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QUASI REFLEXIVITY AND THE SUP OF LINEAR FUNCTIONALS

P.K. JAIN, K.K. ARORA AND D.P. SINHA

Quasi reflexive Banach spaces are characterised among the weakly countably deter-
mined Asplund spaces, in terms of the cardinality of the sets of linearly independent
bounded linear functionals each of which does not attain its supremum on the unit
sphere.

1. INTRODUCTION

By a well known result called the Bishop-Phelps-Bollobas theorem, the set of
bounded linear functionals which attain their supremum on the unit sphere of a Banach
space is norm dense in its dual. James proved that a Banach space is reflexive if and
only if this set coincides with the dual space; the result was obtained for separable
Banach spaces in [6, 12] and later for the non separable case in [7, 8, 9].

In this paper, we shall characterise quasi reflexive Banach spaces in terms of the
cardinality of the sets of linearly independent bounded linear functionals each of which
does not attain its supremum on the unit sphere. However, the result is obtained for a
certain class of Banach spaces V* , which we define using the concept of the projectional
resolution of the identity (in short, PRI). In fact, a Banach space in V* has a PRI of type
I, to be defined later, such that certain complemented subspaces are also in the class
V*, and weakly countably determined Asplund spaces (in particular, quasi reflexive
spaces) are examples of Banach spaces in the class V*. We prove that for a positive
integer k, a Banach space in the class V* is quasi reflexive of order k if and only if
there exists a set of k linearly independent functionals each of which does not attain
its norm on the unit sphere and any other such set contains at most k elements.

2. PRELIMINARIES

In this section, we give notations and definitions required in this paper. By a
functional or a projection we shall mean a bounded linear functional or projection,
respectively, and a subspace will mean a closed linear subspace. For a sequence {/„},
we denote by conv{/n} the convex span of {/n}-
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We shall denote by E, E* and E** an infinite dimensional Banach space, its first
and second duals, respectively. Let n: E —* E** be the canonical mapping. The space
E is said to be reflexive if n(E) = E**. James [9] proved that E is reflexive if and
only if every functional in E* attains its supremum on the unit sphere of E. On the
other hand, Neidinger and Rosenthal [13] showed that for every non zero functional /
on a non reflexive Banach space E, there is a subspace F of E such that / | F does
not attain its supremum on the unit sphere of F.

The space E is said to be quasi reflexive of order k, 0 < k < oo, if codirnE«» ir(E) =

k. It is known that if E is quasi reflexive of order k, then there is a subspace V of
E* which separates points in E with codimg* V = k, and an equivalent norm || -1|x on
E such that the unit ball {x £ E: \\x\h < 1} is compact in the a(E, V)-topology (see
[2], Theorem 3.3). It follows that

Coding.. (n(E) ®{<j>E E**: <j>(f) = 0, / £ V})

= codiniE»« ir(E) — codimg* V = 0.

Now, we claim that V is minimal as a subspace of E* that separates points of E. For if
W is a proper closed subspace of V which also separates points of E and / £ V is such
that / g W, then there is a <j> £ E** such that <£(/) = 1 and <f>(g) = 0 (g £ W). But
then there is x £ E and <j>Q £ E** with <f>0(h) = 0 (h £ V) such that <f> = w(x) + fa,
whence <f>(g) = g{x) = 0 (g £ W). Since W separates points of E we have x = 0,
or equivalently, <£(/) = 4>o(f) = 0. This is a contradiction. Thus, it follows by [15,
Theorem 1] that E is canonically isomorphic to V*.

The space E is called weakly compactly generated (in short, WCG) if there is
a weakly compact absolutely convex set K in E whose linear span is dense in E.

