
THE DISTRIBUTION OF PRIMITIVE ROOTS 

P. D. T. A. ELLIOTT 

Notation, p and q are generic symbols for prime numbers. 
N(H, p) denotes the number of primes q, not exceeding Hy which are 

primitive roots (modp). 
g(p) denotes the least positive primitive root (mod^) . 
g*(p) is the least prime primitive root (mod p). 
v(m) denotes the number of distinct prime divisors of the integer m. 
rk(m) is the number of ways of representing the integer m as the product of 

k integers, order being important. 
7r(x, k, r) is the number of primes p, not exceeding x, which satisfy 

p = r (mod k) ; while ir(x) denotes the total number of p ^ x. 
logm x denotes the rath iterated logarithmic function which is defined, when 

possible, by 

logmx = log(logm_ix), m = 1, 2, . . . , logox = x. 

[y] denotes the greatest integer not exceeding y. 
{n ; . . . ) is the set of integers n which have the property . . . , and 
Card(w; . . .) denotes its cardinality. 
A, B, C will denote either sets, or sequences of integers. Occasionally, they 

will denote constants. For any real value of x, A (x) denotes the number of 
integers in the sequence A which do not exceed x. 

Ci, c2, . . . will denote positive constants, and usually they will be absolute. 
I t will be convenient to renumber constants from time to time. 

1. Introduction. In a recent paper of Burgess and Elliott (6) it was shown 
that g{p) is on average O((log p)2+e) for any fixed e > 0. Our aim is to investi
gate more closely the distribution of primitive roots to the various moduli. 
We essentially prove two theorems, and consider these in turn, beginning with 
the study of the function N(H, p) introduced earlier. 

A natural estimate for N(H, p) is suggested by the following argument: 
Let T be the group of reduced residue classes (mod p)> and for each divisor 

d of (p — 1) let Td denote the subgroup consisting of those classes which are 
dth-powers. There is a natural homomorphism of the ring of integers onto the 
group T, and so onto the group T/Td. For at any rate large values of H it 
seems reasonable to expect that the primes q ^ H are equidistributed in the 
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classes T/Yd. In terms of indices to a fixed primitive root (mod p) we write 

Card(q; q ^ H, d\ind q) ~ T{H)/<1. 

Thus, we see that it is likely that 

N{H, p) = £ M(^) Card (q;q^H, d\ind q) 

<*|Q>-1) # p — 1 

In order to consider N(H, p), it is in fact more convenient to use Selberg's 
sieve method. Moreover, we can only prove the distribution for almost all (in a 
certain sense) prime moduli. More exactly, we prove the following theorem. 

THEOREM 1. Let e and B be arbitrary positive constants. Then there is a set of 
primes E, and a positive constant F = F(e, B), so that for all p not in E the 
estimate 

holds uniformly for 
H ^ exp(F\og2plogsp). 

Moreover, the sequence E satisfies 

E(x) = <9(xe) 
for all large values of x. 

We can vary our conditions on H and E so as to lay more emphasis on 
obtaining a "thin" set E. For example, we have the following result. 

THEOREM 2. If we demand that the estimate for N(H, p) in Theorem 1 holds in 
the range H ^ pe, then we can find a positive constant G such that 

E(x) = 0((logx)G). 

I t seems very likely that in the second of these results the set E is actually 
empty. In particular, there is a long-standing conjecture that 

giP) = 0(p€) 

for any fixed e > 0. The first non-trivial estimate in this direction was that of 
I. M. Vinogradov (see 18), who obtained 

g(p) =O(p 1 / 2 +0, e>0. 

This exponent was improved by Burgess (5) to | + e, which is the best to date. 
There is, on the other hand, a famous conjecture of Artin (2) concerning 

those primes for which a given integer a is a primitive root. In particular, he 
conjectured that the number of primes not exceeding x for which 2 is a primitive 
root is 

(1 + O(1))AT(X) ( X - > O O ) , 
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where the constant A (known as Artin's constant) is defined by 

A modified constant is suggested for a general integer a. I t was shown by 
Hooley (16) that this conjecture is certainly satisfied if a hypothesis of 
Riemann type concerning abelian algebraic number fields is satisfied. 

By also using a form of extended Riemann hypothesis, namely that certain 
L-series formed with Dirichlet characters have all their zeros in the critical 
strip on the line s = \, but by an altogether different method, Ankeny (1) 
showed that 

g*(p) â cx(2*<*-» log p log(2"«,-1>log p))\ 

This was later improved by Wang (22) to 

g(p) èc2v(p - l)Hog*p. 

I t seems reasonable from these remarks to conjecture that g*(p) = 2 
infinitely often. The result of Burgess and Elliott (6) shows that a result of this 
type is true if we demand only that 

g*(p) = 0 ( ( l o g £)'+«), € > 0 . 

