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Abstract

In earlier papers (Parts I and II) existence and uniqueness of the solutions to a coupled
pair of nonlinear elliptic partial differential equations with linear boundary conditions
was considered. These equations arise when material is undergoing an exothermic
chemical reaction which is sustained by the diffusion of a reactant. In this paper we
establish the existence of multiple solutions for many different values of the parameters
not considered in the earlier parts. It is shown that the case, also omitted in earlier parts,
with perfect thermal and mass transfer on the boundary (the double-Dirichlet case) does
have a unique solution for sufficiently large values of the exothermicity or an equivalent
parameter. The methods of solution provide specific bounds on the region of existence of
multiple solutions.

1. Introduction

In our two earlier papers (Burnell, Lacey and Wake [1, 2]) we investigated

properties of the steady-state solutions of the equations governing the diffusion of

a reactant which is undergoing an exothermic reaction. In Part I (Burnell, Lacey

and Wake [1]) we showed this involved discussing properties of the solutions of

the equations

V2w + \ (1 + v)e" = 0 infi, (la)

V2v - Aa(l + v)eu = 0 in fi, (lb)
with

du/dn + fiu = 0 on 3fi, (2a)

dv/dn + vv = 0 on 3Q, (2b)
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[2] The reaction-diffusion equations. Ill 89

where S2 c R" is an open bounded set and X, a, /x, v are positive constants, u is a
dimensionless temperature rise over the ambient and 1 + v is a dimensionless
concentration of the diffusing reactant.

In Parts I and II we established the following properties.

THEOREM 1. (1) The equations (1), (2) have at least one solution for all values of
the parameters, except when /x < v = co. For the case /x < v = oo and n < 3 there
exists X* (which depends on a and/i) such that, for X < X*, (1), (2) have at least one
solution; and, for X > X*, (1), (2) have no solutions (this holds for any a and any
H < oo).

(2) For all cases, except when /i < v = oo, the solution to (1), (2) is unique for
sufficiently small values ofX. Further, excluding the case ti = v = oo, the equations
(1), (2) have a unique solution for sufficiently large values ofX.

(3) If n = i> then, for a sufficiently small, there are values of X for which (1), (2)
have at least two solutions.

(4) Except for the case jn < v — oo then, for any solution (u, v) of(\), (2),

(Vx 6 8) -1 < v(x) < 0,

(Vx e fl) 0 < u(x) < I/a, for v < ii,

0 < u(x) < v/afi, for n < v < oo.

(5) If there is an interval (a, b) such that, for X G (a, b), the solution to (1), (2) is
unique, then the solution branch (X,(u(X), v(X))) is a continuous function ofX on
(a, b).

The purpose of this paper is to provide results regarding the multiplicity and
uniqueness of solutions to (1) and (2) for those cases that were omitted in Parts I
and II. Specifically we show that (1), (2) has multiple solutions for all n, v < oo,
when a is sufficiently small, and that the solution of (1), (2) when /J, = v = oo is
unique for sufficiently large X; and for a fixed X, the solution is unique for
sufficiently large a. In the second case the equations (1), (2) are equivalent to a
single nonlinear equation and, in fact, we prove in Section 3 a general uniqueness
result for such an equation. Using the proofs of these results, in Section 5, we can
obtain explicit bounds on the values of X for which multiple solutions exist.

2. Results on multiple solutions

In this section we shall discuss conditions under which the equations (1), (2)
have multiple solutions for some appropriate (fixed) values of the parameters.

Firstly we shall show that when a is small, there are values of X for which there
exist solutions of (1), (2) "near" the minimal solution for the case with a = 0.
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When a = 0, equations (1), (2) reduce to the single equation

V2w + Aeu = 0 infi, (3)

du/dn + nu = 0 on 8S2. (4)

It is well known that the equations (3), (4) have solutions for values of X less than
or equal to some Ao (see for instance Keller and Cohen [3]).

THEOREM 1. Suppose that, for A < Xo, ux is the corresponding minimal solution to
(3), (4). Then there exists a0 > 0 such that, for a < aQ and X < Ao, (1), (2) has a
solution (w, u) with

(Vx e Q) -1 < v(x) < 0,0 < u(x) < ux{x).

PROOF. T O prove this result we shall make use of Schauder's fixed point
theorem. First, define a map T: C(fi) X C(Q) -> C(J2) X C(fi) by

T(u, v) = {XK^Fiu, v)), -XaK,(F(u, v))), (5)

where Ka is the Green's function operator for (-V2, 3/9« + a) and F: C(Q) X
C(S2) -> C(U) is given by

F(u,v)(x)= (1 + v{x))eu(x\ (6)

In Part I of this paper (Burnell, Lacey and Wake [1]) we showed (see Section 2,
Proposition 5) that if («, v) is a fixed point of T then (M, V) is a solution of (1),

(2).

Now suppose X < Xo, then let

D = {(u,v) e C(SS) X C(Q):(Vx e S) 0 < u(x) < ux(x), -1 < u(x)<0}.