The concept was first considered by Amir and Lindenstrauss [1]. Every quasi reflexive
Banach space is WCG and so is its dual. A weaker concept than that of WCG spaces is
the concept of weakly countably determined (in short, WCD) spaces. The space E is
called WCD if there is a countable collection {Kn} of weak "-compact subsets of E**

such that for each x £ E and each <f> 6 E** \ n(E) there is an integer n0 > 0 such
that x £ KnQ and <j> £ Kno . The concept of WCD Banach spaces was introduced by
Vasak [17]. Every WCG Banach space is WCD and unlike WCG spaces, the subspaces
of a WCD Banach space are WCD. Further, the space E is said to be Asplund if every
continuous convex function defined on an open set U of E is Frechet differentiable over
a Gs set dense in U. Every subspace of an Asplund space is Asplund and if the dual
space E* is WCD then E is Asplund (see [14]). Thus, every quasi reflexive Banach
space is a WCD Asplund space.

We shall denote the cardinality of the smallest dense set in E by dens E. Let w
denote the first ordinal with cardinality No; the other symbols used for ordinals are
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a, fi, A and fi. Let fi be the first ordinal with cardinality dens E. A long sequence
{?a}u$a^/i of projections on E is said to be a projectional resolution of the identity
(in short, PRI) of E, if it satisfies the following:

(i)
00
(iii)
(iv)

(v)

I|P«|| = 1
PaP0=PpPa = P0
dens pa(.E) ^ card a

(w < a < fi)

(w ^ /3 < a
(w < a < fi)

(w ^ a < fj.)

is the identity operator on E.

If E has a PRI {pa}o;^a^^, then for each x £ E, the map a —> pa(*) from [w, fj] into
E is continuous and if fi ^ fj. is a limit ordinal then pp(x) = lim pa(x). Also, we shall

denote by Ea, the subspace pa(E) for each u ^ a < fi and note that E^ and E" are
isomorphic to p*a{E*) and p*a{E**), respectively. The concept of PRI was introduced
in [1] and a PRI in every WCG Banach space was obtained therein. For more details
on PRI one may refer to [16, Chapters 19 and 20] and [3, Chapter 6].

3. LEMMAS

In this section we give certain intermediate results in the form of lemmas which
will be required in proving the main result of the paper.

LEMMA 1. Let {XJ} be a sequence dense in a separable Banach space E with
codime" (TT(JE)) ^ k and let {0,}*=1 C E**\ir(E) be aHnearly independent set. Then,
there is 9 with 0 < 6 < 1 and, for each 1 ^ i ^ k, a sequence {/„ } in E* such that
for each n

(i) | / k O |< l
(ii) fk%i) = O

(iii) (j

(1 n - 1)

PROOF: Assume that | | ^ j | | = 1 (1 ^ i ^ k). For each 1 ^ i ^ k, let V; denote
the closed linear subspace of E** spanned by ir(E) U {<j>j}j^i and let 6 with 0 < 8 < 1
be such that inf dist(Fj, <j>i) > 8. Let {cj}™^*"1 be scalars such that, for some i

with n^i^n + k — 1, c,- = 8 and CJ = 0 whenever j ^ i. Then, for any scalars

^ * 1 . w e h a v ea>'

n - l n+fc-1
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By Helly's theorem, for each 1 ^ i $J Jfc, each natural number n and each e > 0 there
is fc,n ™ E* satisfying

(b)

(c) (ir(x,-)) (/<•>) =0 ( U i ^ n - l ) ,

(d) ^ ( / J £ ) = 0 ( n < i < n + * - l , i ^ 0 -
Now, since 0/dist (Vi, <f»i) < 1 (1 ^ i ^ A), it is easy to see that, for each 1 Sj i ^ k,
and each natural number n, there is /„ in E* satisfying (i)—(iii). D

To make our exposition precise, we shall call a set of A; linearly independent func-
tionals in E* each of which does not attain its supremum on the unit sphere of E, a
James set of size k in E*.

The next lemma gives the existence of James sets of certain sizes in the dual of a
separable quasi reflexive Banach space.

LEMMA 2 . Let E be a separable Banach space with codim^** w(E) ^ k. Then
E* contains a James set of size k.

