊕ R(−a − 2)
ξ1

−→ R(−a)a ⊕ R(−a − 1)3

e2

x



 d2

x





R(−a − 3)2 ξ2
−→ R(−a − 2)3a+3

x



 d3

x





0 R(−a − 3)a
x





0

Note that the top row is exact because H1
∗(JC,X) = 0. We need to prove that there

exists a non-zero scalar entry in the first column of ξ1. Let us assume that the scalar
entries in ξ1 are zero. Then if IZp(a) ,X = ( f1, . . . , fa, fa+1, fa+2, fa+3) ⊂ RX , where

fa+1, fa+2, fa+3 are forms of degree a + 1, we have that IC,X is generated by two forms
x, y whith x ∈ J := ( f1, . . . , fa). Now if

(

Q1 Q2

L1 L2

)

is the matrix corresponding to e2

in certain basis, we have that xQ1 + yL1 is 0 in R/( f ). Hence, as x is in J we obtain

that yL1 is in J too and thus (x, yL1) ⊂ J. As C is an irreducible curve, y and L1 are
coprimes in RX = R/( f ) and thus (x, yL1) = (x, y) ∩ (x, L1) ⊂ J. But J is formed

by the generators of degree a of the ideal of a general set of points in C, so we can

deduce that (x, y) ⊂ J. If we denote by Z the zero set of J, this means that Z is inside
C. But this contradicts the fact that J is formed by removing three generators of the

ideal of a general set of points in C, and thus Z cannot lie inside C. Therefore there is
a non-zero scalar entry in ξ1, which implies that a summand R(−a− 1) is redundant

in the resolution of IZp(a) ,C obtained by the mapping cone.

Proof of Proposition 3.8 n = p(a) and n′
= m(a + 1) satisfy the hypotheses of

Lemma 3.3 with d = 3a + 2, g =
1
2
(3a2 + a − 2) (which are the degree and genus

of C ∼ C0 + aH) because n + n′
= deg(2aHC − KC ). Therefore we perform a

link on a smooth curve C ∼ C0 + aH with an arithmetically Gorenstein scheme
G ∼ 2aHC − KC . By Lemma 3.9, the minimal free resolution of IG,C is

0 → R(−2a−4) → R(−a−2)⊕R(−a−3)⊕R(−2a−1) → R(−a−1)2 → IG,C → 0.

On the other hand, by Lemma 3.11 we know the minimal free resolution of IZp(a) ,C , so
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we can apply the mapping cone procedure to the following commutative diagram:

0 → IG,C
i

−→ IZp(a) ,C → IZp(a) ,C/IG,C → 0

e1

x



 d1

x





R(−a − 1)2 ξ1
−→ R(−a)a ⊕ R(−a − 1)2

e2

x



 d2

x





R(−a − 2) ⊕ R(−a − 3)

⊕ R(−2a − 1)
ξ2

−→ R(−a − 2)3a+4

e3

x




d3

x





R(−2a − 4)
ξ3

−→ R(−a − 3)2a−2
x





x





0 0

We shall prove that the first column of ξ2 has a non-zero scalar entry and that, if we

write ξ1 =
(

M
σ

)

where σ is a 2 × 2 matrix with scalar entries, then σ has rank 2.

We start by proving that the first column of ξ2 has a non-zero scalar entry.
We write e2 =

(

L1 Q1 H1

L2 Q2 H2

)

. The first two columns form the transpose of the reso-

lution of IC,X over R (see the proof of Lemma 3.9), so L1 and L2 are two linear forms
defining a line in X. If the first column of ξ2 was 0, then ξ1·

(

L1

L2

)

= 0 and in particu-

lar σ·
(

L1

L2

)

= 0. But L1 and L2 are linearly independent over k, so this implies that σ

is the zero matrix. If we denote by ( f1, . . . , fa, fa+1, fa+2) the generators of IZp(a) ,C in

R/IC , where deg fi = a if i ≤ a and deg fa+1 = deg fa+2 = a+1, then σ = 0 implies that

IG,C ⊆ ( f1, . . . , fa) ⊂ IZp(a) ,C . But this is impossible because Zp(a) is a set of general

points in C, and so it cannot be contained in the set of zeroes Z( f1, . . . , fa) ⊂ G ⊂ C.
Therefore the first column of ξ2 must have a non-zero scalar entry.

Now we prove that σ has rank 2. Indeed, if σ = 0 , we have just seen how to get to
a contradiction. If the rank of σ was 1, then we can assume that the second row of σ
is 0 (changing basis if necessary). But this implies IG,C ⊆ ( f1, . . . , fa, fa+1) ⊂ IZp(a) ,C

which leads to a contradiction as above.

Therefore, the mapping cone construction tells us that the minimal free resolution

of IZp(a) ,C/IG,C
∼= IZp(a)

/IG is

0 → R(−2a − 4) → R(−a − 3)2a+3 ⊕ R(−2a − 1) → R(−a − 2)3a+3

→ R(−a)a → IZp(a)
/IG → 0.

By Lemma 2.7, the resolution of the residual IZm(a+1)
is obtained by dualizing this res-

olution and twisting by R(−2a − 4). So this gives the desired free resolution, which

is minimal because no terms can be split off.
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