ESTIMATES FOR THE KOEBE CONSTANT AND THE SECOND COEFFICIENT FOR SOME CLASSES OF UNIVALENT FUNCTIONS

D. BSHOUTY, W. HENGARTNER AND G. SCHOBER

1. Introduction. Let S be the set of all normalized univalent analytic functions $f(z) = z + a_2 z^2 + ...$ in the open unit disk U. Then f(U) contains the disk $\{|w| < \frac{1}{4}\}$. Here $\frac{1}{4}$ is the best possible constant and is referred to as the Koebe constant for S. On the other extreme, f(U) cannot contain the disk $\{|w| < 1\}$ unless f is the identity mapping.

In order to interpolate between the class S and the identity mapping, one may introduce the families S(d), $\frac{1}{4} \leq d \leq 1$, of functions $f \in S$ such that f(U) contains the disk $\{|w| < d\}$. Then $S(d_1) \supset S(d_2)$ for $d_1 < d_2$, $S(\frac{1}{4}) = S$, and S(1) contains only the identity mapping. It is obvious that d is the "Koebe constant" for S(d). The relation between d and the second coefficient a_2 has been studied by E. Netanyahu [5, 6].

In this article we shall introduce new families of univalent functions that interpolate in a natural way between S and the identity mapping. We shall give estimates both for the "Koebe constants" for these families and for the second coefficients a_2 of functions in these families.

2. Definitions. For $0 < \rho \leq \infty$ let S^{ρ} consist of those functions $f \in S$ such that the inverse function f^{-1} has a univalent analytic continuation to $\{|w| < \rho\}$. Then $S^{\rho_1} \supset S^{\rho_2}$ for $\rho_1 < \rho_2$, $S^{\rho} = S$ for $0 < \rho \leq \frac{1}{4}$, and S^{∞} contains only the identity mapping. It is obvious that $S(d) \subset S^d$, and by means of examples in Sections 3 and 4 we shall see that this containment is proper for $d \neq \frac{1}{4}$. Therefore, it is an interesting question to determine the radius d_{ρ} of the largest disk $\{|w| < d_{\rho}\}$ that is contained in f(U) for every $f \in S^{\rho}$. We call d_{ρ} the Koebe constant for S^{ρ} .

We also introduce a family \mathscr{G}^{ρ} that is closely related to S^{ρ} . For $0 < \rho < \infty$ let \mathscr{G}^{ρ} consist of those functions $f \in S$ such that $f = \psi \circ \phi^{-1}$ where ϕ and ψ are analytic and univalent in U, normalized so that $\phi(0) = \psi(0) = 0$, $\phi'(0) = \psi'(0)$, and

 $\{|w| < 1\} \subset \phi(U), \{|w| < \rho\} \subset \psi(U).$

It is clear that \mathscr{S}^{ρ} is a subset of $S^{\rho}: \mathscr{S}^{\rho} \subset S^{\rho}$. In Section 8 we shall show that it is a proper subset for $\frac{1}{4} < \rho < \infty$. In addition, if we define

Received January 5, 1979. This work was supported in part by the National Research Council of Canada and the National Science Foundation of the United States.

 $S^{\infty} = \bigcap_{0 < \rho < \infty} S^{\rho}$, then $S^{\rho_1} \supset S^{\rho_2}$ for $\rho_1 < \rho_2, S^{\rho} = S$ for $0 < \rho \leq \frac{1}{4}$, and S^{∞} contains only the identity mapping. By analogy we define ∂_{ρ} to be the *Koebe constant for* S^{ρ} . By choosing ϕ as the identity mapping we see that $S(d) \subset \mathscr{S}^d$. However, in Section 4 we note that $\partial_d < d$, so that this containment is also proper, except for $d = \frac{1}{4}$.

The classes S^1 and \mathscr{S}^1 were introduced by M. Lewin [4]. They have been studied in [4], [5], [3], and [7]. The functions in S^1 are called *bi-univalent*.

3. Examples. The following examples will be useful.

Example 1. For $\frac{1}{4} < d < 1$, let w = k(z, d) be the normalized (k(z, d) = z + ...) mapping of the unit disk onto the complement of an arc of the circle |w| = d, with midpoint -d, and a slit along the negative axis from -d to $-\infty$. As extreme cases, let w = k(z, 1) be the identity mapping, and let $k(z, \frac{1}{4})$ be the Koebe function that maps U onto the complement of just the slit along the negative axis from $-\frac{1}{4}$ to $-\infty$.

Of course, $k(z, \frac{1}{4}) = z/(1-z)^2$, and for $\frac{1}{4} < d \leq 1$ the function k(z, d) is defined implicitly by

$$k(z, d) = \frac{dt(1 - \epsilon t)}{\epsilon - t}$$
 and $\frac{dt}{(1 + t)^2} = \frac{\epsilon z}{(1 + z)^2}$

where $4d = (1 + \epsilon)^2$. We choose the branch of t = t(z) that takes 0 < z < 1 to the positive real axis.