For (w, v) G D, let (w, z) = T(u, v). Then since ux = XAr
/1(e"x),

Also, since - 1 < v < 0,

Thus, as /^M is a positive operator,

w - ux < X/s:M(O) = 0,

so

ux.x.
Since (M, u ) e£> , (l + u ) e u > 0 ; hence by the maximum principle, w > 0. There-
fore (Vx G S2), 0 < w(x) < MX(X).
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Also, it is clear that z < 0 and

||z||o = ||Xatf,(F(ii, o))||0 < Xa|K||0||F(W) B) | | o

where ||A",,||0 is the norm of the operator Kr (with respect to the supremum norm
on C(Q)). Now

sup

Hence ||z||0 < Aa||X,||0||e
u»||0. It is known (Keller and Cohen [3]) that if Uo is the

minimal solution of (3), (4) when X = Xo then, for X < Xo, we have ux < Uo.
So, if a0 is chosen so that

then, for a < a0, X < Xo,

Mo < i.
Therefore

( V x e O ) - U z(x) < 0.

This then means that, for a ^ a0 and X < Xo, T(D) c D.
Now, it is clear that D is a closed convex subset of C(Q) X C(fl). Also, using

the known properties of K^ and Kp it is easily shown (see Burnell, Lacey and
Wake [1]) that T is a compact map. Hence the Schauder fixed point theorem
ensures that there exists (u, v) G D such that

T(u,v) = (u,v),

when a < aQ and X < Xo. Consequently, for a <: a0 and X < Xo, there exists a
solution (u, u) of (1), (2) with

(Vxef l ) 0 < u(x) < uA(x),-1 < v(x) < 0 . e .£ .D .

In order to prove that the equations (1), (2) have at least 2 solutions for certain
values of the parameters we make use of properties of the Leray-Schauder degree
and some results from Part I (Burnell, Lacey and Wake [1]). For easy reference we
shall summarise these results here.

THEOREM 2. (1) Suppose X is a normed vector space and D is an open bounded
subset of X containing 0. Further, suppose S: D -* X is a compact map with
0 & (I - S)(dD). Then the Leray-Schauder degree of I — S at 0 on D is an integer
which satisfies:

(a) ifS = 0 then d(I, D, 0) = 1;
(b) ifd(I- S, D, 0) # 0 then there exists x e D such that x - Sx = 0;
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(c) ifH:£>X [0,1] -> X satisfies:
(i) (Vs G [0,1]) H(-, s): D -» X: x -> H{x, s) is compact;
(ii) (Ve > 0)(38 > 0) such that whenever \sx - s2\ < 8,

(Vx G D)\\H(x, Ji) - H(x, s2)\\ < e;

(iii) (Vs G [0,1]) 0 <£ ( / - / / ( - , J ) ) ( 3 ^ ) ,

?/ie/i d(I - H(-,s),D,0) is independent of s G [0. l j ;
(d) IfE c D w closed and 0 £ ( / - S ) ( £ ) tfien

rf(/ - S, D,0) = d(l - S,D\E,0).

(2) / / T is the map defined by (5), and n, v < oo then, for any a > 0 anc? X > 0, 7
is compact and

d(l - T,B{2 + w(a)),0) = 1,

H'/iere

\ p/(a/t), /or/* < v.

and

B(r) = {(w, z) G C(S) X C(5): ||w||0 + ||z||o < r).

(3) Suppose p, v < oo. TAe/i, /or sufficiently large values of X, (1), (2) to a
unique solution («, i>) and for some constant A, independent ofX,

(VJC e Q)(^/jn - ^(\o)"1/2)/« < u{x) < I /a //M > v,

(l-A(Xa)-1/2)v/(an)<u{x)<

In order to define the Leray-Schauder degree of / — T we need to find an open
set D c C(fl) X C(H) with 0 € ( / - r)(3Z)). Further we would like to show that
there is a solution to (1), (2) in D which is different from the solution that exists
as a consequence of Theorem 1. This is the purpose of the next result. For the rest
of this section let ux be the solution to (3), (4) defined in Theorem 1.

PROPOSITION 3. Fix XL so that 0 < X1 < XQ and fix n,v < oo. Then there exist
constants C, alt and a function w such that, for Ax < X and 0 < a < at: whenever
(M, V) is a solution of (I), (2) with

(Vx G fi) Cw(x) < u(x),

we have

(Vx G J2) Cw(x) < u(x)

and

Ikllo < clMlo.

https://doi.org/10.1017/S0334270000004781 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004781


161 The reaction-diffusion equations. Ill 93

PROOF. Here we will only present the proof for the case when ft > v, and will
discuss the case ft < v at the end of this proof.