Our second main aim will be to improve this to the unconditional. 

THEOREM 3. For infinitely many primes p the inequality 

g*(p)<i75(logp)^ 
is satisfied. 

I t will be convenient to prove somewhat more. Let a be a real number 
satisfying 0 < a < 1. Then for each x ^ 3 we define 

Ta(x) = (p;p g x, q\(p — 1) => q = 2 or q > x"). 

It is well known that for certain values of a we can find a constant D > 0 so 
that 

CardT«(x) > x(log x)~D. 

A result of this type was first proved by Rényi (21). For our present purposes 
we do not need explicit values. However, we can appeal to the recent result of 
Halberstam, Jurkat, and Richert (15). By using a result of Bombieri (4), they 
showed that one may take the values a = \ — e, D = 2 + e; see (15, 
Theorem 1). Indeed, they showed slightly more. By a system of Ta(x) we shall 
understand an infinite sequence of values of x, which are unbounded, so that 
Ta(x) exists for each value of x, but with the same values of a and D. 

THEOREM 4. Let a be associated with a system of Ta(x). Then the inequality 

lim inf g*(p)(log £)-2/(1+"> ^ ( | [ j ] 2 ) 2 ^ * 
is satisfied. 
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COROLLARY. For any e > 0 the inequality 

g*(P) < (log£)8/5+< 

is satisfied infinitely often. 

The above corollary is obtained by using the values of a. and D mentioned 
earlier. We would obtain Theorem 3 if we could choose a = J, for then 

(12&T1)8/5 = 475-97 

We shall show that we can effectively do this. 
Finally, we note that the proofs of these theorems depend upon the large 

sieve in certain forms. We shall need to augment this in various ways, and it will 
sometimes be applied more than once in the same problem. We confine our
selves here to the remark that in the proof of Theorem 3 we use the sequence 

Large Sieve (Bombieri) —» Small Sieve (Halberstam, 
Richert, Jurkat) —* Large Sieve, 

each of these steps being intrinsic in the method. We operate upon the sequence 
of primes, and consider g*(p) rather than g(p), since this leads to simpler and 
stronger results. More general problems can be dealt with by the methods 
given. 

My thanks are due to the referee whose comments enabled certain details to 
be simplified, and for his short proof of Lemma 10, which is given. 

2. Various l emmas . 

LEMMA 1. Let #i, a2, . . . be a sequence of complex numbers. Then we have the 
inequality 

I I 2 

]E Z) 11 0nx(») S cz(x2 + H)Y1 \an\
2
y 

vSx x̂ XO (mod v) I n^H I n^H 

where x runs over all non-principal characters (mod p). 

Proof. This result follows from any of the well-known forms of the large 
sieve. A short proof is given in (11). 

LEMMA 2. Let {fia,v) be a double sequence of real numbers satisfying 

0 ^ pdtV S 4>{d)-K 

Let 

d>i d 

Z) xa(q) 

where x& runs through all characters (mod p) which are of order d. Furthermore, 
we set 

pip) = E i-
tfl(p-i); 

~i,p>0 
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and for real X > 0, R > 0, x ^ 3, 

S = S(\,R) = (P;P S x,P(p) <R,TP> X-^(H)). 

Then if 2 ^ H ^ x2, the inequality 

Carde < J i ^ l L ^ ' J 
^ r ^ = C\logH/ 6 X P 1 log H ) 

is satisfied. 

Proof. Lemma 2 has been proved by Burgess and Elliott (6, Lemma 2), 
under the condition 2 S H S x1/2. The same proof deals with the cases 
2 ^ H ^x2. 

LEMMA 3. Let a±y a%, . . . be complex numbers, and let x ^ 2, L ^ 2 hold. 
Then in terms of the Legendre symbol, the inequality 

] £ 4 ? ^ 4 x X)Z) l<W*„| +CHLlogL( 2 ] K | ) ) 

is satisfied. 

Proof. This result essentially replaces the factor (x2 + £ ) of Lemma 1 by 
(x + L2 log Z/) for the particular character in question, and hence enables us 
to deal with it more effectively. For a proof of Lemma 3 and various generaliz
ations, we refer the reader to (9). We need this lemma for Theorems 3 and 4 
only. 

