MATRIX COMMUTATORS

M. F. SMILEY

Introduction. A classical theorem states that if a square matrix B over an algebraically closed field F commutes with all matrices X over F which commute with a matrix A over F, then B must be a polynomial in A with coefficients in F (2). Recently Marcus and Khan (1) generalized this theorem to double commutators. Our purpose is to complete the generalization to commutators of any order.

Let F be an algebraically closed field and let F_{n} be the ring of all n by n matrices with elements in F. We define $\Delta_{Y} Z=[Z, Y]=Z Y-Y Z$ for all Y, Z in F_{n}.

Theorem. Let $A, B \in F_{n}$ be such that for some positive integer $s, \Delta_{A}{ }^{s} X=0$ for X in F_{n} implies that $\Delta_{X}{ }^{s} B=0$. Let the characteristic of F be 0 or at least n. Then B is a polynomial in A with coefficients in F.

For $s=1$ we have the classical theorem except for the restriction on the characteristic of F. For $s=2$ we have the result of Marcus and Khan with a bit more freedom for the characteristic of F. We feel that even for $s=2$ our proof has interest. We first observe that $s>1$ is "rather without meaning" for semi-simple matrices and then we use this observation to reduce our theorem to the classical case. Here we call A in F_{n} semi-simple in case the roots of the minimal polynominal of A are distinct.

1. Some lemmas. The results of this section will be used in the next section in which we will prove our theorem.

Lemma 1. If A is semi-simple in F_{n}, then $\Delta_{A}{ }^{s} X=0$ for some positive integer s only if $\Delta_{A} X=0$.

Proof. We use induction on s. Let $E_{k}(k=1, \ldots, q)$ be the principal idempotents of A so that $A=\mu_{1} E_{1}+\ldots+\mu_{q} E_{q}$ with $\mu_{k} \in F(k=1, \ldots, q)$. Then each E_{k} is a polynomial in A with coefficients in F. The Jacobi identity $[Y,[Z, W]]+[Z,[W, Y]]+[W,[Y, Z]]=0$ for all Y, Z, W in F_{n} shows that if $E=E_{k}(k=1, \ldots, q)$, then $\Delta_{A} \Delta_{E} Y-\Delta_{E} \Delta_{A} Y=0$ for all Y in F_{n}. Now $\Delta_{A}{ }^{s} X=\left[\Delta_{A}{ }^{s-1} X, A\right]=0$ gives $\left[\Delta_{A}{ }^{s-1} X, E\right]=0$ and hence $\Delta_{A}{ }^{s-1} \Delta_{E} X=0$. By our inductive hypothesis, $\Delta_{A} \Delta_{E} X=0$ from which $\Delta_{E}{ }^{2} X=0$ follows at once. But $\Delta_{E}{ }^{2} X=2 E X E+X E-E X=0$ yields $E X=X E$ upon right and left multiplication by E. Thus $\Delta_{E} X=0$ for all $E=E_{k}(k=1, \ldots, q)$ and consequently $\Delta_{A} X=0$, completing our inductive proof of the lemma.

An alternative proof of Lemma 1 is suggested by the referee. We may assume that A is a diagonal matrix and use the well-known matrix representation $L=I \otimes A-A \otimes I$ for Δ_{A}, where \otimes denotes the Kronecker product. But then L is a diagonal matrix so that L and L^{s} have the same null-space, and this proves Lemma 1.

At this point we introduce the usual matrix units $e_{i j}(i, j=1, \ldots, k)$ in F_{k}. The matrix $e_{i j}$ has 1 in the i th row and j th column and zeros elsewhere.

Lemma 2. In F_{k}, let $C=\lambda I_{k}+e_{21}+e_{32}+\ldots+e_{k k-1}$ with λ in F and $X=e_{11}+2 e_{22}+\ldots+k e_{k k}$. Then $\Delta_{C}{ }^{2} X=0$, and for $Y=(C-\lambda) X$, $\Delta_{C}{ }^{2} Y=0$.
Proof. A simple computation shows that $\Delta_{C} X=X C-C X=C-\lambda I_{k}$. Since $\Delta_{C}(C-\lambda) T=(C-\lambda) \Delta_{C} T$ for all T in F_{k}, the lemma follows. (The matrices X and Y are special cases of certain matrices used in (1) on pp. 273-274.)

Lemma 3. Let C, X, Y be as in Lemma 2 and let $B \in F_{k}$. Assume that the characteristic of F is 0 or at least k. Then $[B, X]=0$ implies that B is a diagonal matrix and $[B, X]=[B, Y]=0$ implies that B is a scalar matrix.