The function k(z, d) belongs to S(d) and, hence, to S^d and \mathscr{S}^d . It is extremal in S(d) for the following two results, which we shall need later.

LEMMA 1. ([1]). For $f \in S(d)$ and |z| < 1, we have

 $-k(-|z|, d) \leq |f(z)| \leq k(|z|, d).$

LEMMA 2. ([6]). For $f(z) = z + a_2 z^2 + ...$ in S(d), we have

$$|a_2| \leq \frac{2}{d} (1 - \sqrt{d}) (3\sqrt{d} - 1).$$

Equality occurs if and only if $f(z) = e^{-i\alpha}k(e^{i\alpha}z, d)$ for some real α .

In [5, 6] Netanyahu actually considered the class $S(d) \setminus \bigcup_{\hat{a} > d} S(\hat{d})$ in terms of our notation. However, since the bound in Lemma 2 is a decreasing function of d, it is valid for the full class S(d).

Example 2. The functions $f(z) = -(1/d)k(-k^{-1}(dz, d), d')$ belong to $\mathscr{S}^{d'/d}$. (Here k^{-1} is with respect to the first argument.) They will be useful in the explicit determination of ∂_{ρ} in Section 4.

Example 3. For $0 < \theta \leq \pi$, the function

$$f(z) = \frac{z - \frac{1}{2}(1 + e^{-i\theta})z^2}{(1 - z)^2}$$

is close-to-convex and maps the unit disk onto the entire plane except for a straight line slit. Since $f(\pm i) = -\frac{1}{2} \pm \frac{1}{4}i(1 + e^{-i\theta})$, the slit passes through the point $-\frac{1}{2}$. In addition, $f'(e^{i\theta}) = 0$ so that

$$f(e^{i\theta}) = -\frac{1}{4} + \frac{i}{4}\cot\frac{\theta}{2}$$

is the tip of the slit. If δ_f denotes the distance of the slit from the origin, then $\delta_f = \frac{1}{2} \cos(\theta/2)$ for $0 < \theta \leq \pi/2$ and $\delta_f = \frac{1}{4} \csc(\theta/2)$ for $\pi/2 \leq \theta \leq \pi$.

For $0 < \theta < \pi/2$ the Schwarz reflection principle allows us to continue f^{-1} analytically and univalently across the slit. Two points restrict the continuation. One is, of course, the tip of the slit. The other is the reflection of the origin at $e^{i\theta/2} \cos \theta/2$, which leads to a pole of f^{-1} . The latter is closer to the origin than the tip of the slit if $0 < \theta < \pi/6$. The three different situations are summarized as follows: For $0 < \theta \leq \pi/6$ the function f belongs to S^{ρ} where

$$\rho = 2\delta_f = \cos (\theta/2).$$

For $\pi/6 \leq \theta \leq \pi/2$ the function f belongs to S^{ρ} where

$$\rho = |f(e^{i\theta})| = \frac{1}{4} \csc (\theta/2) \text{ and } \delta_f = \frac{1}{2} \cos (\theta/2).$$

For $\pi/2 \leq \theta \leq \pi$ the function f belongs to S^{ρ} where

$$\rho = \delta_f = |f(e^{i\theta})| = \frac{1}{4} \csc (\theta/2).$$

Example 4. The Möbius transformation $f(z) = \rho z/(\rho - z)$ belongs to S^{ρ} , and

$$\delta_f = \min_{\iota} |f(e^{\iota \iota})| = \frac{\rho}{\rho+1} \, .$$

Examples 3 and 4 provide a family of functions that vary continuously from the Koebe function $k(z, \frac{1}{4})$ to the identity mapping. They also provide the following upper estimates for d_{ρ} .

PROPOSITION. The following are upper bounds for the Koebe constants d_{ρ} for the families S^{ρ} :

$$d_{\rho} \leq \begin{cases} \rho & for \frac{1}{4} \leq \rho \leq \frac{\sqrt{2}}{4} \\ \sqrt{16\rho^{2} - 1/8\rho} & for \frac{\sqrt{2}}{4} \leq \rho \leq \frac{1}{4} \csc \frac{\pi}{12} \approx .966 \\ \frac{1}{2}\rho & for \frac{1}{4} \csc \frac{\pi}{12} \leq \rho \leq 1 \\ p/(\rho + 1) & for \rho \geq 1. \end{cases}$$

We shall improve these bounds at the end of the next section.