LEMMA 4. Let a±, a2,. .., aN be a sequence of positive integers, and let q±, . . . , qs 

be a sequence of primes which satisfy 

Qi < #2 < . . . < qs S y, qi . . . qs = Q, 

for a real number y. Let f(d) be a multiplicative function of d, satisfying 

p/f(p) = 0(1) 

uniformly for all primes p, so that if d\Q, then 

Card (a,; an s 0 (mod d)) = N/f(d) + Rd, 

where Rd may depend upon N. Define I(N, y) to be the number of members an of 
the sequence which are not divisible by any of the primes qjm Then we have (for any 
z ^ y and e > 0) the estimate 

I(N,y) = JVJJ ( l - ^ ) [ 1 + 0 (exp ( - C 5 logs/logy))] 

+ 0 ( ( I o g S r Z r , ( d ) | ^ | ) . 
d\Q 

Proof. This result proves valuable in the probabilistic theory of numbers, 
and has become known as the first fundamental lemma. I t is derivable from any 
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of the local sieve methods, and in particular from that of A. Selberg (for an 
account of his method, see Halberstam and Roth (14)). I t is possible to 
improve the term A = log z/log y to A log A, and this would lead to a marginal 
weakening of the lower bound on H needed in Theorem 1. To do this would 
introduce complications however, therefore we use the more readily obtainable 
result stated above. A detailed proof was given by Barban (3), and under 
slightly stronger conditions, by Kubilius (17, Lemma 4). 

We shall use Lemma 4 in the proof of Theorems 1 and 2. For the remaining 
theorems we need a stronger form of the sieve result, and for completeness we 
define some functions anew. 

From the previous lemma we keep the notation 

# 1 , (22, • . . , %-, 

for a sequence of positive integers. For each positive integer k, and each real 
value of z satisfying z ^ 2 we set 

PM = n p-
P<z\ 
PU 

Let y(d) be a function (corresponding to d/f(d) in Lemma 5) which is 
multiplicative, and which satisfies the following four conditions: 

(i) 1 S y(P) <P,(Ptk); 
00 T,p**(y(P) - l)/P = 0(l/logz); 

(hi) there is a function rj (x, d) ^ 0 defined for x > 1, and a real number 
X > 1, such that 

Can!(a»;a» s= 0(mod^)) - ^-X £ri(X,d) if (d,k) = 1; 

(iv) There is a constant a satisfying 0 < a ^ 1, and for each real number 
U > 15/14 a function /3(X) satisfying 0 < p(X) = O((logx)1/2) so that the 
inequality 

£ M2(<Z)3'% (X, d) = 0(X(hgX)-u) 

is satisfied. We can then state the following lemma. 

LEMMA 5. Let 

P<Z,PU \ V / 

and let Sk (z) denote the number of integers a t which are prime to Pk (z). Define 
cc(u), p(u) to be the solutions of the differential difference equations 

<a(u) = u~\ p(u) = 1, (0 < u ^ 2), 

(uœ(u)Y = co(u — 1), (u — l)p'(tt) = — pin — 1), (u à 2). 
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Then we can find a constant c > 0, and a real function f, so that the inequality 

Sk(z) ( l ogZ\ log log 3£ 
Zr,(S)= /ValogZ/-C(logZ)1^ 

holds for all z ^ X. In particular, we can take 

f(u) = er(a>(u) - urlp(u)), 

where y denotes Euler's constant. This function is weakly increasing in u, and 
satisfies 

(O if0<u^2y 

f(u) = < opy 

Y^\og(u-l) if2<u^3. 
Proof. This result is one half of (15, Theorem 1). No details are given in that 

paper, but they are to appear in a monograph by Halberstam and Richert (13) 
dealing with sieve methods. 

LEMMA 6 {Siegel-Walfisz). Let a number A > 0 be given. Then there is a 
positive constant c = c(A), so that the estimate 

Hx,k,l)=l^{l + 0(e-^ogx)} 

holds uniformly for all I prime to k, for all k ^ (log x)A. 

Proof. A proof of this well-known result is given in (20, Chapter IV, 
Satz 8.3). 

LEMMA 7. For any number U > 0 there is a number V = V(U) > 0, so that 
the inequality 

]C max max 
d^x1/2(logx)~v y^x (l,d)=*l 

T(y,dJ)-^\ =0(x(\ogxTU) 

is satisfied for all x ^ 3. 

Proof. This inequality, with V = 4̂ 4 + 40, is a theorem of Bombieri (4). 
The proof depends upon the large sieve. Recently, a proof has been given by 
Gallagher (12) with V = 16A + 103. His proof also uses the large sieve, but 
is much simpler than that of Bombieri. 

LEMMA 8. Let e and A be given positive constants. Then there is a (possibly 
empty) sequence of primes P so that if x ^ 3, and q is a prime number not lying 
in P, then 

^ ' " = f®{1 + 0(o^r)} 
holds for all r prime to q, and all x ^ g3+e. Moreover, there is a further constant D, 
depending upon e and A, so that for all y ^ 3 the inequality 

P(y) = 0((logy)D) 
is satisfied. 
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Proof. We can easily deduce the present result from (8, Theorem 2). There, a 
similar theorem is proved but with P replaced by a finite set P' of primes, 
none of which exceeds x, and for which 

P'(x) = Oiilogx)»-1) 

holds. If we denote by Pj the set P' obtained for the value x = 2j, and by Pc 
the empty set, we need only take 

P = U (P*-i - Pj) 
j=0 

to obtain Lemma 8. We use this result only in the proof of Theorem 2. 