Choose a nonnegative function / G C2(fl) which has its nonempty support in
Q. Let »v be the unique (positive) solution of

V 2 w + / = 0 inQ, \

-—h fiw = 0 on 3Q. I
an I

Choose C so that it satisfies the inequalities

ft Xj "

and, for Xt < X < Xo,

clHIolkllo- (9)
Since (VX G [Xj, X0])ux < ux on fl, and (Vx G K)H>(X) > 0, it is easily seen that
such a choice of C is possible. Also, choose ax so that, on $2,

axCweCw<\. (10)

Then it follows that

Cw < 1 / V (11)

Now, suppose X > Xj, a e (0, ax] and (M, U) is a solution of (1), (2) with
(Vx G fl) Cw(x) < M(X). Then « = au + v satisfies the equation

V h = 0 in SI, I

-r—h ft/i = (ft — P)I; on 9fl. I
on /

Since (Vx G J2) — 1 s5 v(x) < 0, it follows from the maximum principle that

(Vx G J2) -1 + p / fK A(x) < 0. (13)

Using (1) we then see that <p = u is the unique solution of

V2<p + X(l + A - a<p)e" = 0 inB,

•r1- + ft<p = 0 on o!

We shall now show that Cw is a strict lower solution for the equation (14):

V2(Cw) + X(l + h - aCw)eu = -Cf + X(l + h - a O ) e u

> X[-C//X +(v/n - aiCw)eCw]

> X [ l - l ] = 0 infi.
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Also,

Hence Cw is a strict lower solution for (14). Now

V 2 ( l / « ) + X(l + h - a(l/a))e" = Xheu < 0 in fi,
and

d ( \ ^ + M(l/«) = M/« > 0 on 3fi,

so <p(x) = l / « is an upper solution for (14). It then follows from (11) and the
theory of upper and lower solutions that the unique solution <p = u of (14)
satisfies

(Vx G fi) Cw(x) < u(x) < I/a.

For the case when /x < v the proof is essentially the same. The differences are:

(a) (13) becomes (Vx G fl) 0 < h(x) < »»//i - 1; (13')

(b) (8) becomes eCw - Cf/\x > 1; (8')

(c) <p(x) — "/(up) is used as an upper solution for (14). Q.E.D.
This then leads us to our main result concerning multiple solutions.

THEOREM 4. Suppose p, v < oo and \x e (0, Xo). Then there exists a2 > 0 such
that, for a e (0, a2] and\ e [\lt \ 0 ] , (1),(2) Aay ar feay/ ?»vo distinct solutions.

PROOF. We present the proof for the case when \x > v only, as the proof for the
other case, ft < v, is similar and is left to the reader. Let C, w be as in Proposition
3 ((7), (8) and (9)), and choose a2 so that it satisfies

«2<mm{a o ,a 1 } , \ , .

and(Vxef i ) a2Cw{x) < K"//»). /

where a0 and ax are given in Theorem 1 and Proposition 3 respectively.
Now, by Theorem 2(3), there exists X2> \0 such that (1), (2) has a unique

solution (£/, V) when X = X2 and a = a2, and

\

also (Vx e fi) (p/n - A(\2a2)~
1/2)/a2 > Cw(x).j

(This last inequality follows from (15), by choosing X2 large enough.) Fix
a G (0, a2] and X e [X1} Xo], and set

B= {(u,v) G C(fi) X

(Vx G O)Cw(x) < «(x) < I/a + 1, and -2 < v(x) < l} .
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Now, it is clear that B is an open subset of C( R) X C(fi) and

B= {(u, U ) G C ( f i ) x C ( « ) :

(Vx G fl)Cw(;c) < u(x) < I / a + 1 and -2 < v{x) s£ l } .

Let r be the map defined by (5) and suppose H: B X [0,1] -» C(Q) X C(Q) is the
homotopy given by

H((u, v), 0 = (/ +(1 - t)\i/\)T{u, v).
We shall now show that H satisfies the conditions of Theorem 2(l)(c). First, it is
clear that, for each t G [0,1], H(, t) is compact since T is a compact map (see
Theorem 1 of Section 1). Also as B is a bounded set, there exists a constant M
such that

Hence

(Vr, 5 e [0,1]), (V(«, ») e 5) | |^( (« , u), t) - H((u, u), s)\\0

= \t- s\\l - Xj/Xlimii, o)||0 < M\l -

So, it is easily seen that conditions (i) and (ii) of Theorem 2(l)(c) are satisfied.
Now, as noted in Theorem 1, if (u, v) is a fixed point of T then (u, v) satisfy

(1), (2). Similarly, if H((u, v), t) = («, v) for some / e [0,1] then (w, u) satisfy

V2u+(Xt+(l-t)\2)(l + v)e" = 0 in 0,1

V2u-(X/+(1 -0X2)o(l + u)eu = 0 inO,/

9u/9« +/tu = 0 on3Q,| , .
dn + vv = 0 ondQ.J ^ '

Suppose, for some / G [0,1] and (u, v) e 5, //((«, u), /) = (w, v). Then, since
A/ + (1 - /)X2

 e [Xj, X2] and

(Vx e S) CW(x) < «(x),

it follows from Proposition 3 that

(Vx G fi) Ctv(x) < u(x).

Also, by Section 1, Theorem 1(4),

(Vx G Q) u(x) < I / a , -1 < o(x) < 0.
Hence ( M , U ) G B.

