INTEGRAL MEANS OF HOLOMORPHIC FUNCTIONS AS GENERIC LOG-CONVEX WEIGHTS

EVGUENI DOUBTSOV

(Received 12 May 2017; accepted 1 June 2017; first published online 7 August 2017)

Abstract

Let $Hol(B_d)$ denote the space of holomorphic functions on the unit ball B_d of \mathbb{C}^d , $d \ge 1$. Given a logconvex strictly positive weight w(r) on [0, 1), we construct a function $f \in Hol(B_d)$ such that the standard integral means $M_p(f, r)$ and w(r) are equivalent for any p with 0 . We also obtain similar resultsrelated to volume integral means.

2010 *Mathematics subject classification*: primary 32A10; secondary 30H10, 32A35, 32A36. *Keywords and phrases*: Hardy convexity theorem, volume integral means, log-convex weight.

1. Introduction

Let $\mathcal{H}ol(B_d)$ denote the space of holomorphic functions on the unit ball B_d of \mathbb{C}^d , $d \ge 1$. For $0 and <math>f \in \mathcal{H}ol(B_d)$, the standard integral means $M_p(f, r)$ are

$$M_p(f,r) = \left(\int_{\partial B_d} |f(r\zeta)|^p \, d\sigma_d(\zeta)\right)^{1/p}, \quad 0 \le r < 1,$$

where σ_d denotes the normalised Lebesgue measure on the unit sphere ∂B_d . For $p = \infty$,

$$M_{\infty}(f, r) = \sup\{|f(z)| : |z| = r\}, \quad 0 \le r < 1.$$

A function $w : [0, 1) \rightarrow (0, +\infty)$ is called a weight if w is continuous and nondecreasing. A weight w is said to be *log-convex* if $\log w(r)$ is a convex function of $\log r$ for 0 < r < 1. It is known that $M_p(f, r)$ is a log-convex weight for any $f \in Hol(B_d)$ with $f(0) \neq 0$, $d \ge 1$ and 0 . In fact, for <math>d = 1, this result constitutes the classical Hardy convexity theorem (see [2]). The proof can be extended to all dimensions $d \ge 2$ (see for example [7, Lemma 1]).

Let $u, v : X \to (0, +\infty)$. We say that u and v are equivalent $(u \approx v, \text{ in brief})$ if there exist constants $C_1, C_2 > 0$ such that

$$C_1 u(x) \le v(x) \le C_2 u(x), \quad x \in X.$$

The author was supported by the Russian Science Foundation (grant no. 14-41-00010).

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

In the present paper, for each p with $0 , we show that the functions <math>M_p(f, r)$ with $f \in Hol(B_d)$ and $f(0) \ne 0$ are generic log-convex weights up to equivalence.

THEOREM 1.1. Let $d \ge 1$ and let $w : [0, 1) \to (0, +\infty)$ be a log-convex weight. There exists $f \in Hol(B_d)$ such that

$$M_p(f,r) \asymp w(r), \quad 0 \le r < 1,$$

for each p *with* 0*.*

We also consider volume integral means for $0 < q < \infty$. The logarithmic convexity properties for such integral means have been investigated recently (see, for example, [5–7]). Applying Theorem 1.1, we obtain, in particular, the following result.

COROLLARY 1.2. Let $d \ge 1$ and $0 < q < \infty$ and let $w : [0, 1) \rightarrow (0, +\infty)$ be a weight. The following properties are equivalent:

- (i) w(r) is equivalent to a log-convex weight on [0, 1);
- (ii) there exists $f \in \mathcal{H}ol(B_d)$ such that

$$\left(\frac{1}{\nu_d(rB_d)}\int_{rB_d}|f(z)|^q\,d\nu_d(z)\right)^{1/q} \asymp w(r), \quad 0 < r < 1,$$

where v_d denotes the normalised volume measure on B_d .

Section 2 is devoted to the proof of Theorem 1.1. Corollary 1.2 and other results related to volume integral means are obtained in Section 3.

