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Abstract. Infrared companions are young stellar objects with unusual
properties gravitationally bound to more or less typical T Tauri stars. As
such they promise to be the source of information on either a particular
phase in the development of young stars or on a particular mode of de-
velopment. We discuss the observed properties of infrared companions as
well as attempts to explain their physical status with the aim to see how
much of solid conclusion has been obtained so far.

1. Introduction

In the most favored picture of binary and multiple star formation, the various
stellar components are produced when a collapsing cloud core fragments un-
der the influence of rotation, magnetic fields, and turbulence (c./., a number of
papers in this volume). A basic prediction of this picture is that the stellar com-
ponents are coeval. From that point onward, they evolve nearly independently
at predictable rates determined by the physics of convection, nuclear burning,
and radiative transfer in their interiors. A comparison of the evolutionary ages
of the components of a given system at any time after its formation should yield
consistent results.

The pioneering work of Hartigan et al. 1994 showed that this prediction
holds true for 2/3 of the 26 wide (projected separation 400 - 6000 AU) pre-
main sequence visual binaries which composed their sample. When there were
significant age differences between the component stars, the less massive star was
usually the younger. More recent observations by Brandner & Zinnecker (1997)
showed that all 8 of their sample of binaries with projected separations between
85 and 240 AU were consistent with coeval formation. Woitas & Leinert (2000)
reach similar conclusions about a set of 17 weak-lined TTS (WTTS) binaries,
but they also find some unusually red objects in a sample of the more extreme
classical T Tauri stars (CTTS).

The red objects described by Woitas & Leinert (2000) are candidate mem-
bers of a class of T Tauri companions which may present a significant challenge
to the fragmentation picture. These objects are referred to as the "Infrared
Companions" (IRes). They radiate predominantly in the infrared, giving them
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a very youthful appearance which seems inconsistent with the ages of the stars
they orbit. Zinnecker & Wilking (1992) estimate that IRes constitute perhaps
10% of all T Tauri binary companions detected in the binary surveys of Ghez,
Neugebauer, & Matthews (1993) and Leinert et al. (1993). The samples in these
studies contained primarily CTTS in the Taurus and Ophiuchus star-forming re-
gions (SFRs). A list of several of the best examples of IRCs is given in Table 1.

Table 1.
System
trv Aurigae
T Tauri
VVCrA
DoAr 24e
Glass I
Haro 6-10
XZ Tauri

Selected Infrared Companions
Discovered by
1944 Joy &van Biesbroek
1982 Dyck, Simon, & Zuckerman
1985 Frogel.
1988 Chelli et al.
1988 Chelli et al.
1989 Leinert & Haas
1990 Haas, Leinert, & Zinnecker

Technique
Visible Image
IR speckle
IR offset
IR speckle
IR speckle
IR'speckle
IR speckle

The most basic question that will be addressed here is this: Are the IRCs
truly stars with significantly younger evolutionary ages than their primaries, or
are they more evolved (presumably coeval) objects whose appearance has been
modified by some process which alters either the light they radiate or the stars
themselves? If the latter, what are the implications of the existence of such a
process for our understanding of the evolution of multiple stars, and for stars in
general?

2. Properties of the Infrared Companions

While the IRC class is defined by bright infrared and faint visible radiation
and the presence of a T Tauri primary, a multitude of observations over the
years since the discovery of the first IRC (the T Tauri IRC, by Dyck, Simon,
& Zuckerman 1982) have identified a number of other unusual and perhaps
characteristic features of these objects. For the most part, these features tend to
be more extreme versions of phenomena seen in more "normal" T Tauri stars,
such as infrared excesses, photometric variability, and shock-excited emission
lines of molecular hydrogen. Other features such as rapidly-changing nonthermal
radio emission seem to be more or less unique to the IRC class among the CTTS
or even to specific IRCs. Here we discuss these features in some detail.