PROOF: Let {XJ} be a sequence dense in E and let {&}*=1 C E** \ TT(E) be a
linearly independent set. Then, by Lemma 1, there is 9 with 0 < 8 < 1 and, for each
1 ^ i ^ k, a sequence {/„ } in E*, such that (i) - (iii) of Lemma 1 are satisfied. Let
1 < i ^ k be fixed. If / e conv{/i0}, then ||/|| ̂  6 and clearly, lim fP(x) = 0

n—>oo
[x £ E). Hence, by [9, Lemma 1], if {An} is a sequence of positive numbers with
oo ...

An = 1, then there is a number ai with 0 < en < 1, and a sequence {ffn } such
T l = l

that

(i)

(iii)

W, f % , . . . } ,

£ Kg?
n=l
m

(0

= a;

n=l \ n=rn+l

Since, lim /„ (z) = 0 (x E E), it follows from (i) above that for each x € E,
n—>oo

lim <7n (x) = 0; whence there is an n̂  such that gi, (x)\ < atf (n^rii). Now

it is easy to see from (ii) and (iii) above that the functional E ^n9n does not attain
n=l

its supremum on the unit sphere of E.
r oo "I *

Finally, the set < E ^nfln > is linearly independent since, by (iii) in Lemma
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1 and (i) above, we have <f>j [ Yl ^n5n ) = 0&i (1 ^ *> 3 ^ *)• This completes the
\n=l /

proof. D

Let us recall that a PRI {p o } u ^ o ^^ of E is said to be of type I if

and shrinking if {Pa}u> â</« is a PRI of E* (see [5, 14]). Note that a shrinking PRI is
of type I. John and Zizler [10, 11] showed that a WCG Banach space with a WCG dual
possesses a shrinking PRI. Vasak [17] proved the result in a more general case when
both E and E* are WCD. Improving upon this, Fabian [4] showed that WCD Asplund
spaces admit shrinking PRI and they are WCG. For some more results on shrinking
PRI one may refer to [14].

LEMMA 3 . Let E he a Banach space with a PRI {pa}u,̂ c«^M of type I such that
codirng" TT(E) JS k. Then, there is an ordinal w ^ A < fj, such that codim ;̂** TT\(E\) ^
k, where for each u> ^ a < /i, Ea = pa{E) and 7ra is the canonical map of Ea into its
bidual.

PROOF: First we claim that if 0 £ E** \n(E), then there is an ordinal w ^ A < \i
such that p£* • <j> (f: ir\{E\). Indeed, if there is an x £ E such that for each / £ E*,

(P;./)(x) = <£(?;./) (w ^ a < Ai),

then taking limit on a < /x, and as the PRI is of type I, we obtain <j>(f) — f(x)
(f G E*), which is a contradiction.

Now, let {<£i}*=i be a linearly independent set in E** \ir(E). Then, for each
1 ^ i ^ k, there is an ordinal u> ^ A; < fj. such that p".<fo ^ •Kxi{E\i) • Fur-
ther, since {^t}?=i is a h'nearly independent set, there is an ordinal w ^ A<> < y.
such that {pj*.&}*=1 is a linearly independent set. Let A = max{Ao, Ai, . . . , Aj.}.
Then, {p\*.<fo}*=1 is a Unearly independent set such that p".<fc ^ ir\(Ex) so that
codimS/"7TA(^A) ^ k. D

Before we state our next lemma we define a new class of Banach spaces containing
the quasi reflexive spaces and this is the class in which we are going to look for a
characterisation of quasi reflexive Banach spaces.

DEFINITION: A Banach space E is said to belong to the class V* if it has a PRI
{Pa}u^a$/i of type I such that pa{E) and (pa+i — pa)(E) also belong to V* for every
a € [w, fi).

