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Some concepts in measure theory can be generalized by means of classes of
null sets. When measures are considered then the classes of all sets of measure
zero play the role of classes of null sets. The purpose of this paper is to give an ab-
stract formulation and proof of the Lebesgue decomposition theorem.

Throughout this paper (X, £f) is a measurable space and Sf is a ff-algebra of
sets. The notation Ec is used for the complement of a set E and EAF for the sym-
metric difference of two sets E and F. A nonempty class Jf of sets such that
Jf c Sf,Jr is closed under countable unions of sets, and E n FeJ^ whenever
E e Jf and F e £f is called a class of null sets of SP. Evidently <t> e Jr. The no-
tation (Sf—Jr)C indicates that each subclass of disjoint sets of 5P —Jf is count-
able. If J( and ̂ V are two classes of null sets of S? and (SP —Jf)C holds, then there
exists a measurable set Zmn (\.oJ(,Jf are assigned indices m, n) with the following
properties: (i) ZmneJK, (ii) EeJK, E c Zc

mn imply EeJr. The set Zmn is deter-
mined uniquely in the following sense. A measurable set B has the properties (i)
and (ii) if and only if ZmnABeJ? n^V (cf. [1]). Let J( and Jf be two classes of
null sets of SP. We say that-yf̂  is absolutely continuous with respect to ~#, denoted
Jf <C Jt', \{J( <= JT. We say that J( and J/~ are equivalent, denoted ~# = Jr, if
both^T < J( and Jl <C^f. We say t\xaXJr is singular with respect to Jt', denoted
Jr ± J(, if there exists a measurable set A such that E n A eJ( and E n Ac BJV,
whenever EeSf. We note that the relation Jr ± ^ is symmetric. We say that^f
is ^-singular with respect t o ^ , denoted^ s*Jt, if given EeSf there exists a mea-
surable set F c £ such that Fe^K and both sets E and F belong to JT, or both
sets E and F belong to £f — Jr (cf. [4]). Jf sJ( need not be symmetric.

EXAMPLE. Let X — [0, 1 ] and £f be the class of all subsets of X. Let
Jt = {£:£• e Sf and E countable} and Jf — {</>}. We show \haXJr sJt. Given
Ee&>, then: if £ = <t>, putF = <j) then Fe J?, F <= E&nd both EandFeJ"". If E
countable, put F = E, then FBJ(, F C E and both E and f e ^ - X If E
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uncountable, put F = countable subset of E such that F # <t>, then F cz E,
F e J ' and both E and Fe SP — Jf. To show that Jt sJf does not hold consider
EG SP, E uncountable then the only set F c E, FEJV is F = <j> and FeJt but
EeSP-Jt.

Let (X, SP) be a measurable space and Jt, JV be two classes of null sets of
SP. Let-/fM = { £ : £ 6 y a n d £ n M e l " } for each Me Jt. Then ̂ TM is a class
of null sets of SP for each MeJt. If J£? = P) M e ^^M' then =§? is a class of null
sets of SP.

LEMMA 1. Let {X, SP) be a measurable space and Jt, J/~ be two classes of
null sets of SP. Let SP = (^MSJI^M • If EeSP there exists a measurable set Fsuch
that Fez E,FeJt and both sets E and Fbelong to SP or both belong toSP-SP.

PROOF. If Ee SP, then each measurable subset of E also belongs to J?. It is
sufficient to put F = E n M for an arbitrary set M e Jt.

YiEeSP — SP then there exists at least one set Mo e Jl such that E n Mo £ Jf.
Put F = E n Mo. We show that F$ &. On the contrary, suppose that Fe <SC,
hence for each MeJK, F n M ejV, but if M = Mo we have E r\ MQ^Jf.
This is a contradiction. Thus F e £P — ££.

LEMMA 2. Let (X, SP) be a measurable space andJ(, Jf be two classes of null
sets ofSP. Let SP be as above. Then SP's Jt', &' -C>" andJV nJ^ = ^nJ(.

PROOF. From Lemma 1 it immediately follows that £P s J(. Now we prove
SP^JV. Let EeJV then also EnMe^V for each MeJK, hence EejVM for
each MeJK. Thus E e &.

To prove / n J s =Sfn^#itis sufficient to show that SP c\ Jt c JV c\ J(
since the reverse inclusion follows at once from =Sf<C-^. Let Ee SP'n Jt',
then Ee^VM for each MeJt and EeJK, hence EeJr

E that is EeJf. Thus
r\J(.