2. Proof of Theorem 1.1

Let $\mathbb{D} = B_1$ and $\mathbb{T} = \partial \mathbb{D}$. For a log-convex weight *w* on [0, 1), [1, Theorem 1.2] provides functions $f_1, f_2 \in \mathcal{Hol}(\mathbb{D})$ such that $|f_1(z)| + |f_2(z)| \approx w(|z|)$ for $z \in \mathbb{D}$. These functions are almost sufficient for a proof of Theorem 1.1 with d = 1. However, we will need additional technical information contained in [1]. Namely, applying [1, Lemma 2.2] and arguing as in the proof of [1, Theorem 1.2], we obtain the following lemma.

LEMMA 2.1. Let w be a log-convex weight on [0, 1). There exist $a_k > 0$, $n_k \in \mathbb{N}$, k = 1, 2, ..., and constants $r_0 \in (\frac{9}{10}, 1)$, $C_1, C_2 > 0$ with the following properties:

$$n_k < n_{k+1}, \quad k = 1, 2, \dots;$$
 (2.1)

$$\sum_{k=1}^{\infty} a_k r^{n_k} \le C_1 w(r), \quad r_0 \le r < 1;$$
(2.2)

$$|g_1(r\zeta)| + |g_2(r\zeta)| \ge C_2 w(r), \quad r_0 \le r < 1, \ \zeta \in \mathbb{T};$$
(2.3)

where

$$g_1(z) = \sum_{j=1}^{\infty} a_{2j-1} z^{n_{2j-1}}, \quad g_2(z) = \sum_{j=1}^{\infty} a_{2j} z^{n_{2j}}, \quad z \in \mathbb{D}$$

E. Doubtsov

PROOF OF THEOREM 1.1. We are given a log-convex weight w on [0, 1). First, assume that d = 1. Let a_k and n_k (k = 1, 2, ...), g_1 and g_2 be as provided by Lemma 2.1. By (2.3),

$$|g_1(r\zeta)|^2 + |g_2(r\zeta)|^2 \ge C_3 w^2(r), \quad r_0 \le r < 1, \ \zeta \in \mathbb{T}$$

Using (2.1) and integrating the above inequality with respect to Lebesgue measure σ_1 on \mathbb{T} ,

$$\sum_{k=1}^{\infty} a_k^2 r^{2n_k} \ge C_3 w^2(r), \quad r_0 \le r < 1.$$

Therefore,

$$1 + \sum_{k=1}^{\infty} a_k^2 r^{2n_k} \ge C_4 w^2(r), \quad 0 \le r < 1.$$

So, by (2.1),

$$M_2(f,r) \ge w(r), \quad 0 \le r < 1,$$
 (2.4)

where

$$\sqrt{C_4}f(z) = 1 + \sum_{k=1}^{\infty} a_k z^{n_k}, \quad z \in \mathbb{D}.$$

Also, (2.2) guarantees that

$$|f(r\zeta)| \le C_0 w(r), \quad 0 \le r < 1, \ \zeta \in \mathbb{T}.$$
(2.5)

Hence, $M_2(f, r) \le M_{\infty}(f, r) \le Cw(r)$ for $0 \le r < 1$. Combining these estimates and (2.4), we conclude that $M_2(f, r) \ge M_{\infty}(f, r) \ge w(r)$. Thus, $M_p(f, r) \ge w(r)$ for $0 \le r < 1$ and any p with $2 \le p \le \infty$.

Also, we claim that $M_p(f, r) \approx w(r)$ for any p with 0 . Indeed, (2.4) and (2.5) guarantee that

$$\sigma_1\left\{\zeta \in \mathbb{T} : |f(r\zeta)| \ge \frac{w(r)}{2}\right\} \ge \frac{1}{2C_0^2}$$

Therefore, $M_{\infty}(f, r) \ge M_p(f, r) \ge C_p w(r)$ for $0 \le r < 1$. This completes the proof of the theorem for d = 1.