LEMMA 9. There are positive constants c6, £7, so that for any coprime integers 
k, r, and all real x satisfying kc& ^ x, the lower bound 

ir(x, k, I) ^ k~Clir{x) 
is satisfied. 

Proof. This theorem is due to Fogels (10). The proof is complicated, 
developing some considerations of Linnik (19) in which he was concerned with 
the size of the least prime in an arithmetic progression. We use it only in some 
discussion at the end of this paper. 

LEMMA 10. Let S be a set of n distinct elements. For any positive integer m let 
T{n, m) denote the number of ordered 2m-tuples of elements of S with the property 
that any element which occurs in a tuple occurs an even number of times. Then the 
upper bound 

T(n, m) S (nm)n 

is satisfied. 

Proof. Since the proof of this result of Davenport and Erdôs (7) is simple 
we give it here. More exactly, we give the variant suggested by the referee. 

We begin by noting that if (yi, . . ., j 2 w ) is a 2m-tuple with each element 
occurring an even number of times, then there is an integer k satisfying 
1 ^ k ^ 2m — 1 so that yk = y<im. If we denote by j)̂  the removal of the j th 
coordinate element, it is clear that 

(yii . . . , & , . . .,fam) 

is a 2(m — 1)-tuple of the same type. Since y2m and k can be chosen in at most 
n(2m — 1) ways, we conclude by induction that 

T(n,m) ^ n(2m - l)T(n,m - 1) ^ nm(2m - l)(2w - 3) . . . 1 

= nm(2m)\/2mml ^ {nm)m, 
as required. 

LEMMA 11. Let G be a fixed positive constant. Define a sequence of real numbers 
by 

ux = 2, un+1 = un(l + ( l o g ^ ) - G ) . 
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Then there is a constant c8 > 0 so that for all integers » ^ 1 , 

un > c6exp(W/(G+1))-
Proof. We assume n large in what follows. The result can then be obtained 

for small values of n by adjusting the value of the constant c8. 
The sequence {un} is an increasing one for n è 2, so that if then 

^ / 1/(G + 1)\ 

max um > exp(n ), 
l^mf^n— 1 

the desired inequality is immediate. Otherwise, when m = 1, 2, . . ., n — 1, 
(log um)~G è n~G/{G+1) and we conclude that 

un ^ ff (1 + n-°<io+») ^ expiU1-0'^) = exp(|«1 / (G+1)). 

Using these lemmas we can prove our main theorems. 

3. Proof of Theorem 1. To begin with we shall keep p and H fixed and let 
gi, . . ., qs be the prime divisors of (p — 1) which satisfy 

qi < $2 < . . . < qs ^ y 

for a real number y to be specified later. We shall use the function "ind" taken 
with respect to a fixed primitive root (mod p), and x will denote a typical 
character (mod p). Finally, if p ^ H, we do not count p in ir(H). This clearly 
does not affect the statement of the theorem. 

We mimic our introductory remarks. For each divisor d of (p — 1), and any 
character (mod p) of order d, we have the estimate 

Card (q;qèH, d\md q) = ^ + j E £ x ' (2). 
& Ci T==i q^ff 

If we set a,j = ind g ,̂ g;- thej th natural prime number, we can regard the pres
ent situation as an example of that described in Lemma 4. We have N = TT(H) 
and/ (d) = d} while 

so that 

^ = -jE E Hx(q), 
W m\d\ r=l ; 

m<d (r,d) = 

I^I^E S 
«Id; x , 
o i 

E x(s) 

where the sum over Xt runs over all the characters (mod p) which have order t. 
These estimates are then in a form suitable for application, and we deduce that 

n H) (1) I(T(H),y) = *(H) [[ I 1 - i [1 + 0 (exp( - C 5 log *(ff)/logy))] 

Q^y 

+ <\ GogzY E rz(d)\RA) • 
\ d<z3\ / d^2 3 
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Next, we simplify the last of these error terms by noting that it is majorized by 

E x(s)\ (iogsr E r,(d)i£ E 
a t\d\ x, d^z* 

d\Q 
QÛH 

^oogsr E ^ E 
\<t<z*\ I Y . 

E x(s) 
QSH 

T 3 (m) 

m^z^t-1 m 
and, since the innermost sum is 

°l .7 <* 
by 

(2) 

Og2)3j , 

dog2)
4 E . T E 

t\Q 

E x(<?) 