4. The Koebe constant in \mathcal{S}^{p} **.** The following is a preliminary result.

LEMMA 3. Let f belong to \mathscr{S}^{ρ} . Then for $\frac{1}{4} \leq \rho \leq 4$ (a) $\min_{1/4 \leq \rho x, x \leq 1} - \frac{1}{x} k(-k^{-1}(|z|x, x), \rho x) \leq |f(z)|$

$$\leq \max_{1/4 \leq \rho_{x,x} \leq 1} \frac{1}{x} k(-k^{-1}(-|z|x,x),\rho_{x})$$

and for $\rho > 4$

(b)
$$\min_{1/4 \le \rho x \le 1} - \frac{1}{x} k(-k^{-1}(|z|x, \frac{1}{4}), \rho x) \le |f(z)|$$
$$\le \max_{1/4 \le \rho x \le 1} \frac{1}{x} k(-k^{-1}(-|z|x, \frac{1}{4}), \rho x).$$

These estimates are sharp.

Proof. If $f \in \mathscr{G}^{\rho}$, then $f = \psi \circ \phi^{-1}$ where $\phi(0) = \psi(0) = 0$, $a \equiv \phi'(0) = \psi'(0)$, and $U \subset \phi(U)$, $\{|w| < \rho\} \subset \psi(U)$. Thus $(1/a)\psi \in S(\rho x)$ and $(1/a)\phi \in S(x)$ for x = 1/|a|, and so by Lemma 1 we have

$$|f(\phi(\zeta))| = |\psi(\zeta)| \leq \frac{1}{x} k(|\zeta|, \rho x).$$

Here $f(\phi(\zeta))$ for $|\phi(\zeta)| \ge 1$ is defined by analytic continuation.

Let now $z = \phi(\zeta)$ so that

$$|f(z)| \leq \frac{1}{x}k(|\zeta|, \rho x) \text{ for } |\zeta| < 1$$

By applying Lemma 1 to ϕ , we have

$$-\frac{1}{x}k(-|\zeta|,x) \leq |\phi(\zeta)| = |z|$$

It follows by monotonicity that $|\zeta| \leq -k^{-1}(-|z|x, x)$ and

$$|f(z)| \leq \frac{1}{x}k(-k^{-1}(-|z|x,x),\rho x).$$

This estimate is sharp since the functions of Example 2 (§3) belong to the class. The upper estimate in (a) follows from considering all admissible choices of x. The lower estimate in (a) is proved similarly.

If $\rho > 4$, then ψ exists only for $x < \frac{1}{4}$. The necessary adjustments are reflected in (b).

We shall now determine the Koebe constants for the families \mathscr{G}^{p} explicitly.

THEOREM 1. The Koebe constants for the families \mathcal{S}^{ρ} are

$$\partial_{\rho} = \rho \frac{2(1+\sqrt{\rho})^2 - (2\sqrt{\rho}-1)\sqrt{(1+\sqrt{\rho})(4+\sqrt{\rho})}}{2(1+\sqrt{\rho})^2 + (2\sqrt{\rho}-1)\sqrt{(1+\sqrt{\rho})(4+\sqrt{\rho})}}$$

or $\frac{1}{4} \le \rho \le 4$

and

$$\partial_{\rho} = \rho \frac{\sqrt{4+\rho} - \sqrt{\rho}}{\sqrt{4+\rho} + \sqrt{\rho}} \quad \text{for } \rho > 4.$$

Proof. Case 1: $\frac{1}{4} \leq \rho \leq 4$. It follows from Lemma 3 that

$$\partial_{\rho} = \min_{1/4 \leq \rho x, x \leq 1} - \frac{1}{x} k(-k^{-1}(x, x), \rho x).$$

If $\zeta = k^{-1}(x, x)$, then

$$x = k(\zeta, x) = xt \frac{1 - \epsilon t}{\epsilon - t}$$
 where

$$\frac{xt}{(1+t)^2} = \frac{\epsilon\zeta}{(1+\zeta)^2}$$

and $4x = (1 + \epsilon)^2$. Since $\epsilon t^2 - 2t + \epsilon = 0$, we have $t = (1 - \sqrt{1 - \epsilon^2})/\epsilon$. Therefore

$$\frac{\epsilon \zeta}{(1+\zeta)^2} = \frac{xt}{(1+t)^2} = \frac{x\epsilon}{2(1+\epsilon)} = \frac{1}{4}\epsilon \sqrt{x}$$

and $\zeta = (2 - \sqrt{x} - 2\sqrt{1 - \sqrt{x}})/\sqrt{x}$. We are interested in $-(1/x)k(-\zeta, \rho x)$, and so we compute

$$\frac{-\zeta}{(1-\zeta)^2} = \frac{-\sqrt{x}}{4(1-\sqrt{x})} \,.$$

If

$$\frac{\rho x\tau}{\left(1+\tau\right)^2} = \frac{-\eta \zeta}{\left(1-\zeta\right)^2}$$

where $4\rho x = (1 + \eta)^2$, then

$$-\eta\tau = 2\rho\sqrt{x}(1-\sqrt{x}) + \eta$$

$$-2\rho\sqrt{x}(1-\sqrt{x})\sqrt{1+\frac{\eta}{\rho\sqrt{x}(1-\sqrt{x})}}$$

and

$$-\eta/\tau = 2\rho\sqrt{x}(1-\sqrt{x}) + \eta$$
$$+ 2\rho\sqrt{x}(1-\sqrt{x})\sqrt{1+\frac{\eta}{\rho\sqrt{x}(1-\sqrt{x})}}$$