THEOREM 1. Let (X, SP) be a measurable space and Jt, Jf be two classes of
null sets of £P. Then there exist two classes of null sets JV0 and Ar\ such that
J\'\sJt, A"0<^Jt and ^V = JV0 C\JV ^. The class JVX is always unique. If
{SP — JV)C then^V0 is unique also.

PROOF. Put JT x = SP, SP as in Lemma 1 then we have JV ^ s Jt. Let
JV0 = f)iv€^1^jv> where SCN = {E: EeSP and En Ne^V) for each NeJfx,
then JV'O and SPN for each Ne^ir

1 are classes of null sets of SP.
Now we prove JV0 <C Jt. From Lemma 1 we have, if E is any measurable

set there exists a measurable set L such that L <= E,LejVt and both sets E and L
belong to^T0 or both sets belong to SP—JV0. If moreover EeJt then from the
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equation (a) E = L u (E—L) follows that also L and E—L belong to Jl'. From
Lemma 2 we have Jf x c\Jl = ̂ V n J( and JV0 n Jf r =jVr\ Ar\ hence
/ 1 n J ' = Jir

0 C\jV1riJK and from the latter equation it follows that L e^V0.
Now it is sufficient to show that £ - L e # 0 . There exists a set G such that
G <= E-L, GeJVl and both G and E-L belong to J/~o or both G and £ - L
belong to &—Vo. But G = ( £ - £ ) n G and so GeJfx c\J(, hence GejVQ

and also £ - L e ^ " 0 . Now from (a) we have Ee^V0, hence ^# c ^"0 . Thus

To prove ̂ V = c^0 n .#*! it is sufficient to show that^T0 n yTx c ./f" since
the reverse inclusion follows from the definitions ofc#"0 a.nd^ir

1. From Lemma 2
we have JV Q n ./f̂  = / n i # \ , hence Jf'0 n ./K^ c: ^T.

To prove the uniqueness of the class JV1 suppose thsLtJr
0,A

r
1,^0 and ̂ x

are classes of null sets of S? such that JV'O nJ^t = Jf = ^ 0 n ^l5^f0 < -^>
^^<^J(,JV^SJ( and ^ s ^#. We wish to prove ./Tx = 0tx. Let E e y from
^*! s Jl follows, there exists a measurable set Ft such that Ft cz E, Fle^ and
both sets E and Fx belong tojV1 or both belong to S^—JV-^ . Since 0txs J( there
exists a measurable set F2 such that F2 <= E, F2s ~# and both sets £ and F2

belong to ^ t or both belong to Sf-3ix. Put F = Fx u F2 then f c £• and
FeJ(. Then F e ^ o and F e J o since ^f"0<C^# and ^ 0 -C ̂ . If moreover
Ee^V1 then also Fe^/K^ and from the equations JV0 C\JV\ = JV = Mo n ̂ t

it follows that Fe ^ hence F2 e ^ i , then £ e 0tx. Thus J^j <= M1. Similarly
we prove ^ cz f̂" x.

Now suppose (^—^V)C then there exists a measurable set Zmn with the
properties (i) and (ii). Let ^Vmn = {E : Ee£f and E n Zmn e J/"\. We prove
J/~i = <jVmn. The inclusion JV\ c jVmn follows at once from the definition of the
class Jr

l. On the other hand let EejVmn and let MeJt. From the equation
EnM=(EnMn Zmn) u [(E n M)-Zmn] follows E n Me^T for each M eJ(,
since both sets on the right belong to Jf. The first set because it is a subset of
E n ZmB, the second because of the property (ii). We have E e JVM for each M e Jt',
hence Ee^Vl. ThusyTx = Jfmn. We note that now JV0 = (\NeJrmn ^N-

Let Jf = {E-.EeSP and E-ZmnejV}. We show that JV0 =JiT. First we
prove E—ZmnE.jVx for each Ee£f. This follows from the relations (E-Zmn) n
Zmn = <j>eA", If moreover EeJfa then also E— Zmne^V0, hence E— ZmneJf,
since ^To

 n ^ I = ^ • Thus F e Jf. On the other hand, let E e J f and let
NBjVmn then from the equation EnN= (E n N n Z J u [(£n A^)-Zmn] follows
E nNe^ for each JV e ^Tmn, hence £ e =§?̂  for each N e ^Tmn. Thus E e */f "0.

Now we wish to prove^T0 = Mo, where ̂ T0<C^, 8%0<^J( and^F0 n-zT! =
^T = ̂ 0 n ^ ! . We recall that ( ^ - Z j e / " ! , whenever F e ^ . If moreover
F e ^ o then from the equation (b) E = (£ n Zmn)u (£-Zm n) it follows that
E e S&0, since the first set on the right belongs to J( and the second belongs to
Jf0 nA/'1. Thus JV0 <= &O. On the other hand, suppose £ e f 0 then again
from (b) it follows that E e JV0 , since the first set on the right belongs to J( and
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the second belongs to &0 n^Vt. Thus^0 c JT0. This completes the proof.

