Then $m=\frac{1}{2}\left(c_{1}+m_{1}\right), m_{1}=\frac{1}{2}\left(c_{2}+m_{2}\right), m_{2}=\frac{1}{2}\left(c_{3}+m_{3}\right)$ and so on, where c_{r} is either 1 or 0 according as the square of antilog m_{r-3} is greater or less than 10.

Thus $m=\frac{c_{1}}{2}+\frac{c_{2}}{2^{2}}+\frac{c_{5}}{2^{3}}+\ldots+\frac{c_{n}}{2^{n}}+\frac{m_{n}}{2^{n}}$.
R. F. Muiriead.

Trigonometrical Ratios of $(\mathbf{A} \pm \mathbf{B})$.

Fig. 1

Fig. 2.

The formulae for $\sin (A \pm B)$ and $\cos (A \pm B)$ may be derived by the following method, the main attraction of which is the simplicity of the figures employed.

Consider the case in which A and B are both acute angles.
Let $\angle M O P=A$ and $\angle P O N=B$, then in Fig. $1-M O N=A+B$ and in Fig. $2-M O N=A-B$. Through any point P on $O P$, the arm common to both angles, draw a perpendicular to $O P$ meeting the other arms in M and N respectively.

Let $O M=m, O N=n, O P=p, M P=q, P N=r$.
From the triangle $O M N$ we obtain

$$
\begin{aligned}
\sin (A \pm B)=\sin M O N & =\frac{2 \triangle O M N}{m n}=\frac{p(q \pm r)}{m n} \\
& =\frac{q}{m} \cdot \frac{p}{n} \pm \frac{p}{m} \cdot \frac{r}{n} \\
& =\sin A \cos B \pm \cos A \sin B .
\end{aligned}
$$

$$
\begin{aligned}
\cos (A \pm B)=\cos M N O & =\frac{m^{2}+n^{2}-(q \pm r)^{2}}{2 m n} \\
& =\frac{\left(p^{2}+q^{2}\right)+\left(p^{2}+r^{2}\right)-\left(q^{2} \pm 2 q r+r^{2}\right)}{2 m n} \\
& =\frac{p^{2} \mp q r}{m n} \\
& =\frac{p}{m} \cdot \frac{p}{n} \mp \frac{q}{m} \cdot \frac{r}{n} \\
& =\cos A \cos B \mp \sin A \sin B .
\end{aligned}
$$

When A and B are unrestricted in size the perpendicular to the common arm may meet one or both of the other arms produced, but only slight modifications are required in the proofs.

Alex. D. Russell.

