RINGS WITH A SPECIAL KIND OF AUTOMORPHISM

BY
JEFFREY BERGEN AND I. N. HERSTEIN ${ }^{(1)}$

Abstract

In this paper we examine the nature of rings R with unit having an automorphism $\phi \neq 1$ such that $x-\phi(x)$ is 0 or invertible for every $x \in R$. We show that the only examples of such rings are $R=D, R=D_{2}$, and $R=D \oplus D$, where D is a division ring. Furthermore, for the case D_{2}, we describe the division rings that are possible.

In a recent paper [1] we considered the structure of a ring R with 1 having non-zero derivation, d, such that $d(x)=0$ or is invertible for every $x \in R$. If R has no 2 -torsion we showed that R is either a division ring, D, or D_{2}, the ring of 2×2 matrices over D. Moreover we completely characterized those D for which D_{2} has such a derivation. Even if R has 2 -torsion similar results were obtained, when R is semi-prime or when d is inner.

If ϕ is an automorphism of a ring R then the map δ defined by $\delta(x)=$ $x-\phi(x)$ behaves almost like a derivation in that $\delta(x y)=\delta(x) y+\phi(x) \delta(y)$. We shall consider here the nature of rings R with 1 having an automorphism $\phi \neq 1$ such that $x-\phi(x)$ is 0 or invertible for every $x \in R$. Note that unlike the situation for derivations described above, outside of D and D_{2} there is another obvious candidate, namely $R=D \oplus D$, where D is any division ring. The automorphism ϕ defined on R by $\phi(a, b)=(b, a)$ has the property that $\phi(x)-x$ is 0 or invertible for every $x \in R$. We shall show that these 3 examples, D, D_{2}, and $D \oplus D$ are the only possible rings with such an automorphism. Furthermore, for the case D_{2}, we describe the division rings that are possible.

In what follows, R will always be a ring with 1 and $\phi \neq 1$ will be an automorphism of R such that $x-\phi(x)$ is either 0 or invertible, for every $x \in R$.

We begin with
Lemma 1. If $\phi(x)=x$ then $x=0$ or x is invertible.
Proof. Since $\phi=1$ there is an $r \in R$ such that $a=\phi(r)-r \neq 0$, hence a is invertible. Suppose that $0 \neq \phi(x)=x$; then $\phi(r x)-r x=a x \neq 0$ since a is invertible and $x \neq 0$, hence $a x$ is invertible. Thus x is invertible.

[^0]Corollary. If $L \neq R$ is a left ideal of R then $L \cap \phi(L)=0$.
Proof. We may suppose that $L \neq 0$; let $0 \neq x \in L \cap \phi(L)$, then $x=\phi(y)$ for some $y \in L$ and $y-\phi(y) \in L$. Since $L \neq R, y-\phi(y)$ cannot be invertible, hence $y=\phi(y)$. Since $y \neq 0$, by the Lemma we have that y is invertible, implying that $L=R$.

We continue the study of R by giving a closer look at its left ideals.
Lemma 2. Every non-trivial left ideal of R is a minimal left ideal.
Proof. If $L \neq 0, R$ is a left ideal of R then $I=L+\phi(L)$ is also a left ideal of R. Since $I \cap \phi(I) \supset \phi(L) \neq 0$, by the Corollary to Lemma 1 we get that $R=I=L+\phi(L)$. Also by the Corollary to Lemma $1, L \cap \phi(L)=0$, so R is the direct sum of L and $\phi(L)$. If $0 \neq L_{1} \subset L$ is a left ideal of R then, by the same token, $R=L_{1}+\phi\left(L_{1}\right)$, so if $0 \neq t \in L$ then $t=u+\phi(v)$ where $u, v \in L_{1}$. Thus $\phi(v)=t-u \in L \cap \phi(L)$ so $v=0$ by the Corollary to Lemma 1. This gives us $t=u \in L_{1}$, hence $L \subset L_{1}$, and so $L=L_{1}$. This proves the minimality of L.

Lemma 2 tells us that every left ideal of R is both minimal and maximal, hence R is certainly artinian of Goldie rank at most 2 . From Lemma 2 we now obtain

Lemma 3. If R is not simple, then $R=I_{1} \oplus I_{2}$ where I_{1} is an ideal of R, $I_{2}=\phi\left(I_{1}\right)$, and I_{1}, I_{2} are isomorphic division rings.