LEMMA 3. Let (X, Sf) be a measurable space andJK, Jf be two classes of null
sets ofSf. LetJVsJ? and {£f-jV)C, thenJf _L J(. Hence J( s Ar.

PROOF. From (y—Jf)C follows the existence of the set Zmn with the proper-
ties (i) and (ii). To prove Jf X J( it is sufficient to put A = Zmn, since E n A =
E n Zmn sJt, whenever E&if. Now it is sufficient to show that E n Ac BJV,
whenever E e SP. It given EeSf there exists a measurable set K such that K cz E,
KeJt and both sets is and K belong to Jf or both belong to Sf—J/~, since
JV sJt'. The set K— Zmn belongs to JV, this follows from the property (ii) of Zmn.
Now consider the set G = E— {KKJ Zmn), G is a measurable set and from ^ f j j '
follows that there exists a measurable set F <= G, F e ~# and both sets F and G
belong t o J ^ or both belong to &'-Jr. But Fe^f, since F <= Zc

mn and FeJf,
hence G belongs to Jf'. Finally from the equation E—Zmn = [E-{K\j Zmn)\
u (K-ZJ) we have £ n / = £ - Z a , e / for each Ee6f. Thus ^T ± J(.
Evidently also ̂  ± J/~ and hence ̂  j ^T .

Now we give the abstract formulation of the Lebesgue decomposition
theorem.

THEOREM 2. Let (X, Sf) be a measurable space and J(, Jf be two classes of
null sets of £f. Let (6^—^4r)C. Then there exist two uniquely determined classes
of null sets Jf 0 and JV 1 such that JVO <C ̂ , ^~\ -L ^ and JV = ̂ Vo n JV\.

PROOF. From Theorem 1 we have that there exist two classes of null sets
^Vo and-yTj such that Jf = ̂ Vo nJr

l, J/'0 ^J( and Jfr sJ(. Since if — Jf =
{Sf-jV^Kj^-jV^) ZJ Se-JTX, we have also (Sf-JT^C. Now applying
Lemma 3 from Jf x s*J( it follows that^K"; _L ^ .

Let (X, SP) be a measurable space and ^,J(,J/~ be classes of null sets of £f.
We express some of the properties of s-singularity which are listed in [4 p. 629]
by means of classes of null sets. For illustration we give the proof of d.

a. ^ T j ^ i f a n d o n l y i f ^ f = ST.

b. \iJTsJ( and & <^JK, then JV S &.

c. If JV S J( and Jf < Jt, then JT = ST.

d. If JVsJ( and &s Jt', then (JV n

e. If JT sJC and Jf s &, then / "

f. If JV < ^ n & and ^T 5 jSf, then ̂ T <

d. PROOF. If given £ e ^ there exists a measurable set Fx c E, F^eJK and
both sets Fand Ft belong to^T or both belong to £f—Jf. Then there exists a
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measurable set F2 <= E, F2eJt and both sets E and F2 belong to 3? or both be-
long to Sf-<£. Put F = Fj u F2 then F&J( and F <= E. Now it is sufficient to
show that both sets E and Fbelong tc/T n .§? or to Sf - (JV n i?) = ( ^ - ^ T ) u
( ^ - J27). We note that Fx c F c F. and F2 c F <= F,. If £", Fx e ./T and F, F2 e T,
then F and F belong to Jf n i?. In all other cases E belongs at least once to
Sf- JV or 6r°- i f and so does F, hence both £ and F belong to Sf - {JV n

We note, if (A', y, \i) is a measure space, where SP is a cr-algebra of sets, then
to fi we assign the class<J( = {E : Ee £f and /i(F) = 0}. Evidently^ is a class of
null sets of ST.

If (X, Sf, n) is a measure space and {̂ n}"= i is a sequence of totally finite mea-
sures on Sf we say that n has the property a, if ii(E) = £™= t /in(F) for each £ e y .

We note that the condition 'fi has the property a' is weaker than total <r-
finiteness of measures and it can be shown that the property (Sf — J()C in a mea-
sure space is equivalent to 'fi has the property er' as follows.

THEOREM 3. Let (X,£f,n) be a measure space and Jt = {E: E e £f and
/i(E) = 0}, where £f is a o-algebra of sets. Then (Sf — ̂ )C if and only iffi has the
property a.

For the proof see [2].
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