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Some concepts in measure theory can be generalized by means of classes of
null sets. When measures are considered then the classes of all sets of measure
zero play the role of classes of null sets. The purpose of this paper is to give an ab-
stract formulation and proof of the Lebesgue decomposition theorem.

1

Throughout this paper (X, &) is a measurable space and .% is a g-algebra of
sets. The notation E° is used for the complement of a set £ and EAF for the sym-
metric difference of two sets E and F. A nonempty class A4~ of sets such that
AN < &, N is closed under countable unions of sets, and E n Fe A" whenever
Ee N and Fe ¥ is called a class of null sets of <. Evidently ¢ € #”. The no-
tation (& —A4")C indicates that each subclass of disjoint sets of & —.4" is count-
able. If .# and A" are two classes of null sets of & and (% —A4")C holds, then there
exists a measurable set Z,,, (to.#,.4" are assigned indices m, n) with the following
properties: (i) Z,,,€ A, (ii)) Ec.#, E < Z,, imply Ee€A". The set Z,, is deter-
mined uniquely in the following sense. A measurable set B has the properties (i)
and (ii) if and only if Z,,,ABe.# AN (cf. [1]). Let 4 and 4" be two classes of
null sets of %. We say that 4" is absolutely continuous with respect to .#, denoted
N L M,if M <= AN. Wesay that 4 and A" are equivalent, denoted 4 = 47, if
bothA” < A and M < AN". We say that.A" is singular with respect to .#, denoted
N L M, if there exists a measurable set 4 such that En Ae.# and En A°e A",
whenever Ee.%”. We note that the relation 4" | 4 is symmetric. We say that. 4~
is s-singular with respect to .#, denoted 4" s 4, if given E € & there exists a mea-
surable set F < E such that Fe.# and both sets E and F belong to 4", or both
sets E and F belong to & —A" (cf. [4]). A" 5. # need not be symmetric.

ExaMpPLE. Let X = [0,1] and % be the class of all subsets of X. Let

M = {E:Ee% and E countable} and 4" = {¢}. We show that 4" s.#. Given

Ec %, then:if E = ¢,put F = ¢ then Fe.#, F = Eand both Eand FeA".If E

countable, put F = E, then Fe.#, F = E and both E and Fe ¥ —A4". If E
101
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uncountable, put F = countable subset of E such that F # ¢, then F c E,
Fe.# and both E and Fe & —.A4". To show that .# s.4" does not hold consider
E e &, E uncountable then the only set F = E, Fe /" is F = ¢ and Fe.# but
EeS—MA.

2

Let (X, &) be a measurable space and .#, A" be two classes of null sets of
S Let Ny ={E:Ee¥ and En Me A"} for each M €. #. Then.A ), is a class
of null sets of & for each Me . If L = (4N u> then & is a class of null
sets of &.

LemMma 1. Let (X, ) be a measurable space and M, N be two classes of
null sets of . Let & = (\yye.uN m- If E€ P there exists a measurable set F such
that F < E, F e # and both sets E and F belong to ¥ or both belong to & — % .

Proor. If Ee€ %, then each measurable subset of E also belongs to Z. It is
sufficient to put F = E n M for an arbitrary set M e 4.

If E € & — & then there exists at least one set M, € 4 such that En My ¢ A"
Put F = En M,. We show that F¢ .#. On the contrary, suppose that Fe .Z,
hence for each Me#, Fn MeA", but if M = M, we have En My ¢ 4.
This is a contradiction. Thus Fe & — &.

LEMMA 2. Let (X, S) be a measurable space and M, N~ be two classes of null
sets of . Let £ be as above. Then X s M, F KN and N ~ M =L  MH.

Proor. From Lemma 1 it immediately follows that £ s.#. Now we prove
L AN, Let EeA then also En M e A for each M e .#, hence Ee AN, for
each M e #. Thus Ec Z.

To prove /' Nn.# = ¥ n A itissufficient toshowthat ¥ n M c N N M
since the reverse inclusion follows at once from ¥ A" Let Ee ¥.n A,
then Ee A"y, for each Me.# and Ec.#, hence Ec.A " that is EeA". Thus
EeAN n M.