Therefore

$$-\frac{1}{x}k(-\zeta,\rho x) = \rho \frac{1-\eta \tau}{1-\eta/\tau} = \rho \frac{1-\sqrt{\rho h}(y)}{1+\sqrt{\rho h}(y)}$$

where

$$h(y) = \frac{1 - y}{1 + \sqrt{\rho}(1 - y)} \sqrt{1 + \frac{2\sqrt{\rho}y - 1}{\rho y(1 - y)}}$$

and $y = \sqrt{x}$ is restricted by $\frac{1}{2} \leq y$, $\sqrt{\rho}y \leq 1$. For $\frac{1}{4} \leq \rho \leq 4$ the maximum of h(y) over the given interval occurs at $y = (1 + \sqrt{\rho})/(3\sqrt{\rho})$. The indicated value for

$$\partial_{\rho} = \rho \frac{1 - \sqrt{\rho} \max h(y)}{1 + \sqrt{\rho} \max h(y)}$$

follows by substitution.

Case 2: $\rho > 4$. In this case, it follows from Lemma 3 that

$$\partial_{\rho} = \min_{1/4 \leq \rho x \leq 1} - \frac{1}{x} k (-k^{-1}(x, \frac{1}{4}), \rho x).$$

Thus we are interested in $-(1/x)k(-\zeta, \rho x)$ where

$$x = k(\zeta, \frac{1}{4}) = \frac{\zeta}{(1-\zeta)^2}.$$

Now

$$-\frac{1}{x}k(-\zeta,\rho x) = \rho \frac{1-\eta\tau}{1-\eta/\tau}$$

where

$$\frac{\rho x \tau}{(1+\tau)^2} = \frac{-\eta \zeta}{(1-\zeta)^2} = -\eta x \text{ and } 4\rho x = (1+\eta)^2.$$

Since

$$-\eta\tau = \eta + \frac{1}{2}\rho - \frac{1}{2}\sqrt{\rho^2 + 4\rho\eta}$$

and

$$-\eta/\tau = \eta + \frac{1}{2}\rho + \frac{1}{2}\sqrt{\rho^2 + 4\rho\eta},$$

we may write

$$-\frac{1}{x}k(-\zeta,\rho x) = \rho \frac{1-\sqrt{\rho}H(\eta)}{1+\sqrt{\rho}H(\eta)}$$

where

$$H(\eta) = \frac{\sqrt{\rho + 4\eta}}{2 + 2\eta + \rho}$$

and η is in the interval from 0 to 1. The maximum of $H(\eta)$ occurs for $\eta = 1$, and the indicated value for

$$\partial_{\rho} = \rho \frac{1 - \sqrt{\rho} \max H(\eta)}{1 + \sqrt{\rho} \max H(\eta)}$$

follows by substitution.

Remarks. Since $\mathscr{S}^{\rho} \subset S^{\rho}$, it follows that $d_{\rho} \leq \partial_{\rho}$. Therefore the values of ∂_{ρ} from Theorem 1 provide upper bounds for d_{ρ} . They improve the ones at the conclusion of Section 3. In the next section we shall use the fact that $d_{\rho} = \partial_{\rho} = \frac{1}{4}$ for $0 < \rho \leq \frac{1}{4}$ and $d_{\rho} \leq \partial_{\rho} < \min\{\rho, 1\}$ for $\frac{1}{4} < \rho < \infty$.

5. The Koebe constant in S^{ρ} . Let f belong to S^{ρ} , $0 < \rho < \infty$. Then a continuation of the function $g(w) = f^{-1}(\rho w)/\rho$ belongs to $S^{1/\rho}$. Therefore by Lemma 1 we have

$$|g(w)| \le k(|w|, d_{1/\rho})$$
 in $|w| < 1$,

where as before, $d_{1/\rho}$ denotes the Koebe constant for the class $S^{1/\rho}$. That is, for all z with $|f(z)| < \rho$ we have

$$|z| \,=\,
ho \left| g igg(rac{f(z)}{
ho} igg)
ight| \,\, \leq \,
ho k igg(rac{|f(z)|}{
ho} \,,\, d_{1/
ho} igg) \,.$$

Since f is arbitrary and $d_{\rho} \leq \rho$, we may conclude by letting $|z| \rightarrow 1$ that

(1)
$$1 \leq \rho k \left(\frac{d\rho}{\rho}, d_{1/\rho} \right)$$
.