The above definition is along the lines of the definition of a class V of Banach
spaces given in ([3], p.286). In fact, if the PRI in the definition of the class V is taken
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to be of type I, then we get the class V*. Every WCD Asplund space has a PRI of type
I and its complemented subspaces are also WCD Asplund. Thus, every WCD Asplund
space is in the class V*.

For a Banach space belonging to the class V* we first prove the following.

LEMMA 4 . Let E be a Ba.na.ch space in the class V* such that codimg" TT{E) ^
k. Then, E has a complemented separable subspace F, with a projection p of E onto
F, such that codirnF** irp(F) ^ k, where irv is the canonical map of F into F**.

PROOF: Since E has a PRI {pa}«<a$/i of type I with dens.E = card// and with
Ea and (pa+i — pa)(E) belonging to V*, by Lemma 3, there is an ordinal w < A < fj.
such that codini£:»» n\{E\) ^ k. Now, if E\ is separable, we are done. In case E\ is
not separable, let Ao be the first ordinal with cardinality dens E\. Again, since E\ is
in V* , let {qa}u^a^x0 be a PRI of type I of Ex such that qa(Ex) and (qa+1 - qa)(E)
also belong to V* for each a 6 [w, Ao). Another application of Lemma 3 will now give
an ordinal w ^ /? < Ao such that

where qp is the canonical map of qp(E\) into its bidual. By continuing in this way, we

shall obtain a complemented separable subspace of E with the required property. D

Now, for a bounded sequence {/n} in E*, we use the following notation,

L{fn} = \f eE*: liminf fn{x) ^ f(x)
K n—»oo

^ l imsup/n(x) , x £ E > .
n—>oo J

Note that if {/n} is weak*-null on a subspace F of E, then L{fn} is a subset of
the annihilator of F in E*. Now, we recall the following result which is due to James
[9].

LEMMA 5 . Let 0 < 6 < 1, An > 0 (n = 1, 2, . . . ) with £ An = 1 and let {/„}
n=l

be a sequence in the dual unit ball BE* of a Banach space E such that

\\f-9\\>0 (f € conv{/n}, g £ L{fn}).

Then, there is a with 6 ^ a ^ 2 and a sequence {gn} in BE* with gt £ conv{/n}
(a = 1, 2, . . . ) satisfying

(i) E An(5n - </) = a (gE L{gn}),
n=l ||

) (g £ L{gn}).
i=n+l /
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4. MAIN RESULT

We are now prepared to prove the main result of this paper, wherein we characterise

quasi reflexive Banach spaces among the class V* of Banach spaces in terms of the

cardinality of available James sets in the duals. The result generalises James's famous

sup theorem to the quasi reflexive case.

THEOREM . Let E be a Banach space belonging to the class V* . Then, E is quasi
reflexive of order k if and only if E* contains a James set of size k and any other James

set is of size at most k .

PROOF: Let E be a quasi reflexive space of order k. Then, there is a subspace V of
E* which separates points in E and with codime* V = k, such that E is canonically
isomorphic to V*. If / 6 V, by the Hahn-Banach theorem, there is ^ S V* with
||V>|| = 1, whence there is x 6 E with ||x|| = 1 such that f(x) = %l>(f) = \\f\\. Thus,
it follows that any James set in E* is of size at most k. Now, if E is separable and
codim^;" TT(E) = k, by Lemma 2 there is a James set in E* of size k. (Note that in
this case the assumption that E is in V* is redundant.) On the other hand, if E is
non separable, we shall construct a James set in E* of size k as follows.

Since E is in V*, by Lemma 4, there is a complemented separable subspace F of
E with a projection p of E onto F such that codirnp* ^p(F) ^ k. In fact, if {0i}*= 1

with \\4>i\\ ^ 1 (1 Ss i ^ k) is a linearly independent set in E** \ K{E), then F may
be so chosen that {p**.<f>i}f=1 is a linearly independent set such that p** .<j>i (£ Ttp{F)

(1 $J i $J k). Now let {XJ} be a sequence dense in F. Then, as in Lemma 1, there is 8

with 0 < 0 < 1 and, for each 1 ^ i ^ k, a sequence {/n } in E* such that for each n

(>) \ h ^ \ < l

(ii) t$(xj) = 0 (1 ^ j < n - 1)

(iii)

where h£ = p'.fP (1 ^ i ^ k, n = 1, 2, . . . ) .