For fixed positive real numbers i£, L we define 

J(iJ, * )=( /> ;**</>£* , E 7 E E x(s)\ > HQogH)-1) . 
\ t\(p-D l xt I <z^tf I / 

Note that H is regarded as fixed. The values of / in the outer summation are 
restricted by t\Q and 

1 <t ^ max{(logi7)*, (log*)*}, 

where Q has the appropriate value for each prime p. We shall estimate the 
cardinality of this set in order to prove our theorem, and investigate several 
cases. 

Case 1. exp(jFlog2 x log3 x) < H ^ x2. 

We apply Lemma 2 with 

f 1/d if 1 < d ^ max{(log#)*, Qogx)K},d\Q, 
Pd'p \ 0 otherwise, 

R = 2m3x{(}ogH)K, (logx)K\, 

X = (log#)L , 

and thus obtain the estimate 

/o\ r A T/TT ^ ^ / l o g ^ V 7 2 (4:(K + L + 2)logxlog2x\ e/2 

(3) Card J(H,x) ^ c4l 7— 7̂7 ) expl ———r : — J < x ' . 
WogH/ * \ log2xlog3x / 

Case 2. x2 < H ^ exp(xs), 6(L + 1)0 = 1. 

In this case, Lemma 2 is of no value, being dependent for its success upon H 
being small. However, we can use the ideas involved in the proof, together 
with Lemma 1 as follows: 
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When p does not exceed x, 

E E / C s E -r^s n (1 + rL-r + ̂ r - n + ---) 
H(p-i) X| «UP—i) H>\P) ffi(p-i) \ 2 — -1 2tfl — -U / 

â ^ n V 1 — 7 ) ^ do log x, 

and thus in the notation of Lemma 2, 

Z Tp
2 ^ cio log x Z Z Z 

P^=z P^=z ï|(p—1); x , 
*>1 

E x(<z) 

Hence, for any positive values of X, R, and any H ^ 2, 

Card / ( # , x) g cn\-
2(x2H~l + 1) log x • log # , 

and in the present circumstances, 

C a r d / ( i J , x ) = 0(x(2L+1>5logx) < xe/2. 

Case 3. exp(x5) < H. 

In this case we shall show that J(H, x) is empty. Indeed, since 

p ^ x < (\ogH)1/8 

is satisfied, we may apply the Siegel-Walfisz theorem, which shows that 

Ex(<?) = É x « ^ [ l + 0(e--to8ff)] 
Q^H r=i; q>(q) 

(r,q) = l 

= 0(He-cvlosH). 

I t is therefore clear that for any prime p ^ x, 

E T E 
«UP—l) t 

Z xfo) = 0(H(logH)De-cvlosH) <H(\ogH)-L
y 

so that J(H, x) is empty. 
In an analogous manner we define sets 

V(H,x) = (p;hx<pgx, E " y E E x(«) >H(\ogHy 

where I runs through primes, and satisfies a condition complementary to that 
on t, namely 

/ > max{(log#)*, (log*)*}. 

Now if K > 1, and we adopt the same values for R and X, and define 

Î
l/d if d\ (p — 1) and d is prime and satisfies 

d>m<ix{(\ogH)K, (logx)*}, 
0 otherwise, 
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then, when p satisfies p ^ x, 

is satisfied. We can therefore apply the above arguments to show that whatever 
the value of H > exp(jFlog2 x log 3 x), 

(4) Card V(H, x) < x*'\ 

We define the above sets for each member of the sequence \uT] constructed 
in Lemma 11 with G = B + 2 which satisfies 

exp(J JFlog2xlog3x) < uT, 
and set 

W(X) = UrJ(ur, X) U V(ur, x), W* = (p ) P ^ 2k), 

where & is chosen so that the sets / and V are well-defined for x ^ 2k. Finally 
we define 

oo 

E = W* U U W(2m). 

This, we maintain, is a set which has the properties stated in Theorem 1. 
We obtain an estimate for E(t) by means of (3), (4), and Lemma 11. Since 

J(uTl x) and V(ur, x) are empty when ur exceeds exp(#s) we see that 

Card W(x) ^ 2xe/2 £ 1 ^ 2x€/2 £ 1 < x\log x)'1 

provided 45(5 + 3) < e. It follows immediately that for any t ^ 2, 

£(') = o( Z ?r) = 0(O, 
as desired. 

I t is our next step to show that when p does not lie in E, and H has one of 
the values ur, then N(H, p) satisfies an estimate of the type stated in 
Theorem 1. We can assume without loss of generality that x = 2j is large, and 
that Jx < p ^ x, p £ W(x). 