Proof. With $B=\Sigma b_{1 j} e_{i j}$ we find that $B X=\Sigma j b_{i j} e_{i j}$ and $X B=\Sigma i b_{i j} e_{i j}$. Hence $[B, X]=0$ gives $b_{i j}=0$ for $i \neq j$ and $i, j=1, \ldots, k$. With $B=\operatorname{diag}\left(b_{1}, \ldots, b_{k}\right), \quad Y B=b_{1} e_{21}+2 b_{2} e_{32}+\ldots+(k-1) b_{k-1} e_{k k-1}$ and $B Y=b_{2} e_{21}+2 b_{3} e_{32}+\ldots+(k-1) b_{k} e_{k k-1}$. Hence $[B, Y]=0$ yields $b_{1}=b_{2}=\ldots=b_{k}$ so that B is a scalar matrix.
2. Proof of the theorem. In this section we use the lemmas of $\S 1$ to prove our theorem. Since we shall use the classical result $(s=1)$ in our proof, we assume that s is at least 2 .
We may clearly assume that $A \in F_{n}$ is in Jordan normal form:

$$
A=\operatorname{diag}\left(C_{1}, \ldots, C_{t}\right)=\operatorname{diag}\left(J_{1}, \ldots, J_{q}\right)
$$

where each $C_{i}(i=1, \ldots, t)$ is an n_{i} by n_{i} matrix corresponding to an elementary divisor $\left(x-\lambda_{i}\right)^{p^{p}}$ of A and each J_{k} is an m_{k} by m_{k} matrix with a single characteristic root μ_{k} and $\mu_{k} \neq \mu_{l}$ for $k \neq l(k, l=1, \ldots, q)$.

Take $X=\operatorname{diag}(1, \ldots, n)$ and use Lemma 2 to obtain $\Delta_{A}{ }^{2} X=0$ and hence $\Delta_{x}{ }^{s} B=0$. By Lemma 1, since X is semi-simple, $\Delta_{X} B=0$ and B must be diagonal by Lemma 3. We write $B=\operatorname{diag}\left(B_{1}, \ldots, B_{t}\right), X=\operatorname{diag}\left(X_{1}, \ldots\right.$, X_{t}) conformally with $A=\operatorname{diag}\left(C_{1}, \ldots, C_{t}\right)$. With $Y=\operatorname{diag}\left(\left(C_{1}-\lambda_{1}\right)\right.$ $\left.X_{1}, \ldots,\left(C_{t}-\lambda_{t}\right) X_{t}\right)$, we have $\Delta_{A}{ }^{2} Y=0$ by Lemma 2 and also $\Delta_{A}{ }^{2}(X+Y)$ $=0$. Since $X+Y$ is semi-simple, $\Delta_{X+Y} B=\Delta_{Y} B=0$. By Lemma 3, $B_{i}=c_{i} I_{n i}$ with c_{i} in $F(i=1, \ldots, t)$. Now let C_{i} and C_{i+1} have the same characteristic root λ and let U be an $\left(n_{i}+n_{i+1}\right)$-rowed square matrix whose only non-zero element is 1 in the last row and first column. If $Z=\operatorname{diag}(0, U, 0)$ in conformity with $A=\operatorname{diag}\left(C_{1}, \ldots, C_{t}\right)$, then $Z A=A Z=\lambda Z$ so that
$\Delta_{A} Z=0$. Since $X+Z$ is semi-simple, we obtain $\Delta_{X+Z} B=\Delta_{Z} B=0$ from which $c_{i}=c_{i+1}$ follows. Thus if $B=\operatorname{diag}\left(B_{01}, \ldots, B_{0 q}\right)$ in conformity with $A=\operatorname{diag}\left(J_{1}, \ldots, J_{q}\right)$, then $B_{0 k}=d_{k} I_{m k}$ with d_{k} in $F(k=1, \ldots, q)$. Now if $[W, A]=0$ it is well known that $W=\operatorname{diag}\left(W_{1}, \ldots, W_{q}\right)$ in conformity with $A=\operatorname{diag}\left(J_{1}, \ldots, J_{q}\right)$. A direct proof of this statement goes as follows. Partition W into blocks $W_{k l}$ in conformity with $A=\operatorname{diag}\left(J_{1}, \ldots, J_{q}\right)$. If $Y=W_{k l}$ with $k \neq l$, then $[W, A]=0$ gives $(\rho I+C) Y=Y D$ with C and D nil-potent and ρ non-zero in F. Thus $Y\left(R_{D}-R_{C}\right)=\rho Y$ where R_{D}, L_{C} denote right and left multiplications by C, D, respectively. Since C and D are nil-potent, so is $R_{D}-L_{C}$, and it follows that $\rho^{i} Y=0, Y=0$. Now we see that $[W, A]=0$ for W in F_{n} implies that $[W, B]=0$ and we complete the proof of our theorem by an appeal to the classical case.

References

1. M. Marcus and N. A. Khan, On matrix commutators, Can. J. Math., 12 (1960), 269-277.
2. J. H. M. Wedderburn, Lectures on matrices, Amer. Math. Soc. Colloq. Pub., 17 (New York, 1934).

University of Iowa
and
University of California, Riverside