Now, assume that $d \ge 2$. Let W_k , k = 1, 2, ..., be a Ryll–Wojtaszczyk sequence (see [3]). By definition, W_k is a holomorphic homogeneous polynomial of degree k, $||W_k||_{L^{\infty}(\partial B_d)} = 1$ and $||W_k||_{L^2(\partial B_d)} \ge \delta$ for a constant $\delta > 0$ which does not depend on k. Let

$$F(z) = 1 + \sum_{k=1}^{\infty} a_k W_k(z), \quad z \in B_d.$$

Clearly, (2.2) guarantees that $|F(r\zeta)| \le Cw(r)$ for $0 \le r < 1$ and $\zeta \in \partial B_d$. Also, the polynomials W_k , k = 1, 2, ..., are mutually orthogonal in $L^2(\partial B_d)$; hence, we have $M_2(F, r) \ge C(\delta)w(r)$ for $0 \le r < 1$. So, arguing as in the case d = 1, we conclude that $M_p(F, r) \ge w(r)$ for any p with 0 , as required.

As indicated in the introduction, for any $f \in Hol(B_d)$, the function $M_p(f, r)$ is logconvex; hence, Theorem 1.1 implies the following analogue of Corollary 1.2.

COROLLARY 2.2. Let $d \ge 1$ and $0 and let <math>w : [0, 1) \rightarrow (0, +\infty)$ be a weight. The following properties are equivalent:

- (i) w(r) is equivalent to a log-convex weight on [0, 1);
- (ii) there exists $f \in Hol(B_d)$ such that

$$M_p(f,r) \asymp w(r), \quad 0 \le r < 1.$$

3. Volume integral means

In this section, we consider integral means based on volume integrals. Recall that v_d denotes the normalised volume measure on the unit ball B_d . For $f \in Hol(B_d)$, $0 < q < \infty$ and a continuous function $u : [0, 1) \rightarrow (0, +\infty)$, define

$$\begin{split} M_{q,u}(f,r) &= \left(\frac{1}{r^{2d}} \int_{rB_d} |f(z)|^q u(|z|) \, d\nu_d(z)\right)^{1/q}, \quad 0 < r < 1; \\ M_{q,u}(f,0) &= |f(0)| u^{1/q}(0). \end{split}$$

PROPOSITION 3.1. Let $0 < q < \infty$ and let $u, w : [0, 1) \rightarrow (0, +\infty)$ be log-convex weights. There exists $f \in Hol(B_d)$ such that

$$M_{a,1/u}(f,r) \asymp w(r), \quad 0 \le r < 1.$$

PROOF. By Theorem 1.1 with p = 2, there exist $a_k \ge 0, k = 0, 1, \dots$, such that

$$w^q(t) \asymp \sum_{k=0}^{\infty} a_k t^k, \quad 0 \le t < 1.$$

Let

$$\varphi^q(t) = \sum_{k=0}^{\infty} (k+2d)a_k t^k, \quad 0 \le t < 1.$$

The functions $\varphi^q(t)$ and $\varphi(t)$ are correctly defined log-convex weights on [0, 1). Hence, $\varphi(t)u^{1/q}(t)$ is a log-convex weight, being the product of two log-convex weights. By Theorem 1.1, there exists $f \in Hol(B_d)$ such that

$$\int_{\partial B_d} |f(t\zeta)|^q \, d\sigma_d(\zeta) \asymp \varphi^q(t) u(t), \quad 0 \le t < 1,$$

or, equivalently,

$$\frac{t^{2d-1}}{u(t)}\int_{\partial B_d}|f(t\zeta)|^q\,d\sigma_d(\zeta)\asymp\sum_{k=0}^\infty(k+2d)a_kt^{k+2d-1},\quad 0\le t<1.$$

E. Doubtsov

Representing $M_{q,1/u}^q(f,r)$ in polar coordinates and integrating the above estimates with respect to *t*,

$$\begin{split} M^q_{q,1/u}(f,r) &= \frac{2d}{r^{2d}} \int_0^r \int_{\partial B_d} |f(t\zeta)|^q \, d\sigma_d(\zeta) \, \frac{t^{2d-1}}{u(t)} \, dt \\ & \asymp \sum_{k=0}^\infty a_k r^k, \\ & \asymp w^q(r), \quad 0 \le r < 1, \end{split}$$

as required.