THEOREM 1. Let (X, ) be a measurable space and M, N~ be two classes of
null sets of . Then there exist two classes of null sets Ny and A", such that
N s M NogLMand N = NN . The class N | is always unique. If
(F —=N")C then N, is unique also.

PrOOF. Put 47, = %, ¥ as in Lemma 1 then we have A", s.#. Let
No = (e ZLn> Where Ly ={E:Ee¥ and En Ne A} for each Ne A,
then A", and .Zy for each N e A", are classes of null sets of &.

Now we prove 4"y < #. From Lemma 1 we have, if E is any measurable
set there exists a measurable set L such that L < E, Le A", and both sets Eand L
belong to 4", or both sets belong to & —.A4";. If moreover E € .# then from the
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equation (a) E =L u (E—L) follows that also L and E—L belong to .#. From
Lemma 2 we have /" n M =A" M and S g ANy =N " A", hence
N M =ANqn N 0 A and from the latter equation it follows that L e A4",.
Now it is sufficient to show that E—L e .4#",. There exists a set G such that
Gc E-L, Ge A, and both G and E—L belong to A", or both G and E~L
belong to & ~A"y. But G = (E—L)n G and so Ge AN, N A, hence Ge AN,
and also E—Le A y. Now from (a) we have Ee A", hence .# = .A4";. Thus
N oL M.

To prove AV = A"y n A it is sufficient to show that 4"y N A", < A since
the reverse inclusion follows from the definitions of /"y and A", . From Lemma 2
we have /g " A | = A AN, hence /g N AN | = N

To prove the uniqueness of the class A", suppose that 4"y, A", #, and %,
are classes of null sets of & such that / o N"NA | =N =B Ry, N ¢ L M,
Ry L MN |5 M and R, 5 M. We wish to prove /7, = #,. Let Ec ¥ from
A"y s M follows, there exists a measurable set F; such that F, < E, F, e .# and
both sets E and F, belong to.A4"; or both belong to & ~A",. Since %, s # there
exists a measurable set F, such that F, « FE, F, € .# and both sets F and F,
belong to #,; or both belong to &—%,. Put F=F, U F, then F < E and
Fe.#. Then Fe Ay and Fe %, since N o K M and R, < M. If moreover
Ee A", then also Fe A", and from the equations /g " A | = N = By %,
it follows that Fe %, hence F,e %, then E€ #,. Thus 4", < %,. Similarly
we prove #, < A,.

Now suppose (& —A")C then there exists a measurable set Z,, with the
properties (i) and (ii). Let A", = {E:Ee¥ and En Z,, € A4"}. We prove
Ny = A - The inclusion A, = A, follows at once from the definition of the
class .47;. On the other hand let £e€.4",, and let M e.#. From the equation
EnM=(EnMnZ,)v(EnM)-Z,,]follows En MeA foreach M e.#,
since both sets on the right belbng to A", The first set because it is a subset of
EnZ,,, the second because of the property (ii). We have E e A", foreach M e .4,
hence Ee.A". Thus A"y =.A",,. We note that now A5 = (\yespm Ln-

LetX = {E:Ee%¥ and E—Z,, e A}. We show that /7, =2 First we
prove E—Z,,eN", for each E e . This follows from the relations (E—Z,,) N
Z,n = ¢ A", If moreover Ee AN, then also E—Z,,,€ N, hence E—Z,, €A,
since A/ o A" = A". Thus E€ A". On the other hand, let Ee ¢ and let
Ne A, thenfromtheequation ENN=(ENnNnZ,)U [(En N)—Z,,] follows
EnNe for each Ne A,,, hence Ee &£, for each Ne A",,,. Thus E€ A"

Now we wish to prove A, = %, where N (L M, By L M and N g N | =
N =Ry AN We recall that (E—Z,,)e A", whenever E e &. If moreover
Ee A, then from the equation (b) E = (En Z,,)v (E—Z,,) it follows that
E e #,, since the first set on the right belongs to .# and the second belongs to
N oA . Thus Ay = #,. On the other hand, suppose E € %, then again
from (b) it follows that E € A", since the first set on the right belongs to .# and

https://doi.org/10.1017/51446788700008375 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008375

104 V. Ficker [4]

the second belongs to %, n A" . Thus Z, = A#",. This completes the proof.