We see from our definition of W(x), and the estimate (1) with 

z* = max{(logiJ)x , (log*)*}, y = exp(log H> (M\og2H)-1) 

that 

(5) I(*(H),y) = TÇS) I l ( l " i ) [ l + O((log#)"*)] 

provided L + 6 ^ B, and ikf is sufficiently large but fixed. Moreover, for the 
same primes, 

H(p-i) 
Cardfo; g ^ # , /|ind q) - - ^ ® -

" 1 

ilft>-l) * X, 

" 1 

£ x(<z) 
Q-âH I 

^ X y^Oogfl)-* =§ 2H(\ogHY 
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ii D ^ 1. We therefore see that 

£ " Card(g; q ^ H, /|ind q) < 2H(logH)~L + T(H) X " y < 3H(logHyL 

I\(P-D l Z|(P-D 

provided H > e x p ( ^ l o g 2 ^ log%x) for a sufficiently large, but otherwise fixed, 
value of F. 

Putting these results together we deduce: 

I{IC{H),P-\)-T(H) n ( i - ^ ) 

^ \I(ir(H),p-l)-I(Tr(H),y)\ + 

+ 

I{*{H),y) - *{H) FI ( l - ^ ) 

n ( i - i ) _ n (i-1-
•l(p-D; \ 5 / (?l(P-i) \ & 

where 

E i ^ S Card(<z; <? ^ # , Z|ind g) < i7(lqg H)"*, 

E 2 = 0(H(logH)-L) by (5), 

E3 ^ T(A) IT ( l - l) Z ' 7 < H(logH)-L. 
ffl(p-i); \ # / /I(P-D ' 

Thus, reverting to the notation H = uT we have shown that 

iV(wr, £) = ir(ur) 
<t>(P ~ 1 ) 1 + 0 \(logur)

B). 

for all wr ^ exp(f ^log2 p log3 £) . (The replacing of x by p in this condition is 
valid for all large values of x, since we have replaced \F by \F, and since 
P > %x.) 

We can now complete the proof of Theorem 1. For any 

H> exp(F\og2plogzp) 

there is a unique value of ur satisfying 

UT < H ^ Mr+i, 

for which the desired estimate holds. However, by the construction of the 
sequence {ur) 

ur ^ H 
N(H, p) - N(UT, p) S «r+l - UT = < {\ogurf ^ (logH) \B+2 > 
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so that 

^ ) = .<ff)fff[. + o ( ^ ) ] , 
as required. 

This completes the proof of Theorem 1, and under the more restrictive 
condition, H ^ pe, a modified form suffices. We give an outline of the 
necessary changes. 

Proof of Theorem 2 (outline). We adopt similar definitions for the sets / , F, 
W, and E, but in place of the condition 

ur > exp(|Flog2 x logz x) 
we take 

Ur > Xe/2. 

The proof proceeds on exactly the same lines, and we need only prove the 
sharper estimates for J(x) and V(x). Once again we have three cases. 

Case 1. xd2 < H ^ x\ 

In view of the above remarks, the application of Lemma 2 yields 

Card J(H, x) ^ , 4 ( g | ) 1 / 2 e x p ( f ^ ) X2*2 log x 

= 0((log*)') 
with 77 = f + 2(K + L) + 4 6 - 1 . 

Case 2. x2 < H ^ x\ 

We can apply the proof of the previous Case 2, obtaining exactly the same 
bound 

Card J(H, x) ^ C n X ^ O 2 ^ 1 + 1) log x -log H; 

however, in view of our more severe restriction on the size of H this now yields 

C a r d / ( # , x ) = O((logx)") 
with/x = 2(L + 1). 

Case 3. x* < H. 

In place of the Siegel-Walfisz theorem we now use Lemma 8. This guarantees 
that J(H, x) is empty when H > xd+e is satisfied, save possibly for the set of 
primes P. Since, however, 

P(t) = 0((logt)D), * £ 3 , 

we can safely add this sequence to the sequence E already constructed and 
Theorem 2 follows easily. 

Let us now consider Theorem 4. We shall indicate at the end of our proof 
what more is needed in order to prove Theorem 3. 

https://doi.org/10.4153/CJM-1969-092-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-092-6


836 P. D. T. A. ELLIOTT 

Proof of Theorem 4. Let a Ta(x)-system with associated parameter D (see 
the introduction) be given. We shall consider a typical member Ta(x) for a 
large value of x, and begin by outlining how we modify the procedure for 
estimating the function N(H,p). This time we settle for a non-zero lower 
bound only, and this, moreover, only for primes contained in Ta(x). For 
convenience during the present proof we use I to denote a typical prime number 
satisfying I > Xe1. 