Proof. Let $I \neq 0, R$ be an ideal of R. By Lemmas 1 and $2, R=I \oplus \phi(I)$, and I is a minimal left ideal of R. Moreover, I has no non-trivial left ideals (of itself) for, if $0 \neq J$ is a left ideal of I then, since $1 \in R, 0 \neq R J=(I \oplus \phi(I)) J=$ $I J \subset J$, so J is a left ideal of R, whence $J=I$ by Lemma 2 . Since I has no non-trivial left ideals, I is a division ring.

We also have
Lemma 4. If R is simple then, for some division ring $D, R=D$ or $R=D_{2}$.
Proof. If R is not a division ring then, by Lemma 2, all non-trivial left ideals of R are minimal and maximal. Since R is then simple artinian we immediately have that $\mathrm{R}=\mathrm{D}_{2}$ for some division ring D.

In view of Lemma 4 the question naturally arises for what D does D_{2} possess an automorphism ϕ of the required kind? If ϕ is inner, say $\phi(x)=t x t^{-1}$ for all $x \in D_{2}$ then the condition $\phi(x)-x=0$ or invertible becomes $t x-x t=0$ or invertible for all $x \in D_{2}$. This situation was completely described by Lemma 9 of [1]; the answer is that D does not contain all quadratic extensions of its center Z. Thus our interest here is mainly in the case in which ϕ is not inner. A complete answer to the question is furnished us in

Lemma 5. D_{2} has a non-inner automorphism ϕ such that, for all $x \in D_{2}$,
$\phi(x)=x$ or $x-\phi(x)$ is invertible if and only if D has a non-inner automorphism ψ such that $\psi^{2}(x)=u^{-1} x u$ for all $x \in D$, where $\psi(u)=u$ and $u \neq y \psi(y)$ for all $y \in D$.

Proof. If D has such an automorphism ψ define ϕ on D_{2} by

$$
\phi\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)\left(\begin{array}{ll}
\psi(x) & \psi(y) \\
\psi(z) & \psi(w)
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)^{-1}
$$

Clearly ϕ is an automorphism of D_{2} and is not inner, for if ϕ is inner we get that

$$
\left(\begin{array}{ll}
\psi(x) & \psi(y) \\
\psi(z) & \psi(w)
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1} .
$$

This implies that $\psi(x) a=a x, \psi(x) b=b x$, and not both $a=0$ and $b=0$ (since $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible), contradicting that ψ is non-inner on D.

We verify that $\phi(x)-x$ is invertible or 0 for all $x \in D_{2}$. Clearly

$$
\phi\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)-\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)
$$

is 0 or invertible according as

$$
A=\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)\left(\begin{array}{ll}
\psi(x) & \psi(y) \\
\psi(z) & \psi(w)
\end{array}\right)-\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)=\left(\begin{array}{cc}
\psi(z)-y u & \psi(w)-x \\
u \psi(x)-w u & u \psi(y)-z
\end{array}\right)
$$

is 0 or invertible. Since $x=\psi(t), y=\psi(s)$ for some $s, t \in D$ and ψ^{2} is inner by $u, \psi(u)=u$, we have that

$$
A=\left(\begin{array}{cc}
-\psi(b) & -\psi(a) \\
a u & b
\end{array}\right) \text { where } a=t-w, b=s u-z .
$$

If either $a=0$ or $b=0$ it is immediate to see that $A=0$ or is invertible; suppose then that $a \neq 0, b \neq 0$. Then A is invertible if and only if

$$
B=\left(\begin{array}{cc}
\psi(b)-\psi(a) b^{-1} a u & \psi(a) \\
0 & b
\end{array}\right)
$$

is invertible, that is, if and only if $\psi(b) \neq \psi(a) b^{-1} a u$. This latter is certainly the case, for if $\psi(b)=\psi(a) b^{-1} a u$ then $u=\left(a^{-1} b\right) \psi\left(a^{-1} b\right)$, contradicting our hypothesis on u.