2.1. Infrared Excess and Bolometric Temperature

It is useful to examine scalar quantities which can be calculated from the SED to
estimate the importance of the infrared excess in an IRC. Here we examine two
such quantities which have been applied in the literature to various young stellar
objects. The simplest is perhaps the fraction LIRAS/Lbol of the object's total
luminosity which emerges in the IRAS passbands at wavelengths between 12 and
100 J-Lm. For even a very cool stellar photosphere, this ratio is less than 0.01,
while for stars which are "embedded" according to the definition of Kenyon,
Calvet, & Hartmann (1993) it is at least 0.8. This latter value corresponds
to a blackbody temperature of 220 K. The IRCs studied by Koresko, Herbst, &
Leinert (1997; hereafter KHL) do not quite reach this degree of "embeddedness",

https://doi.org/10.1017/S0074180900225308 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900225308


Infrared Companions 267

SED for T Tauri and its IRe
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Figure 1. The SED for the components of the T Tauri system are
plotted along with with simple models. The squares trace the total
flux of the system, while the diamonds and triangles mark the fluxes
of the primary and IRC, respectively. The data and models are from
KHL and references therein.

having LIRAS/Lbol between 0.18 (for DoAr 24E IRC) and 0.76 (for Haro 6-10
IRC).

On a plot of the bolometric luminosity Lbol versus bolometric temperature
Tbol (Myers and Ladd, 1993), the IRCs are clustered approximately midway
between the warmest embedded sources and the coolest CTTS. The bolometric
temperatures of the sample of IRCs studied by KHL range from 210 to 800 K.

2.2. Primary Stars

The IRCs are by definition associated with more or less "normal" T Tauri stars,
which in practice are usually ~ 106 yr old CTTS with significant infrared excesses
of their own. For the present, we will refer to these visibly-bright stars as the
"primaries" regardless of their relative bolometric luminosities, following the
convention of KHL.

2.3. Spectral Properties

The availability of visible-light spectra of IRCs is limited at present because
of their faintness and proximity to primaries which are much brighter at visible
wavelengths. The Glass I IRC is an exception, perhaps because it was in visually-
bright phase at the time of the spectral observations. Feigelson & Kriss (1989)
obtained visual spectra of the primary and the IRC, for which they estimated
spectral types of K3 and G5e, respectively. And Reipurth & Zinnecker (1993)
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in their imaging survey for young binaries, found the Glass I IRC to be nearly
as bright as the primary in the Gunn z filter.

Unlike the visual spectra, infrared spectral information (albeit at low reso-
lution) is relatively plentiful. Herbst, Koresko, & Leinert (1995; hereafter HKL)
obtained R "-' 250 spectra in the K (2.0 - 2.4 /-Lm) band of the primaries and
companions in the UY Aurigae and Haro 6-10 system. They found that the pri-
mary stars displayed normal photospheric absorption features roughly consistent
with the temperatures determined from visible-light spectra, together with the
Br-y emission line of atomic hydrogen which is common in T Tauri stars. The
spectrum of the UY Aurigae IRC was similar to that of its primary star except
for the presence of a v == 1-0 S(1) emission line of molecular hydrogen, while
the Haro 6-10 IRC displayed only a red continuum which was featureless except
for the same molecular hydrogen line.

Mid-infrared spectra of the IRCs orbiting T Tauri and Haro 6-10 (Ghez et
al. 1991; van Cleve et al. 1994; Herbst, Robberto, & Beckwith 1997) showed deep
10 J-tm silicate absorption features which are not seen in their primaries, indicat-
ing that they suffer strong extinction due to localized dust distributions. The
T Tauri primary appears to show the same silicate feature in emission. Herbst,
Robberto, & Beckwith (1997) found that the shapes of the silicate features in
both the primary and the IRC could be reproduced with a model in which each
star is surrounded by a disk which has tenuous upper layers of varying emissivity
and density.

It cannot be said that the water ice absorption feature at 3.09 usu, which
is well correlated with visual extinction Av (Whittet et al. 1988), is unusually
common in infrared companions. But in Haro 6-10 (alias Elias 7) Whittet et al.
(1988) found strong ice band absorption. It was an independent confirmation
for the large amount of circumstellar dust around the infrared companion in
this binary that spatially resolved observations (Leinert et al. 1996; Beck et al.
2000; Leinert, Ligori, & Woitas 2000, hereafter LLW) showed the ice feature to
be concentrated on the companion.

2.4. Photometric and Spectral Variability

Strong photometric variability appears to be common, and perhaps universal,
among IRCs. At least five IRC systems are known to exhibit photometric vari-
ations. The most extreme example known at present is UY Aurigae, whose IRC
was originally discovered as a visible star only 0.5 mag fainter than its primary
(Joy & van Biesbroeck 1944). Half a century later, a much more sensitive R-
band CCD image failed to detect the object at all, indicating that the IRe had
become at least 5 magnitudes fainter than the primary (HKL).