There is no restriction on ρ , and so we may replace ρ by $1/\rho$ in (1) to obtain the dual inequality

(2)
$$1 \leq \frac{1}{\rho} k(\rho d_{1/\rho}, d_{\rho}).$$

Motivated by the inequalities (1) and (2), we shall consider the system of equations

(3)

$$1 = \rho k \left(\frac{x}{\rho}, \tilde{y} \right) \qquad \tilde{y} = \max \left\{ y, \frac{1}{4} \right\}$$

$$1 = \frac{1}{\rho} k (\rho y, \tilde{x}) \qquad \tilde{x} = \max \left\{ x, \frac{1}{4} \right\}$$

for fixed ρ , $0 < \rho < \infty$. The following theorem shows that an iterative solution of this system leads to a lower bound for d_{ρ} .

THEOREM 2. For fixed ρ , $0 < \rho < \infty$, define $x_0 = y_0 = 0$ and

(4)

$$\tilde{y}_n = \max\{y_n, \frac{1}{4}\}, \qquad x_{n+1} = \rho k^{-1} \left(\frac{1}{\rho}, \tilde{y}_n\right)$$

 $\tilde{x}_n = \max\{x_n, \frac{1}{4}\}, \qquad y_{n+1} = \frac{1}{\rho} k^{-1}(\rho, \tilde{x}_n)$

for $n \ge 0$. Then the sequences $\{x_n\}, \{y_n\}, \{\tilde{x}_n\}, \{\tilde{y}_n\}$ are nondecreasing, and their respective limits $x, y, \tilde{x}, \tilde{y}$ are a solution of the system (3). The Koebe constant d_{ρ} for the family S^{ρ} satisfies

(5) $\tilde{x} \leq d_{\rho}$ and $\tilde{y} \leq d_{1/\rho}$.

In particular, for $\rho \geq 4$

$$d_{\rho} = \rho \frac{\sqrt{4+\rho} - \sqrt{\rho}}{\sqrt{4+\rho} + \sqrt{\rho}}$$

Proof. Since k(r, d) > r for 0 < r < 1, it follows that $x_n, y_n, \tilde{x}_n, \tilde{y}_n$ are bounded by 1 and that the sequences are well defined. In addition, assuming that $\tilde{x}_n \leq d_{\rho}$ and $\tilde{y}_n \leq d_{1/\rho}$, by (1), (2), and (4) we have

$$\rho k\left(\frac{x_{n+1}}{\rho}, \, \tilde{y}_n\right) = 1 \leq \rho k\left(\frac{d_{\rho}}{\rho}, \, d_{1/\rho}\right) \leq \rho k\left(\frac{d_{\rho}}{\rho}, \, \tilde{y}_n\right)$$

and

$$\frac{1}{\rho}k(\rho y_{n+1},\tilde{x}_n) = 1 \leq \frac{1}{\rho}k(\rho d_{1/\rho}, d_{\rho}) \leq \frac{1}{\rho}k(\rho d_{1/\rho}, \tilde{x}_n)$$

since k(r, d) is decreasing in its second variable. From this it follows that $x_{n+1} \leq d_{\rho}$ and $y_{n+1} \leq d_{1/\rho}$ since k(r, d) is increasing in its first variable. Thus, by induction, we have $x_n \leq \tilde{x}_n \leq d_{\rho}$ and $y_n \leq \tilde{y}_n \leq d_{1/\rho}$ for all n.

Assume now that $x_{n-1} \leq x_n$ and $y_{n-1} \leq y_n$. Then $\tilde{x}_{n-1} \leq \tilde{x}_n$ and $\tilde{y}_{n-1} \leq \tilde{y}_n$. Again, since k(r, d) is decreasing in its second variable and increasing in its first variable, the relations

$$\rho k\left(\frac{x_n}{\rho}, \tilde{y}_n\right) \leq \rho k\left(\frac{x_n}{\rho}, \tilde{y}_{n-1}\right) = 1 = \rho k\left(\frac{x_{n+1}}{\rho}, \tilde{y}_n\right)$$

and

$$\frac{1}{\rho} k(\rho y_n, \tilde{x}_n) \leq \frac{1}{\rho} k(\rho y_n, \tilde{x}_{n-1}) = 1 = \frac{1}{\rho} k(\rho y_{n+1}, \tilde{x}_n)$$

imply that $x_n \leq x_{n+1}$ and $y_n \leq y_{n+1}$. Therefore, by induction, the sequences are all nondecreasing. Since k(r, d) is continuous, the limits provide a solution of the system (3), and they remain lower bounds for d_{ρ} and $d_{1/\rho}$, respectively.