LEMMA 3. Let (X, &) be a measurable space and M, N be two classes of null
setsof &. Let /" s M and (S —N")C, then N~ L M. Hence M s N".

ProoF. From (& —.A4")C follows the existence of the set Z,,, with the proper-
ties (i) and (ii). To prove A4~ L # it is sufficient toput 4 = Z,,, since ENn 4 =
EnZ,,c#, whenever Ec . Now it is sufficient to show that En A°e A,
whenever E e &. It given E € & there exists a measurable set K such that X < E,
Ke.# and both sets E and K belong to 4" or both belong to ¥ —.A4", since
N s.#. The set K—Z,, belongs to A4, this follows from the property (ii) of Z,,,.
Now consider the set G = E—(Ku Z,,,), G is a measurable set and from A" s .#
follows that there exists a measurable set F = G, Fe.# and both sets Fand G
belong to A" or both belong to & ~A4". But Fe A", since F c« Z¢, and Fe.#,
hence G belongs to A”. Finally from the equation E—Z,, = [E—(Kv Z,,)]
v (K-Z,,) we have En A° = E—Z, e A for each Ee%. Thus 4" L . 4.
Evidently also .# L .4 and hence # s A",

Now we give the abstract formulation of the Lebesgue decomposition
theorem.

THEOREM 2. Let (X, ) be a measurable space and M, N be two classes of
null sets of . Let (¥ —A")C. Then there exist two uniquely determined classes
of null sets /g and N such that "y K M, N, LM and N =Ny AN ;.

Proor. From Theorem 1 we have that there exist two classes of null sets
N oand Ay such that & = A" gAN |, N (L M and N | s M. Since F —N =
(FL=AN)u (L —AN) o F—A, we have also (¥ —A")C. Now applying
Lemma 3 from A", s .# it follows that 4", L #.

3

Let (X, &) be a measurable space and &, #,.4" be classes of null sets of .
We express some of the properties of s-singularity which are listed in [4 p. 629]
by means of classes of null sets. For illustration we give the proof of d.

a. /s A ifandonlyif #” = &.

b. U N s.M and ¥ < M, then N 5 ZL.

c. f /' s.# and & <« M, then # = &.

d. If A s.# and £ s M, then (N n L)s M.
e. If A" s.M and N s L, then & 5 (M  P).
N LML and N s L, then &/ < M.

f.
d. Proor. If given E € & there exists a measurable set F; ¢ E, F, e . # and
both sets E and F, belong to 4" or both belong to & —A4". Then there exists a
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measurable set F, < E, F,e.# and both sets E and F, belong to .Z or both be-
long to ¥ —%.Put F = F, UF, then Fe.# and F — E. Now it is sufficient to
show that both sets E and Fbelongto/" n X orto S —(N 0 L) =(F~AN)u
(F-&). Wenotethat F; c Fc Eand F, c Fc E. If E,Fe /" and E, F, € %,
then E and F belong to A ~ &. In all other cases E belongs at least once to
S —N or ¥ —Z and so does F, hence both E and F belong to & — (A" n F).

4

We note, if (X, &, u) is a measure space, where % is a g-algebra of sets, then
to u we assign the class # = {E: E€ % and u(E) = 0}. Evidently .# is a class of
null sets of .%.

If (X, %, i) is a measure space and {u,}% , is a sequence of totally finite mea-
sures on % we say that p has the property o, if p(E) = > ., u,(E) foreach Ee &.

We note that the condition ’u has the property ¢’ is weaker than total o-
finiteness of measures and it can be shown that the property (& —#)C in a mea-
sure space is equivalent to ’u has the property ¢’ as follows.

THEOREM 3. Let (X, %, u) be a measure space and M = {E:Ee ¥ and
U(E) = 0}, where & is a a-algebra of sets. Then (¥ — .#)C if and only if u has the
property a.

For the proof see [2].
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