Consequently, we see that, for t G [0,1],

So, the conditions of Theorem 2(l)(c) are satisfied. Therefore

H{-,l),B,0)
H(0)B0) K ]
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Now, for(u, v) e B,

H((u, v),0) = (A2/^((l + v)e"), -\2aKv{(\ + v)eu)).

So the fixed points of H(-,0) are the solutions of (1), (2) with A = A2- Then it
follows from (16) and Theorem 1(4) that (U, V) e B. Also, by Theorem 2(l)(d),
(2),

and, so, by Theorem 3(l)(b), there exists (uu vx) e B which satisfy equation (1),
(2).

Since a2 < a0 and A < Ao, it follows from Theorem 1 that there exists a
solution (u2, v2) of (1), (2) such that

Then, as (ux, vx) e B, it follows from (9) that

Hence ux =£ u2 and (uu vx) and (w2, v2) are distinct solutions of (1), (2). Q.E.D.

3. Uniqueness of solutions for large A

As stated in Section 1, Theorem 1, we investigated in Part II (Burnell, Lacey
and Wake [2]) situations for which the equations (1), (2) will have a unique
solution. Since completing that paper we have succeeded in extending the results
given there. It is the purpose of the next two sections to look at these extensions.
In particular we shall prove that if fi = v = oo then (1), (2) have a unique solution
for sufficiently large values of A; and if a is large enough then (1), (2) will have a
unique solution for all values of the other parameters except when fi < v = oo.

Firstly we shall look at the case when /x = v = oo. Here we see that the
harmonic function h = au + v is zero and (1), (2) reduce to the single equation

V2« + A(l — au)eu = 0 inS
u — 0 on 9fi.;

In fact we shall consider the more general equation

M = 0 on 3J2,
where/: R -» R: t -» (1 - t)g(t) and g: R -> R satisfies

(a) Oft e [0,1])1 > g(t) > Y0 > 0,
(b) g is a C2 function.
( c ) ( V ( G R ) g ( 0 > 0 .
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Now, it follows easily from the maximum principle that any solution of (21), u
say, satisfies

(V^ G Q) 0 < u ( x ) < l .

Further, u = 0 and u(x) = 1 are lower and upper solutions of (21) respectively;
hence, for any X > 0, (21) has at least one solution. The first step in showing that
(21) has a unique solution for sufficiently large values of X is to find bounds on
the solution of (21) when X is large. For this purpose, we require properties of the
solution of the following initial value problem,

z"+/ (z ) = 0 on(0, oo),

z(0) = 0, z'(0) = It f1 *t*\* l (22)

PROPOSITION 1. Equation (22) has a unique solution z, and (Vs e [ 0, oo) )

1 - exp(- /^s) < z(s) < 1.

PROOF. NOW, (22) has at most one solution. Suppose (22) has a solution z; then

'/. (23)
•'o

If there exists sx e (0, oo) for which z(st) = 1 then (from (23)) z'(sx) = 0. Hence,
on [0, s j , z satisfies

z{Sl) = 1, z'(Sl) = 0;

but the function zx(s) = 1 is the unique solution of this equation. It then follows
from (23) that z'(s) > 0 on (0, oo), and so we must have

(Vse [0, oo)) 0 < z ( s ) < 1.

This then means that (22) is equivalent to the problem

z " + / i ( * ) = 0 on(0, oo),

z(0) = 0, z'(0) =

where / i is a suitable bounded function which agrees w i t h / o n [0,1]. And, from
the theory of ordinary differential equations, we know that this problem has a
solution defined on [0, oo).

Thus we have shown that (22) has a unique solution z which satisfies (Vs e
[ 0, oo) ) 0 < z(s) < 1. Therefore, (Vs e (0, oo)) z"(s) < 0; so z' is decreasing on
(0, oo). Clearly this means that z ' ( s ) - » 0 a s s - » o o . It then follows from (23) that
z(s) -* 1 a s s -» oo.
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Consider the boundary-value problem

) = 0 in (0,oo),

<p(0) = 0, <p(s) -» 1 a s s - > o o ;

clearly <p = z is the unique solution of this problem. If we take the function
<PiO) = 1 - exp(- fos) then

<PV +(1 - <p,)g(z) = (-y0 + s(?))exp(-/ft-e) > 0
and

^(O) = 0, <Pi(s) -» 1 ass -* 00.
Hence (^ is a lower solution for this problem. Similarly <p2(s) = 1 is an upper
solution; therefore we must have

(V* e [0, 00)) 1 - exp(-/yb J ) < z(s) < 1. fi.E.D.

Now 3fi is of class C2+o, hence 3S2 satisfies a uniform interior sphere condition.
That is, there exists p > 0 such that, for each x e 9fi, there is an open ball of
radius p, Bx, such that Bx c Q and x G 35X. Then we have:

THEOREM 2. Suppose u is a solution of (21); then there exist constants A, B such
that, for \ sufficiently large,

1 - exp(-v4X1/2) < u(x) < 1 when d(x, 3fl) > p/2,

/ (X^V) " B/\1/2 < u(x) < z(\1 /2y) + 5/X1/2 wAe«^ = d(x, 3Q) < p/2,
where z is the unique solution of (22) a«J rf(jc, 3fi) is the distance from x to the
boundary 3fi.