If $\rho \ge 4$, then $d_{1/\rho} = \frac{1}{4}$ and so $\tilde{y} = \frac{1}{4}$. Consequently, the first equation in (3) implies

$$1 = \rho k \left(\frac{x}{\rho} , \frac{1}{4} \right) = \frac{x}{(1 - x/\rho)^2}$$

and $x = \rho(\sqrt{4+\rho} - \sqrt{\rho})/(\sqrt{4+\rho} + \sqrt{\rho})$. Therefore d_{ρ} has the indicated lower bound. One has equality since the function

$$f(z) = \rho k^{-1} \left(\frac{z}{\rho} , \frac{1}{4} \right)$$

belongs to S^{ρ} for $\rho \geq 4$.

Remarks. Note that $d_{\rho} = \partial_{\rho}$ for $\rho \ge 4$. The bounds obtained in Theorem 2 are computable. The following table compares ∂_{ρ} to the lower bounds (5) that we have computed for d_{ρ} . Also recall that ∂_{ρ} provides an upper bound for d_{ρ} for all ρ .

ρ	1/4	1/2	3/4	1	4/3	2	4	10	100
$d_{\rho} \geq$.250	.281	.348	.399	.454	.537	.686	.839	.980
∂_{ρ}	.250	.332	.389	.433	.481	.553	.686	.839	.980

The lower bound for the Koebe constant d_1 for the bi-univalent class S^1 was computed more closely and found to be .39979.... We have not been able to improve it to .4.

6. The second coefficient for S^{ρ} . It is possible to give a sharp estimate for the coefficient a_2 in the class \mathscr{S}^{ρ} .

THEOREM 3. For
$$f(z) = z + a_2 z^2 + ...$$
 in the class \mathscr{S}^{ρ} we have

$$|a_2| \leq \begin{cases} \frac{2}{3\rho} \left(4\sqrt{\rho} - 1 - \rho\right) & \text{for } \frac{1}{4} \leq \rho \leq 4 \\ \frac{2}{\rho} & \text{for } \rho > 4 \end{cases}$$

and the estimates are sharp.

Proof. Case 1: $\frac{1}{4} \leq \rho \leq 4$. Since $f(z) = z + a_2 z^2 + ...$ belongs to \mathscr{S}^{ρ} , we may write $f = \psi \circ \phi^{-1}$ where for x = 1/|a|

$$\frac{1}{a}\psi(z) = z + b_2 z^2 + \dots \text{ is in } S(\rho x)$$

and

$$\frac{1}{a}\phi(z) = z + c_2 z^2 + \dots \text{ is in } S(x).$$

Since $a_2 = (b_2 - c_2)/a$, Lemma 2 implies

$$|a_2| \leq x(|b_2| + |c_2|) \leq \frac{2}{\rho} (1 - \sqrt{\rho x}) (3\sqrt{\rho x} - 1) + 2(1 - \sqrt{x}) (3\sqrt{x} - 1).$$

At the same time, x is restricted by $\frac{1}{4} \leq \rho x$, $x \leq 1$. As x varies through its admissible values, the maximum occurs when

$$\sqrt{x} = \frac{1}{3} + \frac{1}{3\sqrt{\rho}},$$

and the first bound is obtained by substituting this value. This estimate is sharp for the corresponding function of the form of Example 2 (§3).

Case 2: $\rho > 4$. In this case

$$\frac{1}{\rho}f^{-1}(\rho w) = w - a_2\rho w^2 + \dots$$

belongs to S, so that $|a_2|\rho \leq 2$. Equality occurs for

$$f(z) = \rho k^{-1} \left(\frac{z}{\rho}, \frac{1}{4} \right),$$

which belongs to \mathcal{G}^{ρ} .

7. Bounds for the second coefficient in S^{ρ} . We shall derive three different estimates for the second coefficient a_2 of a function $f(z) = z + a_2z^2 + ...$ belonging to S^{ρ} . Although valid for all ρ , they will be valuable for large, small, and intermediate ranges of ρ , respectively.

First bound. If $f \in S^{\rho}$, then $\rho^{-1}f^{-1}(\rho w) = w - a_2\rho w^2 + ...$ belongs to S, so that

 $|a_2| \leq 2/\rho$

just as in the second part of Theorem 3. Although valid for all ρ , this bound is not of interest for $\rho < 1$. However, it is sharp for all $\rho \ge 4$ since the function $\rho k^{-1}(z/\rho, \frac{1}{4})$ belongs to S^{ρ} for $\rho \ge 4$.