For any p satisfying H < p ^ x, p Ç Ta(x), there are no residue classes 
which have orders lying between 2 and xa, so that 

(6) N(H, p) ^ T(H) - Cardfe ; q ^ H, 2|ind q) 

— ^ Card(g; q ^ H, Z|ind q) 
il(p-D 

say. For any prime k and character % of order k (mod p) we see that 

T(H)\ 
Card (q ; q ^ H,k |ind <?) — ^ E E xfe) 

where the sum over %& runs through all the &th order characters (mod p). We 
deduce that 

(7) N2 E 
11 CP—1) 

E x(s) 
il(P-i) * x. 

Let the number 77 satisfy 0 < 4rç < 1 and define H0 by 

We shall show that for an appreciable number of primes p S x the inequality 
g*(p) = ^0 is satisfied. This then quickly leads to the desired result. The proof 
is in various stages. 

LEMMA 12. Let us define the set 

Y(v,H)=(p;pgH,p€Ta(x), E T E 
\ 1\(P-D l Xt 

E x(a) > ( i - 2 , ) T ( H ) ) . 

Then the inequality 

Card Y(r],Ho) < 

is satisfied for all large values of x. 

Card Ta(x) 
logx 

Proof. To begin with, when m ^ 1, p ^ x hold, the inequalities 

/ /1\2m/(2m-l) \ 2m-1 / \2m-l 

( E ( j) E i ) = ( E rv<*-») 
s-Kx: i)2M"^x-{iT 

\i|(p-i) / LcU 
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are satisfied. By means of Holder's inequality we then deduce that 

837 

(8) Z ( Z }Z I Z x(3)|)2m^x-fi]2mE Z 

If we define the sequence of integers ai, a2, . . . in a natural way so that 

Z xfe) 
QSH 

(9) ( Z Xfe)) = S ^rX(0, 

we can then apply Lemma 1 to the right-hand sum in the inequality (8) and 
obtain for it the upper bound 

C3(x*+Hm) Z «A 
rSHm 

However, ar ^ ml (r = 1, 2, . . .) so that this expression cannot exceed 

cz(x2 + Hm)m\\Tr{H))m. 

From these remarks we see that 

(10) Card Y(r,,H) g cz(x
2 + Hm)x~am\y^ - 2V)2 | J j \(H)j * 

f or m = 1 , 2 , . . . . 

If H satisfies the inequality H ^ x2, we define m by 

m = 
2 logx 
. l o g t f j 

so that m ^ 1 holds. If, moreover, 27 is so large that we can apply the prime 
number theorem in the form 

T(H) > (1 -V)H(logH)~\ 

we can apply Stirling's formula in the inequality (10), and deduce that 

Card V(„m S ̂ " 4 ^ _"*£_ J£)} 

= Cl3* " Mog Hj c^ {log H lu&\e ( | - 2„)2 (1 - „) 

Remembering that x is large we see that 

Card Y(r],Ho) ^ ci4X~a(log x)5/2 exp{ (1 + «) log x — (D + 4) log log #} 

Card Ta(x) 
logx ' 

and our proof is complete. 

https://doi.org/10.4153/CJM-1969-092-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-092-6


838 P. D. T. A. ELLIOTT 

By means of this estimate we shall be able to show that N2 is very often 
"small". In order to show that the same is true for N± we adopt a similar 
procedure but confine ourselves to quadratic characters. However, there is 
only one non-trivial quadratic character to a prime modulus, namely the 
Legendre symbol. 

LEMMA 13. On analogy with the set Y, we define 

Z(V,H) =(p;p£H,\ X ^ d ) ! > h*(H)) • 

Then for each constant c i5 > 0 we can find constants d\ and d2 depending upon 
C]5 and t) so that the inequality 

Card Zirj.H) = 0\xexp( ^ l l o g X 

) ) log log x) 

is satisfied for each value of H lying in the interval 

d2 log x ^ H ^ (log x)C15. 

Proof. With the sequence &i, a2, . . . defined in (9) we can apply Lemma 3 
with L = Hm for a positive integer m, to show that 

M â 4x E E ava, + 0\Hm\ogiry Y.ma}j ) . 
v=x SrW v,\3,<LHn 

The sum of the aT is once again (ir(H))m. If we express the integers a„, aM as 
products of primes we note that 

E E ^ ^ E T O ' ) E---E i 

since q\ . . . g2w = 2£2 cannot occur. However, t2 has 2m prime factors so that 
r{t2) ^ 4W, and, in the notation of Lemma 10, this last multiple sum does not 
exceed 

4:mT(T(H),m) ^ (4mir(£0)m. 