Suppose, on the other hand, that D_{2} has a non-inner automorphism ϕ such that for all $x \in D_{2}, x-\phi(x)$ is 0 or invertible. By the nature of automorphisms on matrix rings,

$$
\phi\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=t\left(\begin{array}{ll}
\psi(x) & \psi(y) \\
\psi(z) & \psi(w)
\end{array}\right) t^{-1}
$$

where ψ is an automorphism of D and $t \in D_{2}$ is invertible. Our condition on ϕ
immediately implies that ψ is not inner on D and that:
(1) $t\left(\begin{array}{ll}\psi(x) & \psi(y) \\ \psi(z) & \psi(w)\end{array}\right)-\left(\begin{array}{cc}x & y \\ z & w\end{array}\right) t=0$ or is invertible for all $\left(\begin{array}{cc}x & y \\ z & w\end{array}\right) \in D_{2}$.

Let $t=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$; then, by Lemma 1,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \neq 0
$$

so is invertible, that is $\left(\begin{array}{cc}0 & -b \\ c & 0\end{array}\right)$ is invertible. Hence $b \neq 0, c \neq 0$. Let

$$
\Psi\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
\psi(x) & \psi(y) \\
\psi(z) & \psi(w)
\end{array}\right) .
$$

If $A \in D_{2}$ is invertible and $Y \in D_{2}$ then $t \Psi\left(A Y A^{-1}\right)-A Y A^{-1} t=$ $A\left(A^{-1} t \Psi(A) \Psi(Y)-Y A^{-1} t \Psi(A)\right) \Psi(A)^{-1}$ is 0 or invertible, hence the same holds for $A^{-1} t \psi(A) \psi(Y)-Y A^{-1} t \psi(A)$ for all $Y \in D_{2}$. Thus we can change the t in condition (1) into $A^{-1} t \psi(A)$ for any invertible $A \in D_{2}$.

We claim that we may assume that $t=\left(\begin{array}{ll}0 & 1 \\ u & 0\end{array}\right)$. We see this in a few steps. Firstly we assert that we may assume that $a=0$, for, if not, then using

$$
A=\left(\begin{array}{cc}
1 & a c^{-1} \\
0 & 1
\end{array}\right), t_{1}=A^{-1} t \psi(A)=\left(\begin{array}{cc}
0 & b_{1} \\
c_{1} & d_{1}
\end{array}\right)
$$

as we saw above, $b_{1} \neq 0, c_{1} \neq 0$. Thus

$$
B^{-1} t_{1} \psi(B)=\left(\begin{array}{ll}
0 & 1 \\
u & e
\end{array}\right) \quad \text { where } \quad B=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & 1
\end{array}\right) .
$$

We claim that $e=0$. For, if $x \in D$ then

$$
\begin{aligned}
W= & \left(\begin{array}{ll}
0 & 1 \\
u & e
\end{array}\right)\left(\begin{array}{cc}
\psi(x) & \psi(x) u^{-1} e-u^{-1} e \psi(u) \psi^{2}(x) \psi(u)^{-1} \\
0 & \psi\left(u \psi(x) u^{-1}\right)
\end{array}\right) \\
& -\left(\begin{array}{cc}
x & x \psi^{-1}\left(u^{-1} e\right)-\psi^{-1}\left(u^{-1} e\right) u \psi(x) u^{-1} \\
0 & u \psi(x) u^{-1}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
u & e
\end{array}\right) \\
= & \left(\begin{array}{cc}
x \psi^{-1}\left(u^{-1} e\right) u-\psi^{-1}\left(u^{-1} e\right) u \psi(x) & * \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Therefore, by (1), $W=0$, and so, for all $x \in D, \psi^{-1}\left(u^{-1} e\right) u \psi(x)=x \psi^{-1}\left(u^{-1} e\right) u$. But ψ is not inner, hence $\psi^{-1}\left(u^{-1} e\right) u=0$, from which we get that $e=0$.

Therefore we may assume that $t=\left(\begin{array}{ll}0 & 1 \\ u & 0\end{array}\right)$. Computing

$$
\begin{aligned}
&\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)\left(\begin{array}{cc}
\psi(x) & 0 \\
0 & \psi\left(u \psi(x) u^{-1}\right)
\end{array}\right)-\left(\begin{array}{cc}
x & 0 \\
0 & u \psi(x) u^{-1}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right) \\
&=\left(\begin{array}{cc}
0 & \psi(u) \psi^{2}(x) \psi(u)^{-1}-x \\
0 & 0
\end{array}\right)
\end{aligned}
$$

we obtain from (1) that $\psi^{2}(x)=\psi(u)^{-1} x \psi(u)$. Also

$$
\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
\psi(u) & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)=\left(\begin{array}{cc}
\psi(u)-u & 0 \\
0 & 0
\end{array}\right),
$$