PROOF. The theorem is proved by constructing suitable upper and lower
solutions for the equation

V2<p + M l " <p)g(») = 0 in 0 ,
on3fi

\

where u is a solution of (21).
Choose k > 0 so that the solution w of

V2w + k = 0 mil,
w = 0 on 3fl,

satisfies (Vx e J2) |VW(JC) | < Yo/2- Let us now show that ul = 1 — exp[-X1/2w]
is a lower solution for (24) for X sufficiently large:

v/Xg(«)]

> 0
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if \/X > 2k/y0. Also Uj = 0 on 3fi; hence ux is a lower solution for (24) if

X > 4k2/yl
Now, u2(x) = 1 is an upper solution for (24) and (Vx e fl) M^X) < M2(;C)-

Therefore (24) has a solution <p which satisfies (Vx e fi) u^x) < <p(x) < 1, if
X > 4k2/y£. Since <p = w is the unique solution of (24), we find that, for
X > 4k2/y2,

(Vx e 5) 1 - exp(-X1/2w(x)) < u(x) < 1.

If Q' = {x G Q: rf(x, 3J2) > p/2} then B' is closed and bounded. Also, it
follows from the maximum principle that there exists a constant A such that

(Vx e fl) w(x) >A > 0.

Thus, when X > 4k1/yl,

1 - exp(-,4X1/2) < «(x) < 1 if d(x,dQ)>p/2. (25)

Now, let us find upper and lower solutions which allow us to show that the
second inequality holds. Let Tfi = {x e fi: d(x, 9fl) < p/2}; then Tp is open and
bounded. We define a function w on 7p as follows:

We then see that on Tp,

V2w(x) = Xz"(X1/2y) + Xl'2(v • T))Z'(X1/2>'), (26)

where y = d(x, 3Q) and TJ is the unit normal vector to the surface {y: d(y, 3S2) =
d(x, 3fi)}. Since 38 is of class C2 + o there exists a constant M such that

We now show that the function w(x) — B/Xl/2 is a lower solution for the
equation

vV + M i - » ) * ( « ) - o mr | (2?)

if X is sufficiently large.
Using properties of z from Proposition 1 we have, on Tp,

V2(w - J5/X1/2) +X(l - ( t v -

= Xz"(Xx/V)+X1/2(v

X1/2[-X1/2exp(-(YoX)1/2
7)|g(«) - g{z(\l/2y))\ ~ Mz'(Q) + By0}.
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Now, since g(u) — g(z(X1/2y)) is a bounded function of x and, when y =
d(x, 3J2) = 0, g(u) - g(z(X1/2y)) = 0, it follows that there exists a constant MY

with X1/2exp(-(Yo*)1/2>')|g(") - g(z(X/2y))\ < Mx for sufficiently large X and
for x G Tp. Thus if B = ( 3 ^ + Mz'(0))/y0 then for X sufficiently large,

V2(H> - B/X1'2) +X(l - ( w - 5/Xx/2))g(w) > 0 on rp.

Also, when x e 37^ we either have
(a) d(x, 8fi) = 0 in which case w(x) - B/X1/2 = z(0) - 5/X1/2 = -5/X1/2 <

u(x), since u > 0 on fl; or
(b) ^/(x, 9fl) = p/2 in which case, if tf/V4*'2 < B and X > 4A:2/y0

2,

< 1 - 5/X1/2 by Proposition 1

^u(x) by (25).

Therefore, when X is sufficiently large, w — B/X1/2 is a lower solution for (27).
A similar argument shows that the function w(x) + B/Xl/2 is an upper solution

for (27) when X is sufficiently large. Consequently, the unique solution <p = u of
(27) must satisfy

(Vx e rp) ^(X1/^) - 5/X1/2 < «(JC) < z(Xl/2y) + B/X^2, (28)

wherej> = d{x, 9fl). Q.E.D.
We shall later require the following result. For the rest of this paper we shall let

z be the unique solution of (22).

LEMMA 3. Suppose \p is the unique solution of

+ /'(z(j)H = 0, *e(0,oo),.

= 0, *'(0) = 1.

77I<?H /ftere exwrj X > 0 and II1 <

> X)f'(z(s)) < n^

PROOF. Firstly, the unique solution of (29) is

f f
o z'{tf
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Also, using (22), (23) and Proposition 1

C f{t)dt

Hence

Accordingly, using L'Hopital's rule on the above gives that \p(s) -» oo as s -» oo.
The result then follows from the properties of z given in Proposition 1. Q.E.D.

The approach that we now take is to assume that (21) does not have a unique
solution for some value of A, and to then show that this leads to a contradiction if
\ is sufficiently large. If (21) does not have a unique solution then the minimal
and maximal solutions of (21), um and uM respectively must satisfy (see Keller
and Cohen [3])

(Vxefl) um(x)<uM(x).