Now, it follows from (ii) and (iii) above, that for each 1 ^ i ^ k, {/in } is weak*
null on F and

Il/H > 6 ( / £ conv{/W}) .

Thus

(iv) | | / - g\\ > ||P* • ( / - 5)11 = ||p*./||= 11/11 >8

( / G conv{h^}, g € L{fck°}, 1 < i < ib) .

Let us denote by W the subset n(F) U {&}*=i of E**. Note that since E is non sep-
arable, E** cannot be weak*-separable so that the linear span of W, being separable,
is not weak* dense in E**. Thus, U = {/ € E*: (j>(f) = 0, <j> £ W} is a non zero

https://doi.org/10.1017/S0004972700030562 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030562


96 P.K. Jain, K.K. Arora and D.P. Sinha [8]

subspace of E* and for each 1 ̂  i ^ A;, U C L{hn }. Further, choose a sequence
pp

{An} of scalars with An > 0 (n = 1, 2, ...) and E ^n = 1 such that there is 6 with
7 1 = 1

0 < 8 < 62/2 and An+J < 8Xn (n = 1, 2, . . . ) . Now, in view of (iv) above, we can
apply Lemma 5 to obtain an a with 8 ̂  a < 2 and, for each 1 ^ i ^ Jfc, a sequence
{</n } in the unit ball of E* with g? G conv{/in } (j = 1, 2, . . . ) , satisfying

(v)

(vi)

n = l

<a 1-
i=n+l

/ , n = l, 2, . . . ) .

Let us fix i with l ^ i ^ f c , x £ E with ||x|| = 1 and g £ U with ||«/|| ^ 1. Since

liminf gn (z) ^ 5(a;) an£l since 0 ̂  a, there exists TO such that

Thus
oo

n = l n = l

(a6> - 2S)Xm+1

71=771+2

n = l

2 X M-
\n=m+2 /

Now, applying (vi) from above and since An+i < £An (n = 1, 2, . . . ) , we have

7 1 = 1

- fl X) A« + («* - 2*)Am+1 + 2«
n=m+l /

= a-(a0- 28) An) < a.

does
oo , ... v

Hence, in view of (v) above, for each 1 ̂  i ̂  k and each g £ U, 52 ^n(5n — </)
7 1 = 1 ^ '

not attain its supremum on the unit sphere of E.

Finally, since for each 1 ^ i ^ A;, g£ 6 conv |^n }, it follows by (iii) above that

for each g G U, we have
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- ^ k

Hence, for each g G U, the set < 53 ^n(gn - g) \ is a James set of size k in E*.
U=i v ' J i=i

This completes the proof of the necessary part of the result.

Conversely, let E be a Banach space such that the dual space contains a James set

of size k and any other James set is of size at most k. If E is separable then it follows

from Lemma 2 that codim^;** f(-E) = k; while if E is non separable and belongs to V*

then from the above construction it follows that E is quasi reflexive of order k. u

COROLLARY. Let E be a WCD Asplund space. Then, E is quasi reflexive of

order k if and only if E* contains a James set of size k and the size of any other James

set in E* is at most k.

The assertion of the theorem answers positively the problem of extending James
theorem to the quasi reflexive case in the particular class V*. The problem remains
open whether one can prove the same without the assumption in the definition of V*.

In fact, the main hindrance is going to come in obtaining the assertion of Lemma 4
without the extra assumption. However, if not true in the general case, it may be true
for a class larger than V* or for that matter for a different class altogether containing
the quasi reflexive Banach spaces.
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