
PERFECT CATEGORIES

by JOHN ISBELL
(Received 16th December 1974)

Introduction

This note extends to categories Fountain's theorem (2) that for a perfect
monoid 5, every flat S-set is projective. (The converse is known (4).)

Fountain used the theorem for monoids to prove that perfection is also
equivalent to the pair of properties:

A. Every locally cyclic S-set is cyclic.
MR. The principal right ideals of S satisfy the minimum condition.

A similar result for categories ^ is a corollary, since it was known (4)
that # is perfect if and only if it has property A and every monoid <#(X, X)
is perfect.

Theorem. The following three conditions on a category %> are equivalent:

(a) % is perfect;

(b) Every flat (set-valued) functor on # is projective;

(c) Every weakly flat (set-valued) functor on % is projective.

The implication (c)=>(b) is trivial; (&)=>(a) is known (4); so we need to prove
(«)=>(c).

Definitions and background

The basic reference for flat functors is the seminar notes of Grothendieck
and Verdier (3), which treat them as generalised representable functors and
call them " ind-objets " (" objet " meaning a representable functor). They are
denned (3) as the direct limits of directed systems of representable functors.
The standard term is now flat functor, although as far as I know it has not
made its way from lectures into print. As with (flat) modules, so with functors
F: 1-»^, the property is equivalent to this: the set-valued functor ( )®F,
on cat(<<?°p, Sf) to Sf, is left exact. There are results like that in (3), from
which this result became clear when the tensor product G®F of contravariant
G and covariant F was defined. F. W. Lawvere tells me that this was well
known in Zurich certainly by 1966. The explicit definition of ® is simple
enough (using the notation of (4); Latin letters denote points off, which are
ordered pairs consisting of an object X of <& and an element e of F(X), Greek
letters denote morphisms of C6, and of course a juxtaposition <xp is meaningful
only when the object of/> is the domain of a); form (7®.Ffrom the coproduct
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of all G(X)<g>F(X) by identifying (qa, p) with (q, txp), for every meaningful
instance of these expressions.

The definition of ® was published by B. Mitchell (5), whose results do not
touch on flatness but include these fundamentals: for representable G = hY,
G®F is F(Y); for representable F = hx, G(g)F is G(X); in general, <g) is co-
continuous in each variable.

Weakly flat functors (as in Stenstrom (5)) are the direct limits of pro-
jective functors. Recall that projective functors are the retracts of free functors;
in turn, free functors are coproducts of representable ones. One verifies by
inspection that each of these constructions preserves the following property
which the representable functors plainly have:

(*) In F there are no relations cap = fiq except those given by relations
<xv = fid in %> and points o, by means ofp = vo,q = do; and there are no relations
ap — fip except those given by av = fiv, p = vo.

Thus (*) is true of weakly flat functors F. (Actually it characterises them.
Grothendieck-Verdier showed (3, Theorem 8.3.3) that this and indecompos-
ability characterise flat functors.)

Proof of (a)=>(c)
We can use Fountain's lemmas to prove:

Theorem. If^ is perfect then every weakly flat functor F: <#->£ is projective.

Proof. Perfection implies (4) property A: every locally cyclic functor is
cyclic, or in other words every ascending chain of cyclic subfunctors is finite.
Then (following Fountain's numbering of lemmas) :

(2) Every generating set of points of F contains an irredundant generating
set.

For let M be the set of all maximal cyclic subfunctors ^p of F. A generating
set S must include, for each ^p in M, some s such that pe%>s; then

(3) The indecomposable summands of Fare cyclic.

For let 5 be an irredundant generating set. The claim is that ^p, Wq are
disjoint forp^q in S. Indeed, if not, then (*) gives p = vo, q = do, with
^o containing <6p and <6q, contrary to maximality.

The indecomposable summands are, of course, also flat (but we need only
(*), which they evidently inherit).

(5) The indecomposable summands of F are projective.

For this we must recall that perfection implies (4) property D: every
isotropy set has a minimal left ideal generated by an idempotent. (An isotropy
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set, meaning a coset of an identity lx in a left congruence, is (4) simply an
isotropy set in ^(X, X), or left unitary subsemigroup (2).)

Let E be an indecomposable summand of F. E being flat cyclic, of the
form hx/p for some left congruence p, we shall construct an isomorphism with
a projective hxct, where a: X-*X is idempotent. (hx<x(Y) is the subset of
hx( Y) consisting of all elements £a; hx retracts onto hxa. by <j>, where <t>?(£) = &.)
We need to note that when /?p = vp in E(Y), there exists 0: A ^ X in # , p-
equivalent to lx, such that f}9 = v9. For /?(lxp) — v(^xP) a n d (*) y ' e ^
fid = v5 and l xp = <5o for some 8: W-+X and o 6 £(W0. But l xp generates
E, so o is »j(lxP) and we may put 0 = 8r\.

Let B = l xp and let 5a be a minimal left ideal of B generated by idem-
potent a. By Lemma 8.12 of (1), a.B is a minimal right ideal of B. By the
remark above, for each /? in B (since /?p = ccp) there is 6 in B with pd = ad.
So P9BcztxB, <xB = 09B by minimality, and therefore a e JS5.

Define/: hx/p^hxoi by /y(£p) = £a. If £p is equal to tip, then §0 =f/8
for some p in B (by the remark above), so & = £cc since a e /?/?. Evidently
/ i s natural, and surjective. Since (^a)p = < (̂ap) = £(lxp) = ^ p , / i s injective
and (5) is proved.

The theorem follows since F is a coproduct of projectives.
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