Since V2(ww - um) + \[f(uM) - / ( « „ ) ] = 0, it follows from the mean value
theorem that there exists a function »v0 such that:

(a) (VJC G Q) um(x) < wQ(x) < uM(x);
(b) the function/'(w0) is continuous;
(c) there is a positive function q> which satisfies

V2<p + AT( "0)9 = 0 infi,
<JP = 0 on 3R,

Now, for X sufficiently large and s e (0, A'], the open set Qs= {^ef l :
d(x, 3fi) > s/\l/2} has a C2 + o boundary Ss = {x e Q: d(x, 3fi) = s/\1/2}. Then
define a function /: [0, A'] -» R by

Js,

where ep is a positive solution of (30) and A'is as found in Lemma 3. The function

/ then satisfies the differential equation given in the following Proposition.

P R O P O S I T I O N 4. If\ is sufficiently large then I is a C 2 function and

where a2 is a Cl function. Further, there exist constants Au A2 (independent of\)
such that
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PROOF. NOW, for s e [0, X] and x e Ss, let n(x) denote the unit normal vector
to the surface Ss at the point x. Since Ss is of class C2+o, the function n is of class
C2 + o. Then n can be extended to the whole of Q so that it remains a C2 + o

function. Consequently, making use of the various forms of the divergence
theorem, we have:

I(s) = ( (<pn • n) dSJs,

= / V -(<Pn) dx

= / [( V<p) • n + <p( v • n)] dx.

Then, using the fact that, on Ss, s = \l/2d(x, 3fi),

dl d

•'s, 9w Js,

Also, using (30), and the divergence theorem again

2 [ [ v<p • n + <p( v • n)] dS
Js,

/ ^dS - \~W f q>( V • n) dS. (31)
Jr Oft Ja

=f V2<pdx=f -\f'(wo)vdx, (32)
Ja, JQ,

and so by considering fs (3<p/9/i) dS — fs (3<p/3«) dS we obtain

d

Therefore using (31) we obtain

= - / /'(v

Since (VJC e fl) 0 < «m(^c) < wo(x) < WW(JC) < 1, f'(wQ) is bounded on fl. In
particular, for s e (0, X], there exist ocj, x2, ^ 5, such that

Thus, since <p is positive on fl, we have, for s > 0,

f Jf /'(^)9>««)/(jf
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If X is sufficiently large then Theorem 2 holds and for x e Ss, d(x, 8fi) = s/\l/2

< p/2. Since um(x) and uM(x) satisfy (28),

z(s) - B/X1'2 < wo(x) < z(s) + B/X1'2.

Consequently, as / " is bounded on [0,1], there exists a constant A1 such that, for
i = l ,2 ,

\f'('(s))-f'(wo(x,))\<A1A
1/2.

Let a1(s) = X1/2(fsf'(w0)<pdS/(fSi<pdS)-f'(z(sm then \Ol(s)\ ^ A, and
a! is a C1 function. Then fStf'(w0)<p dS = [f'(z(s)) + a^s)^2]!^). Similar
arguments show that

<p(v -n)dS.= a2(s)l(s),

where a2 is a C1 function and, for j G (0, X]

\a2(s)\^A2

(A2 is independent of X). Therefore

(/'(*(*)) + ̂ (^A 1 7 2 ) / = o, 5 <= (o, A-).

£>.£.£>.
Now, if <p is a solution of (30) which is positive on SI then the above result

shows that /'(0) > 0. Hence, it is possible to choose such a <p so that / satisfies the
differential equation of Proposition 4 with

7(0) = 0, /'(0) = 1,

and further, (Vs > 0) I(s) > 0.

LEMMA 5. Suppose X is sufficiently large and I is the unique solution of the
differential equation in Proposition 4 with the initial conditions

7(0) = 0, /'(0) = 1.

Then, there exist constants T, Tl (independent ofX) such that

I'(s) < IV

PROOF. NOW, I satisfies the integro-differential equation

f +{a2(s)/Jx)l(s) = -f\f'(z(t)) + ai(t)/JX)l(t) dt + 1 (33)

with 7(0) = 0. Since 0 < z < 1 on R, there exists a constant Mx > 1 such that

(VseR) \f'{z{s))\<Mx.
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We now show that, for \ sufficiently large,

(V* G [0, X]) 0 < I{s) < e"1"

where mx = (1 + ft + 4M1 )/2.
Let 7,(.y) = em'J, since m\ - mx - (1 + AfJ = 0 we have

/,' - 7, = (1 + M.) f I.(t) dt + mx - 1
Jo

also

7,(0) = 1

and

7f (0) = W l > 2.