so by (1), $\psi(u)=u$; thus $\psi^{2}(x)=u^{-1} x u$. Finally, for $x \in D$,

$$
\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)\left(\begin{array}{cc}
\psi(x) & 0 \\
1 & 0
\end{array}\right)-\left(\begin{array}{ll}
x & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -x \\
u \psi(x) & -1
\end{array}\right)
$$

is invertible by Lemma 1, hence

$$
\left(\begin{array}{cc}
1-x u \psi(x) & -x \\
0 & -1
\end{array}\right)
$$

is invertible. Thus $1-x u \psi(x) \neq 0$ for all $x \in D$, hence $u \neq y \psi(y)$ for all $y \in D$.
This proves the lemma.
Putting together all the pieces, we summarize what we have obtained in the
Theorem. Let R be a ring with 1 and $\phi \neq 1$ an automorphism of R such that for every $x \in R, x=\phi(x)$ or $x-\phi(x)$ is invertible in R. Then R is either

1. a division ring D, or
2. $D \oplus D$, or
3. D_{2}.

Furthermore, D_{2} is possible, with ϕ non-inner, if and only if D has a non-inner automorphism ψ such that $\psi^{2}(x)=u^{-1} x u$ for all $x \in D$, where $\psi(u)=u$ and $u \neq y \psi(y)$ for all $y \in D$, or with ϕ inner if and only if D does not contain all quadratic extensions of its center Z.

Note that if char $D \neq 2$ then D does not contain all quadratic extensions of Z if and only if some $\alpha \in Z$ fails to be a square in D. In that case, using $\psi=1$ as the automorphism of D, clearly $\psi^{2}(x)=x=\alpha^{-1} x \alpha$ and $\alpha \neq y \psi(y)$ for all $y \in D$. Thus, in this case, the division between inner and non-inner disappears, and the theorem reads: if $2 R \neq 0$ and R has an automorphism $\phi \neq 1$ such that $x-\phi(x)$ is 0 or invertible for all $x \in R$ then $R=D, D \oplus D$, or D_{2}, for some division ring D; furthermore, D_{2} is possible if and only if D has an automorphism ψ such that $\psi^{2}(x)=u^{-1} x u$ and $\psi(u)=u$ and $u \neq y \psi(y)$ for all $y \in D$.

In line with what we did in [1] we also consider the situation in which we merely suppose that the automorphism ϕ behaves in a given pattern, not on R itself, but merely on a left ideal of R.

Let R be a ring, $L \neq 0, R$ a left ideal of R and ϕ an automorphism of R such that is not the identity on L, and such that $x-\phi(x)$ is 0 or invertible for each $x \in L$. We shall show, as before, that R is either D, D_{2}, or $D \oplus D$ for some division ring D (although the condition we obtained previously on D does not necessarily carry over).

If $0 \neq r \in R$ and $\phi(r)=r$ then, since $r L \subset L$, we get that $r(\phi(x)-x)=0$ or invertible for all $x \in L$; however, since $\phi(x)-x \neq 0$ for some $x \in L$, allows us to conclude that r is invertible. As before, this immediately implies that L is a minimal left ideal of R and $R=L \oplus \phi(L)$; this latter clearly implies that R is artinian.
\boldsymbol{R} is semi-simple artinian, for if $A^{2}=0$ for some ideal A of R then $A=A R=A L \oplus A \phi(L)$; because $L, \phi(L)$ are minimal left ideals of R and $A L=L$ would force $0=A^{2} L=A L=L$, we conclude that $A L=A \phi(L)=0$. Thus $A=0$.

Since R is semi-simple artinian and $R=L \bigoplus \phi(L)$ with $L, \phi(L)$ minimal left ideals of R, if L is not a 2-sided ideal of $R, R=D_{2}$ follows by Wedderburn's theorem. If L is a 2 -sided ideal of R, then L must be a division ring, D, and $R \approx D \oplus D$. This proves the assertion made above.

References

1. Jeffery Bergen, I. N. Herstein and Charles Lanski, "Derivations with invertible values", to appear in Canadian Jour. Math.

DePaul University and
University of Chicago

[^0]: Received by the editors January 8, 1982.
 AMS (1980) Classification: 16A72.
 ${ }^{(1)}$ The research of Herstein was supported by the NSF grant, NSF-MCS 810-2472, at the University of Chicago.
 © Canadian Mathematical Society, 1983.

