EFFECT OF DENSITY VARIATIONS ON ELEMENTAL ABUNDANCE DETERMINATIONS IN GASEOUS NEBULAE

Robert H. Rubin NASA Ames Research Center

ABSTRACT. When there are changes in gas density within a nebula, various methods of determining the electron density $N_{\rm e}$ can give different results. Irrespective of differences in ionization structure, there will be deviations in derived values of $N_{\rm e}$ due to the physics of populating the energy levels. To focus on $N_{\rm e}$ variations, the electron temperature is held constant. For two cases presented, the values of $N_{\rm e}$ inferred range over a factor of ten from nine species (line pairs); in order of increasing $N_{\rm e}$, they are $N^+(122/204~\mu\text{m})$, $O^{++}(52/88~\mu\text{m})$, $S^+(6716/6731~\text{A})$, $S^{++}(18.7/33.5~\mu\text{m})$, $O^+(3726/3729~\text{A})$, $N_{\rm e}^{++}(15/36~\mu\text{m})$, $A_{\rm r}^{+3}(4711/4740~\text{A})$, $A_{\rm r}^{++}(8.99/21.8~\mu\text{m})$, and $C^{++}(1906/1909~\text{A})$. This is basically a progression from lower to higher critical densities, $N_{\rm c}$, for the lines involved, although other factors are involved. The above order can change somewhat for different mixes of densities.

Together with observations of a third line from another species, an elemental abundance ratio may be derived by standard empirical techniques. When $N_{\rm C}(3^{\rm rd}$ line of species X) is an extreme value relative to $N_{\rm C}(2$ lines for obtaining $N_{\rm e}$ from species Y), the BIAS > 1, where $[N(X)/N(Y)]_{inferred}$ = BIAS $[N(X)/N(Y)]_{true}$. However when $N_{\rm C}(3^{\rm rd}$ line) is intermediate in value, the BIAS is closer to unity and may be < 1. This implies that when there are $N_{\rm e}$ fluctuations, chemical abundance ratios obtained with 3 lines that satisfy the latter condition should be more reliable than those satisfying the former. The degree of potential bias in the average $N_{\rm e}$ value and elemental abundance ratio inferred depends on the extent of density variations. For the cases considered, BIAS can be greater than 2 and much larger when using lines with very different $N_{\rm C}$'s.

The fact the N_e values from Cl++(5518/5538 A) are higher than those from S⁺ and O⁺, and that those from N⁰(5199/5202 A) are lowest of all (Stanghellini and Kaler this volume) is consistent with what is presented here. Again, this is predominantly a progression from higher to lower N_C values.