Consequently 7j(s) > 7(j) for s in some neighbourhood of 0. Suppose there exists
a point S e (0, A'] such that

(V*e[0 , ) ) l{s)<I1(s) and 7(5) = 71(S);

then, since 7(s) > 0 for J e (0, A"], 7'(5) > 7{(5). However, from (33), if \ is
sufficiently large,

( 0 dt

[S(Ml + ><1/A')71(0 <// + mx - 1
•'o

I^S) +(M1 + 1) /"^(O dt + m1 - 1

This contradiction means that

The first inequality in the lemma follows by taking T = exp(m1^f). The second
inequality can then be easily derived from (33). Q. E. D.

Using these last three results we can show that the function I tends to the
solution of (29) as \ -» oo. In particular we have:

PROPOSITION 6. There exists a constant L > 0 such that, for \ sufficiently large,
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PROOF. From (29) and (33) we see that, for X sufficiently large,

(34)
{i()/J)() dt

o
- {

with iKO) - -f(O) = 0.
Letting J = $ - I and Jt(s) = ( M / ̂ JXM1) expi^fM^s), where M =

(A2 + X4t)F and Ml is an upper bound for \f'(z)\ as given in Lemma 6, similar
arguments to those of Lemma 5 show that, for X sufficiently large

(Vse[0, X]) Jis)^^).

Therefore J(s) -* 0 uniformly on [0, X] as X -> oo; and so I(s) -» ̂ ( J ) uni-
formly on [0, A'] as X -* oo.

Using this and the boundedness of ax, a2 and /, it follows from (34) that

f(*)-»^(«) asX-oo.
From Lemma 3 we have (d\p/ds)(X) > 0; so for X sufficiently large

Q.E.D.

We shall use the equation that q> satisfies and the inequalities of Theorem 2 to
show that (dI/ds)(X) -» / as X -» oo and / < 0.

Now, suppose x e £ix
 a n ^ d(x, 3fi) = s/X1/2 < p/2; then, by Theorem 2 and

the definition of w0, |2(j) - wo(x)| < B/X1/2. Since z([JT, oo)) c (0,1) and / ' is
continuous, it follows that there exists S > 0 such that

(V* e [X, oo)) |z(r) - r| < 6 =» \f'(z(t)) - f'{r)\ < U./2.

In particular (W e [A', oo)) \z(t) - r\ < 8 => f\r) < 0. So, if X is sufficiently
large then \z(s) — wo(x)\ < 8 and f'(wo(x)) < 0. That is, for X sufficiently large,
if x e Q,x with d(x, 3B) < p/2 then/'(wo(^)) < 0.

It follows from Theorem 2 that, for x e fl^-with d(x, 9fi) > p/2, we have

1 - exp(-v4X1/2) < wo(x) < 1.

Since / '(I) < 0, it follows that for X sufficiently large we have, for any x e Q,x
with d(x, 9S2) > p/2,

f'(wQ(x)) < 0.

Consequently we see that for X sufficiently large,

(Vxen*) f'(wo(x))<0.

Therefore, by (32),

f ^dS = -
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and by (31)

^ ^(X) - f v(vn)dS

Consequently, we either have
(a) for sufficiently large X, (di/ds)(X) < 0; or
(b) (dI/ds)(X) -> 0 as X -> 00.

In either case we have a contradiction of the result in Proposition 6.
Hence the assumption that (21) has at least two solutions for arbitrarily large

values of X was false. That is (21) has a unique solution for sufficiently large X.

4. Uniqueness of solutions for large a

In this section we shall show that the equations (1), (2) have a unique solution
for all values of X if a is large enough. Of course we have to exclude the case
H < v = oo, since we showed in Part II (Burnell, Lacey and Wake [2]) that (1), (2)
always has multiple solutions for any value of a, if ft < v = oo and n -' 1.

Firstly we note that (1), (2) have a solution if and only if the equations

V2v - Xa(l + v)e
(1/a)(h-v'> = 0 in £2,

dv (35)
•r— + vv = 0 on 3B,
on

V2h=0 in Q,
3* , / . „ (36)
— + /XAI = (/i — v)v on oil,

have a solution. This follows since (u, v) satisfy (1), (2) if and only if (v, au + v)
satisfy (35), (36). Thus we need only show that (35), (36) has a unique solution for
a sufficiently large.

Define a map 5: C(B) X C(fi) -» C(S2) X C(J2) as follows: S(v, h) = («', A')
where v', h' are the unique solutions of the equations

V V - Xav' = Xa(l + v)eV/«W-») - \ a v m B,

-r 1- »>»' = 0 on 3J2,

and

V2A' = 0 infi,
dh' , »
-r 1- u/i' = (u — »»)(;' on 3i2,
3n v '
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respectively. Clearly (i>, h) is a fixed point of S if and only if (v, h) is a solution
of (35), (36). Further, it follows from Section 1, Theorem 1 and the maximum
principle that if (v, h) is a fixed point of S then

(Vx e Q) -1 < v(x) < 0,

0 < h(x) < v/p - 1 iffKr,

-1 + p//i < h(x) < 0 iffi^v.
We prove that (1), (2) have a unique solution for large a by showing that two

fixed points of S must satisfy a certain inequality. We derive this inequality from
the following result.