Clearly, Proposition 3.1 is of special interest if $M_{q,1/u}(f, r)$ is log-convex or equivalent to a log-convex function for any $f \in Hol(B_d)$. Also, we have to prove Corollary 1.2. So, assume that $u \equiv 1$ and define

$$\begin{split} \mathfrak{M}_{q}(f,r) &= \left(\frac{1}{\nu_{d}(rB_{d})} \int_{rB_{d}} |f(z)|^{q} \, d\nu_{d}(z)\right)^{1/q}, \quad 0 < r < 1, \\ \mathfrak{M}_{q}(f,0) &= |f(0)|, \end{split}$$

where $0 < q < \infty$.

PROOF OF COROLLARY 1.2. By Proposition 3.1, (i) implies (ii). To prove the reverse implication, assume that w(t) is a weight on [0, 1) and $w(r) \times \mathfrak{M}_q(f, r)$ for some $f \in \mathcal{H}ol(B_d)$ with $f(0) \neq 0$.

If d = 1 and $0 < q < \infty$, then $\mathfrak{M}_q(f, r)$ is log-convex by Theorem 1 from [5]. So, (ii) implies (i) for d = 1. The function $\mathfrak{M}_q(f, r)$ is also log-convex if $1 \le q < \infty$ and $d \ge 2$. Indeed,

$$\mathfrak{M}_{q}(f,r) = \left(\int_{B_{d}} |f(rz)|^{q} \, d\nu_{d}(z) \right)^{1/q}, \quad 0 \le r < 1.$$

Thus, Taylor's Banach space method applies (see [4, Theorem 3.3]).

Now, assume that $d \ge 2$ and 0 < q < 1. The function $M_q^q(f, t)$ is a log-convex weight. Hence, by Theorem 1.1 with p = 2, there exist $a_k \ge 0, k = 0, 1, ...$, such that

$$M^q_q(f,t) \asymp \sum_{k=0}^\infty a_k t^k, \quad 0 \le t < 1.$$

Thus,

$$\mathfrak{M}_q^q(f,r) = \frac{2d}{r^{2d}} \int_0^r M_q^q(f,t) t^{2d-1} dt$$
$$\approx \sum_{k=0}^\infty \frac{a_k}{k+2d} r^k, \quad 0 \le r < 1.$$

In other words, $\mathfrak{M}_q(f, r)$ is equivalent to a log-convex weight on [0, 1). So, (ii) implies (i) for all $d \ge 1$ and $0 < q < \infty$. The proof of the corollary is finished.

[5]

For $\alpha > 0$, Proposition 3.1 also applies to the integral means:

$$\frac{1}{r^{2d}} \int_{rB_d} |f(z)|^p (1-|z|^2)^\alpha \, d\nu_d(z), \quad 0 \le r < 1.$$

However, in general, these integral means are not log-convex.

References

- [1] E. Abakumov and E. Doubtsov, 'Moduli of holomorphic functions and logarithmically convex radial weights', *Bull. Lond. Math. Soc.* **47**(3) (2015), 519–532.
- [2] G. H. Hardy, 'The mean value of the modulus of an analytic function', *Proc. Lond. Math. Soc.* 14 (1914), 269–277.
- [3] J. Ryll and P. Wojtaszczyk, 'On homogeneous polynomials on a complex ball', *Trans. Amer. Math. Soc.* **276**(1) (1983), 107–116.
- [4] A. E. Taylor, 'New proofs of some theorems of Hardy by Banach space methods', *Math. Mag.* 23 (1950), 115–124.
- [5] C. Wang, J. Xiao and K. Zhu, 'Logarithmic convexity of area integral means for analytic functions II', J. Aust. Math. Soc. 98(1) (2015), 117–128.
- [6] C. Wang and K. Zhu, 'Logarithmic convexity of area integral means for analytic functions', *Math. Scand.* 114(1) (2014), 149–160.
- [7] J. Xiao and K. Zhu, 'Volume integral means of holomorphic functions', Proc. Amer. Math. Soc. 139(4) (2011), 1455–1465.

EVGUENI DOUBTSOV, St. Petersburg Department of

V.A. Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia and

Department of Mathematics and Mechanics, St. Petersburg State University, Universitetski pr. 28, St. Petersburg 198504, Russia e-mail: dubtsov@pdmi.ras.ru