Second bound. For $f \in S^{\rho}$ we have a bound $d_{\rho} \ge \tilde{x}$ from Theorem 2, and so by Lemma 2 we have the estimate

$$|a_2| \leq g(\rho)$$
 where $g(\rho) = \frac{2}{\tilde{x}} (1 - \sqrt{\tilde{x}}) (3\sqrt{\tilde{x}} - 1).$

For $0 < \rho \leq \frac{1}{4}$ this bound coincides with the sharp estimate $|a_2| \leq 2$ in $S = S^{\rho}$.

Third bound. This estimate parallels the work of Lewin [4] for the biunivalent class. Using the notation of [2], we let

$$l_{1} = a_{2}, \quad l_{2} = a_{3} - a_{2}^{2}, \quad l_{3} = a_{4} - \frac{5}{2}a_{2}a_{3} - \frac{3}{2}a_{2}^{3},$$
$$l_{4} = a_{5} - 3a_{2}a_{4} - \frac{3}{2}a_{3}^{2} + \frac{37}{6}a_{2}^{2}a_{3} - \frac{8}{3}a_{2}^{4}$$

be associated with $f(z) = z + a_2 z^2 + ...$ in S^{ρ} . Then for the function $\rho^{-1}f^{-1}(\rho w)$ the corresponding \tilde{l}_j satisfy $\tilde{l}_j = -\rho^j l_j$, j = 1, 2, 3, 4.

With this notation the Grunsky inequalities for $f \in S$ and N = 2 become (see [2] or [4, p. 67])

$$|l_2 x_1^2 + 2(l_3 + \frac{1}{2}l_1 l_2) x_1 x_2 + (l_4 + l_1 l_3 + \frac{1}{3}l_1^2 l_2) x_2^2| \le |x_1|^2 + \frac{1}{2}|x_2|^2$$

for all $x_1, x_2 \in \mathbf{C}$. The corresponding inequalities for $\rho^{-1}f^{-1}(\rho w)$ are

$$\begin{aligned} |-\rho^{2}l_{2}y_{1}^{2}+2\rho^{3}(-l_{3}+\frac{1}{2}l_{1}l_{2})y_{1}y_{2}+\rho^{4}(-l_{4}+l_{1}l_{3}-\frac{1}{3}l_{1}^{2}l_{2})y_{2}^{2}|\\ &\leq |y_{1}|^{2}+\frac{1}{2}|y_{2}|^{2} \end{aligned}$$

for all y_1 , $y_2 \in \mathbb{C}$. We choose $x_1 = l_1$, $x_2 = \beta > 0$, $y_1 = -l_1/\rho$, $y_2 = \beta/\rho^2 > 0$ and add both inequalities to obtain

$$2\beta(2+\beta)|l_1l_3| \leq \left(1+\frac{1}{\rho^2}\right)|l_1|^2 + \frac{1}{2}\left(1+\frac{1}{\rho^4}\right)\beta^2.$$

The optimal choice of β is

$$\beta = \frac{\rho^2 |l_1|^2 (\rho^2 + 1) (c+1)}{\rho^4 + 1}$$

where

$$c = \sqrt{1 + \frac{2(\rho^4 + 1)}{\rho^2 |l_1|^2 (\rho^2 + 1)}},$$

and it leads to the inequality

(6)
$$|l_1 l_3| \leq \frac{\rho^4 + 1}{2\rho^4 (c+1)}$$
.

In a similar fashion the Grunsky inequalities for $\sqrt{f(z^2)} \in S$ with N = 3 and $x_2 = 0$ become (see [4, p. 67])

$$\begin{aligned} \left| \frac{1}{2} l_1 x_1^2 + \left(l_2 + \frac{1}{4} l_1^2 \right) x_1 x_3 + \left(\frac{1}{2} l_3 + \frac{1}{4} l_1 l_2 + \frac{1}{24} l_1^3 \right) x_3^3 \right| \\ & \leq |x_1|^2 + \frac{1}{3} |x_3|^2 \end{aligned}$$

for all $x_1, x_3 \in \mathbf{C}$. The corresponding inequalities for $\rho^{-1}f^{-1}(\rho w)$ are

$$\begin{aligned} \left| -\frac{1}{2}\rho l_{1}y_{1}^{2} + \rho^{2} \left(-l_{2} + \frac{1}{4}l_{1} \right) y_{1}y_{3} + \rho^{3} \left(-\frac{1}{2}l_{3} + \frac{1}{4}l_{1}l_{2} - \frac{1}{24}l_{1}^{3} \right) y_{3}^{2} \right| \\ & \leq |y_{1}|^{2} + \frac{1}{3}|y_{3}|^{2} \end{aligned}$$

for all $y_1, y_3 \in \mathbb{C}$. Now choose $x_1 = l_1, x_3 = \beta > 0, y_1 = -il_1/\sqrt{\rho}, y_3 = i\beta/(\rho\sqrt{\rho})$ and add both inequalities to obtain

$$\left| \left(1 + \frac{1}{2} \beta + \frac{1}{12} \beta^2 \right) l_1^3 + \beta^2 l_3 \right| \leq \left(1 + \frac{1}{\rho} \right) |l_1|^2 + \frac{1}{3} \left(1 + \frac{1}{\rho^3} \right) \beta^2.$$