PROPOSITION 1. There exists a constant A {independent of\, a) such that if:
(a)a> max{l, v/n}; _
(b) vx, v2, hx, h2 G C(Q) and, for i = 1,2,

( V X G S ) -1 < W,(JC) < 0,

0 < /!,(*) < v/n - 1 ifn<v,
-1 + i>/p^h,(x) **0 ifix^v.

and
(c) K , h[) = 5(Dl, Ax), («J, h'2) = S(w2, A2);

IK - "ilo + 11*2 " *2||o < ( V « ) ^ [ K - «2llo + 11*1 " *2llo] •

PROOF. NOW, from the definition of S we have

V2{v\-v2)-\a{v'x-v'2)

where | is a function with £(x) lying between
(l/aX*2(Jf) - v2(x)), for aU x G fi. Since, for i = 1,2, (l/a)(A, - i>,) < y/o/i if

fi < v, and (1/aX/i, — i>(.) < I / a if /* > v, we have

+ vx)e\hx -h2 + v2- vx) +(vx - v2)(e^"^-^ - 1)]\

|1 + vx\et{\hx - H2\ +\v2 - vx\)+\vx - ^ l l e d / - * * , - , ) - i | }

< \a{{\/a)e^\\hx - A2||0 + ( ( l / « ) e " + \e* - \\)\\vx - «2 | | 0} ,

where )3 = max{l/a, »»/a/t}-
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Noting that \ep - 1| < 0 + (f!2/2)eP, and applying the maximum principle we
see that

IK - oiio < (1A«)(X«{(V«)^||A1 - A2||o

+ {(l/a)e' + fi+{

elA1 - A2||o + ( ( V « ) ^ + P +{P2/2)e')\\vl - o2\\0.
Also,

V2{h[-h'2) = 0 inO,

^w + ^h[ ~ ̂  = (M ~ " ^ ~ "^ ° n 9

where we note that if v < /t = 00 this boundary condition becomes

h[ - h'2 = «i - v'2 on 30.

Hence it follows from the maximum principle that

where /(/x, v) = |JU - »>|/ju if /x < 00, and /(pt, »>) = 1 if /t = 00. Consequently

< (1 + /(/i, " ) ) ( ( 1 / « V + /3 +(jB2/2)^)[||A1 - A2||0
Since a > max{l, v/\i), we have if ft > v,

and if 1̂ < v,

Therefore the result follows by taking

THEOREM 2. / / a « sufficiently large then (1), (2) Aaue a unique solution for all
values ofX.

PROOF. Let A be as given in Proposition 1; and suppose a > max{l, v/p, A).
If (MJ, UJ), (U2, V2) are solutions of (1), (2) for this value of a and any value of A

https://doi.org/10.1017/S0334270000004781 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004781


122 ] The reaction-diffusion equations. Il l 109

then («! , /jj), (v2, h2) are fixed points of 5, where hx = aux + vx, h2 = au2 + v2.
Therefore, by Proposition 1,

11*1 ~ *2«0 + ll«l - »2llo < ( V « M [ l k " "2II0 +11*1 " *2llo]

Clearly this inequahty can only be satisfied if vY — v2 and h1 = h2, and hence
«! = u2. Consequently (1), (2) has a unique solution for any value of X if
a > max{l, v/p, A). Q.E.D.

5. Bounds on the region of multiplicity

Implicit in all the proofs of these results on the uniqueness and nonuniqueness
of solutions of (1), (2), given here and in Part II (Burnell, Lacey and Wake [2]),
are estimates of the range of values of X and a for which (1), (2) has multiple
solutions. Here we shall state the results that follow from these proofs. Unfor-
tunately, these estimates are rather crude as we made no effort in the proofs to
find the best values of the parameters above (or below) which there is a unique (or
multiple) solution. However we felt that it would be useful to record all these
estimates. Once again we exclude the case /x < v = 00.

For any value of a let Xb be the infimum of the set of values of X for which (1),
(2) has at least two solutions; and let X6 denote the supremum of this set. Also, let
K^, Kv be the maps defined in Section 2, Theorem 1, and ||A"J0, | |^F| |0 be their
operator norms.

THEOREM 1. (a) Xfc > e-1/a/(ll#,Jlo + «ll*,llo)-
(b) ///1 = v then \b > e^ /VHI /g io ) .
(c) If a is sufficiently small then

\ h < cxp{-(p//i + p7/i2 - 4av/n )/2a) -H ,
v/H - iv2/y} - Aav/y, V V > >\\™\\o

where f: fl —» R is a C1 function with support in Q and w is the unique solution of
V 2w + f = 0 in n, dw/dn + pw = 0 on 3J2.

(d) / /X o is the supremum of the set of values of X for which the equation

has a solution and a is sufficiently small, then Xb > Xo.
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(e) If a is sufficiently small then

4(2- \
— « ^ f l d l H ) 2 ) )

1/k = 0 in
Wj = 0 on 3fl,

with k > 1 WIIVWjHo < 1, A =
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