The IRC system with the best-sampled light curve is probably Haro 6-10,
with photometric monitoring available (LLW; Beck et al. 2000) with sufficient an-
gular resolution to derive the brightness of the IRC at near-infrared wavelengths
over a total timespan of more than a decade, with unresolved near-infrared pho-
tometry of the system being available for another 14 years. Both primary and
IRC exhibit significant and irregular variability in both brightness and color
across the near-infrared region, with the IRC's variability being generally larger
than the primary's. The colors of the stars usually seem to be unrelated to the
brightness of the primary, and the variations of the two stars are usually uncor-
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related with each other. This leads LLW to conclude that a single mechanism
such as changes in reddening is inadequate to explain the observed behavior of
the system. Variations in the ice feature provide perhaps the most direct clue
to the varying distribution of dust (Beck et al. 2000; LLW), but no clear picture
has yet evolved from these observations.

The T Tauri IRC went through an outburst between 1989-91 in which
it brightened by rv 2 magnitudes between 2 and 10 ius: (Ghez et al. 1991;
Kobayashi, et al. 1994; Simon et al. 1996). Roddier et al. (2000) found that
the magnitude difference between the primary and IRC in the K band changed
from 2.6 on Christmas 1994 to 0.6 in November 23, 1999, and monitoring by
Beck et al. (2000) over a two-year period ending in January 2000 showed changes
as large as 50% in its K-band flux measured on dates only a few days apart.
By contrast with the IRC and also with the Haro 6-10 primary, the T Tauri
primary appears to be relatively stable during the Beck et al. (2000) period.

The brightness ratios of the IRC systems UY Aurigae, Do-Ar 24E, and VV
CrA have also been observed to vary substantially in the near-infrared (KHL
and references therein).

2.5. Infrared Morphology

In recent years the angular resolution available for near-infrared imaging obser-
vations has been improved significantly due to the development of speckle and
adaptive optics capabilities for telescopes with apertures as large as 10 m. These
facilities have made it possible to begin to resolve structure in some of the IRes,
and thereby directly test some of the models.

The most-studied object so far is the T Tauri IRC. A series of careful ob-
servations using adaptive optics first confidently detected resolved structure in
this object (Roddier et al. 2000) which was later found to be a pair of pointlike
stars separated by 0" .05, corresponding to a projected separation of 7 AU at the
distance to the Taurus SFR (Koresko 2000). Followup adaptive-optics compen-
sated speckle interferometry (AOCSI) observations have detected a change in
the separation and position angle of the IRC double which is consistent with or-
bital motion (Kohler, Kasper, & Herbst 2000). The duplicity of the T Tauri IRC
may explain why, despite the large extinction, submillimeter images place upper
limits on its circumstellar dust mass no more than 3x10-3 M0 , which is well
below the mass of the disk around the primary star (Hogerheijde et al. 1997;
Akeson et al. 1998).

In contrast with T Tauri, holographic observations of the Haro 6-10 IRC
revealed a bright, compact, nebulous object which shows no sign of duplicity
(Koresko et al. 1999). Holography of the IRC in the VV CrA system has detected
an extended envelope which contributes rv 10% of the total light at 2.2 usu, and
no evidence for a tertiary companion (Koresko et al. 2001). Finally, holography
observations of the IRCs of Do-Ar 24E, UY Aurigae, and WSB 4 show no sign
of extended structure at all (Koresko et al. 2001).

2.6. Radio Emission and Circumstellar Matter

In a seminal study, Beckwith et al. (1990) surveyed a sample of 86 T Tauri stars
in the radio continuum at 1.3 mm, with the goal of detecting and measuring the
thermal emission from dust in circumstellar disks. The submillimeter survey
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sample included the IRe binaries T Tauri, UY Aurigae, and XZ Tau. These
systems do not stand out among the sample as having unusually large dust
masses. In particular, the dust masses are always small compared to the stellar
masses, confirming that the IRCs have evolved beyond the phase in which their
masses grow significantly via accretion.