These inequalities together show that 

Card Z ^ , if) ^ 4:x(16rnr}-2)m{ir(H)}-m + 0{(±rr2H)m log Hm) 

for m = 1, 2, . . . . 
Finally, we define m by 

m 
plog*! 
A log i f J 

so that if H is sufficiently large depending upon rj, 

Cari Z(„H) S ^ C v ^ g ) ' + 0 ( 0 

from which the desired result is immediate. 
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In particular, setting cu = 2 we can take H = H0 in this result, and thus 
have proved that 

C3rdZ(n,Ho) < Ç H ^ X « - M . 
logx 

Completion of the proof of Theorem 4. Our hypothesis on Ta(x) included the 
estimate 

Card Ta(x) > x(logx)~D. 

Let us define a set 5 (depending upon x, rj) by 

S = Ta(x) - Y(v,Ho) - Z(V,H0) - {p\P S x{\ogx)-D-^). 

Then in view of Lemmas 12 and 13, and the above remark, 

Card 5 ^ x{\ogx)-D(l - ^ ) > 0, 

so that S is non-empty. Moreover, for any prime p in S the inequality (7) 
shows that 

N2 ^ T(H0) E 7 + ( i - 2I)T(H0) ^ ir{H,){x-aa~1+ \ - 2V) 
il(p-i) l 

while 

# 1 ^ §7r(F„) + i,T(fTo). 

These results and the inequality (6) together show that 

N(H0,p) > T(HO)(1 - I + V ~ \ ~ h) = h*(Ho) > 0, 

so that 

(11) g*(p)^H0 

A s i T i l 2 . V/(1+a) ( dog log x A 

<(^'&-\£**)™*+* 
Since 7j < \ can be taken arbitrarily small, and there exist sets Ta(x), and 
hence 5, for arbitrarily large values of x, Theorem 4 is proved. 

Proof of Theorem 3. Almost the same proof applies. In place of the sets 
Ta(x) we now use the sets 

Ta*(x) = (p;p ^ x} q\(p - 1) =ïq = 2 or g > x1/4 e x p ( - (log x)12/13)). 

We maintain that these sets contain 

Card Ta*(x) > x(logx)~~z 
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primes for all large values of x. In order to prove this, we apply Lemma 7 to 
Lemma 9 for the sequence (p — 1, p ^ x) with 

« = h P(x) = ( l o g X ) 4 ^ , 

X = v(x), k = 2, y(d) = d/0(d), s = x1/4 e x p ( - (log x)12/13). 

In the notation of Lemma 9, this yields 

c / \ ^ M r M l .̂f log TT(X)\ log log 6 

where 
H o g s / ^ (log TT(X))1/14 

/ (« ) = 2eyu~1 log (w - 1) for 2 < w ^ 3. 

However, our choice of z guarantees that 

so that 

**£&• è 2 + è( log*r 1 / 1 3 + 0((logx)-2 /13) 

/ 
In other words, 

Aog x(x)\ > 
V 2 1 o g z / = èe^ •e1 '0og*rx/M + O ( a o g * ) - , / " ) . 

Cardr a*(x) ^ *(*) El ( l - l — - 7 ) [ ^ ( l o g x ) - 1 / 1 3 + 0 ( ( l o g x r 2 / u ) ] 

> x(logx)~3, 

as stated earlier. 
After changes, the exponent Cn(log2 x)2 (log x)~x on the extreme right-hand 

side of the inequality (11) becomes Ci8(log2x)2(log x)~l/u; however, this clearly 
does not affect the final result. 

I t is perhaps of interest to note that for each e > Owe can find a positive 
constant c, depending upon e, so that for at least x1_e primes p g xy the least 
quadratic non-residue satisfies 

n2(p) > clog p. 

For, let gi, . . ., qr, . . . denote the sequence of rational prime numbers. Then 
nî(p) > qT holds if p belongs to certain reduced classes (mod 8qi... g r). If we 
choose the constant ô to be suitably small we can ensure that 

8qi. . . qr = 8 expl ^ l°g 5 ) < # \ with rj = minQec"1, c^1). 

We can then apply the result of Fogels (10) (Lemma 9 with k = 8qi . . . qT) 
and deduce that there are at least 

(8gi. . . qr)-
C77r(x) > xl~* 

primes p ^ x for which 

n2(p) è qr > id log x ^ c log p (c = iô). 
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On the other hand, if now d is chosen to be a large constant, Lemma 13 
shows that the inequality 

n2(p) S dlogp 
holds for all, save at most 

o ( * e x p ( - C l 6 ^ ^ ) ) 

primes not exceeding x. Indeed, for any 8 > 0, there is a constant /* = 11(d) > 0 
so that all but 0{xl~lx) primes p S x have 

n2(p) ^ (\ogpy+8. 

In view of this result, we conjecture that 

n2(p) = 0((log/>)1+€) 
for any fixed e > 0. Similar remarks can be made about the least prime 
quadratic residue (mod p). 
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