Although a number of pre-main sequence stars are radio emitters (e.g.,
Chiang, Phillips & Lonsdale 1995 and references therein), the T Tauri IRC is one
of only two known pre-main sequence sources of circularly polarized nonthermal
radiation at centimeter wavelengths (Phillips et al. 1993; Skinner & Brown 1994),
the other being the Class 1 protostar IRS 5 in the Corona Australis "Coronet
Cluster" (Feigelson, Carkner, & Wilking 1998). This observation hints at the
action of some unusual energetic process, perhaps accretion-driven, involving
strong magnetic fields.

3. The Nature of the IRe Phenomenon

A number of questions arise immediately when one considers the observational
data on IRCs. Are these objects fundamentally different from their primary
stars, with their infrared excesses and activity pointing to an evolutionary phase
younger than the T Tauri stars, or do their youthful outward appearances hide
more mundane central stars? Is there an "IRC phase" which most or all T Tauri
stars in binaries go through, or does the IRC phenomenon occur only for some
specific range of stellar parameters and environment? Is there a favored binary
separation range? What about single T Tauri stars? If the IRCs are episodic
accreters, how long do the episodes last, how many will occur during the pre-
main sequence lifetime of the star, and how much mass is gained during these
episodes?

We are not yet in a position to answer many of these questions in detail.
But it does make sense to begin attempting to answer a few of the basic ques-
tions about the nature of the IRCs, and to explore the extent to which current
observational can constrain the models.

3.1. Are the IRes Coeval with their Primaries?

The combination of large and possibly anisotropic extinctions, infrared excesses,
variability, and faintness at visible wavelengths, have made it difficult or im-
possible to derive reliable age estimates for the IRCs. Despite these difficulties,
a few attempts have been made to test IRCs for coevality with the primaries,
with results that seem to support coeval formation. KHL assumed coevality
and placed each of the six IRCs in their sample on an H-R diagram to derive
estimates for their effective temperatures. The result for the Glass I IRe was
consistent with the G5e spectral type estimated by Feigelson & Kriss (1989)
from a visible-light spectrum taken in 1981, when the IRC was a visible CTTS
with mv == 14.09. For the UY Aurigae IRC, KHL found effective temperatures
corresponding to a spectral type of K6 - K7, which is roughly consistent with the
MO roughly estimated from the low-resolution near-infrared spectrum of HKL.
Close et al. (1998) fit models of extincted stars surrounded by warm disks to
the SEDs of UY Aurigae and its IRC, and found that they could be fit with a
common age of 3 x 105 yr and HKL's spectral types of K7 and MO.
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3.2. Special Viewing Geometries

Perhaps the simplest model for an IRC would be a normal T Tauri star posi-
tioned behind normal disk material around the primary or the IRC itself. In this
picture, the IRCs could be intrinsically quite similar to their primaries. Here we
briefly discuss two models that have been proposed in the literature.

For example, the IRCs could be surrounded by circumstellar disks viewed
nearly edge-on. The extinction would be produced by the material in the outer
disk, which is perhaps inhomogeneous so that the dust column varies significantly
as orbital motion carries different parcels of mass through the line of sight.
However, none of the IRCs show a morphology similar to that of the 100 AU disk
structure surrounding the companion to HK Tauri (Koresko 1998). Further, the
high extinction to the hot inner regions of the HK Tauri disk make the shape of
the system's SED is more reminiscent of a moderately-extincted star than of an
IRC. However, it is still possible that certain combinations of small disk mass
and orientations not quite edge-on can reproduce the observations. Detailed
radiative-transfer modeling is needed to fully test these possibilities.

A second possibility is that the IRCs lie behind the disks associated with
their primary stars, as has been suggested for the T Tauri system (e.g., van
Langevelde et al. 1994). As noted by Akeson et al. (1998), although the radius
of the T Tauri N disk appears smaller in their submillimeter images than the
distance to the IRe, submillimeter imaging cannot rule out the existence of a
more diffuse outer disk such as that proposed by Hogerheijde et al. (1997).

3.3. Disk Accretion

It has been proposed that the origin of the large and variable infrared excess in
the T Tauri IRC is an active accretion disk (Ghez et al. 1991). This is sometimes
referred to as the "mini-FUor" model, after its similarity to the FU Orionis class
of objects which are believed to be T Tauri stars whose disks are undergoing
episodes of very rapid accretion. The IRCs would be considerably less extreme
cases, in which the luminosity due to the disk is never very much larger than
that of the stellar photosphere.

The mini-FUor model was elaborated on by KHL, who suggested that the
accretion could be triggered by gravitational interactions, and synchronized with
the orbital phase, if the binary orbits are eccentric. A particularly interesting
possibility is that the IRC phenomenon is both triggered and fueled by streams
of matter coming from a circumbinary disk, as predicted by hydrodynamical
models (Artymowicz & Lubow 1996). Alternatively, surges of accretion and
extinction may be explained if the IRC systems are disintigrating triple sys-
tems with associated dusty envelopes (Reipurth 2000). The unstable orbits of
such a system may cause the lighter components to be found at large radii and
suffer small extinction while the more massive and luminous objects lie deeper
within the envelope, suffering larger extinction, while their accretion could be
accelerated by infall and/or perturbations of the disk.

The T Tauri and Haro 6-10 IRCs are suspected to drive the giant Herbig-
Haro flows which have been seen to extend from somewhere in these binaries
to distances of rv 1 pc (Solf & Bohm 1999; Reipurth, Bally, & Devine 1997;
Movsessian & Makagian 1999; Devine et al. 1999). The presence of such flows
may indicate rapid accretion in these objects.
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3.4. Episodic Accretion

In the KHL picture, one can make some very crude and unreliable estimates
of the frequency and duration of a typical IRC event in the recurrent "episodic
accretion" picture in the following way: Starting with the estimate that 10%
of the companions of classical T Tauri stars are IRCs (Zinnecker & Wilking
1992) and the assumption that these episodes occur periodically with constant
frequency and duration for all CTTS companions throughout a typical pre-main
sequence lifetime of 106 yr, one finds that each object spends a total of 105

yr as an IRC. If exactly one among the half dozen or so well-studied IRCs has
changed state from non-IRC to IRC in the last "-' 25 yr, then for each object these
transitions occur on timescales of "-' 150 yr. Considering the crudeness of this
calculation, this timescale is more or less consistent with the orbital timescale
of "-' 700 yr for a pair of solar-mass stars separated by 100 AU.

The infall of 10-7 MG yr-1 of gas onto a solar-mass star of radius 3 RG
would be required to produce the 1 L0 typical of an IRC's infrared excess. At
this rate, and using the above estimate for the total time spent as an IRC, a
typical T Tauri companion would accrete 10-2 MG. This mass is comparable to
the mass of a typical pre-main sequence disk.

Clearly, these results do not demonstrate the validity of the recurrent episo-
dic-accretion picture for the IRCs, but they do show that it is not grossly incon-
sistent with the observations.

3.5. Binary Separations

The angular separations between the known IRCs and their primaries are typ-
ically between 0".3 and 3".0, corresponding to projected linear distances of
"-' 40 - 400 AU. These distances are close to the fiducial size of a circumstel-
lar disk, suggesting that star/disk interactions might play a role in triggering
and/or fueling the IRC phenomenon. Unfortunately, the significance of this dis-
tance may be obscured by observational effects: Historically, it has been difficult
to measure the photometric fluxes of individual stars with separations smaller
than this range, and at separations a few times larger it becomes uncertain
whether the two stars form a true binary pair. The separation range of the
known IRC binaries may therefore be strongly biased by selection effects.

4. Implications for the Formation and Evolution of Binary Stars

At the present time, the existence of the IRes, whose ages are possibly inconsis-
tent with coeval formation, represent a potential challenge to the fragmentation
scenario for the formation of binary stars. However, this challenge appears to
be muted by the fact that the two IRCs whose ages have been studied seem
consistent with their primaries. It now seems likely that the IRC phenomenon
neither demands nor produces large deviations from normal pre-main sequence
evolution. This tentative conclusion will need to be reexamined as improved
observations become available.

On the other hand, it is very likely that the interactions between stars and
disks in binary systems will have profound effects, if not on the stars, then on
the disks and whatever planetary systems may come into being as they dissipate.
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The IRCs, with their large infrared excesses and other signs of unusually strong
activity, may ultimately be tracers of these interactions, and their study an
important means to understanding how planets may evolve in the most common
stellar environments: binary stars.
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