Multiplying by $|l_1|$ and using the bound in (6), we find

$$\left(1 + \frac{1}{2}\beta + \frac{1}{12}\beta^{2}\right)|l_{1}|^{4} \leq \beta^{2} \frac{\rho^{4} + 1}{2\rho^{4}(c+1)} + \frac{\rho + 1}{\rho}|l_{1}|^{3} + \frac{\rho^{3} + 1}{3\rho^{3}}\beta^{2}|l_{1}|,$$

and so

$$\left(\frac{1}{12} \left|l_{1}\right|^{4} - \frac{\rho^{4} + 1}{2\rho^{4}(c+1)} - \frac{\rho^{3} + 1}{3\rho^{3}} \left|l_{1}\right|\right) \beta^{2} + \frac{1}{2} \left|l_{1}\right|^{4} \beta + \left|l_{1}\right|^{4} - \frac{\rho + 1}{\rho} \left|l_{1}\right|^{3} \leq 0$$

for all positive β . By letting $\beta \to \infty$ we learn that the coefficient of β^2 is nonpositive, and evidently the coefficient of β is nonnegative. Therefore, the maximum of this quadratic expression in β occurs for a positive β . Since this maximum value is nonpositive, the discriminant of the expression is also nonpositive. This discriminant condition is

$$\frac{1}{4} |l_1|^8 - 4 \left(\frac{1}{12} |l_1|^4 - \frac{\rho^4 + 1}{2\rho^4(c+1)} - \frac{\rho^3 + 1}{3\rho^3} |l_1| \right) \\ \times \left(|l_1|^4 - \frac{\rho + 1}{\rho} |l_1|^3 \right) \le 0.$$

There, if we let $h(\rho)$ be the smallest positive zero of the function

$$\frac{1}{4}x^5 - 4\left(\frac{1}{12}x^4 - \frac{\rho^4 + 1}{2\rho^4[c(x) + 1]} - \frac{\rho^3 + 1}{3\rho^3}x\right)\left(x - \frac{\rho + 1}{\rho}\right)$$

where

$$c(x) = \sqrt{1 + \frac{2(\rho^4 + 1)}{\rho^2(\rho^2 + 1)x^2}},$$

then $|a_2| = |l_1| \leq h(\rho)$.

The following theorem simply summarizes the bounds that have been obtained.

THEOREM 4. If $f(z) = z + a_2 z^2 + \dots$ belongs to S^{ρ} , then

$$|a_2| \leq \min\left\{\frac{1}{\rho}, g(\rho), h(\rho)\right\}.$$

In the following table we have computed this estimate of $|a_2|$ in the class S^{ρ} for various values of ρ .

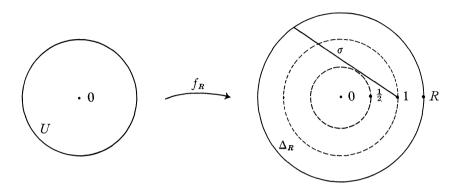
ρ	1/4	1/2	3/4	1	4/3	2	4	10	100
$ a_2 \leq$	2.000	1.973	1.782	1.509	1.337	1.000	.500	.200	.020

The special case $\rho = 1$ is Lewin's result [4] in the biunivalent case.

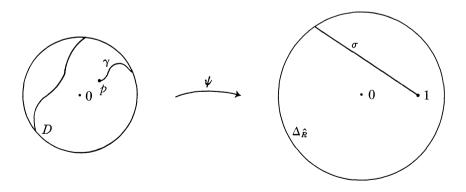
8. A bi-univalent function that is not in \mathscr{S}^1 . The class \mathscr{S}^{ρ} is always a subset of S^{ρ} . However, for $0 < \rho \leq \frac{1}{4}$ both classes are S, and for $\rho = \infty$

both contain only the identity mapping. The question arises whether the classes are the same for $\frac{1}{4} < \rho < \infty$.

By constructing a function in $S^1 \setminus \mathscr{S}^1$ we shall show that the classes S^1 and \mathscr{S}^1 are not the same. This settles a question raised in [4]. Similar constructions can be made for other values of ρ .



For R > 1, let Δ_R denote the disk |w| < R minus a straight line slit σ that osculates the upper half of the circle $|w| = \frac{1}{2}$ and ends at the point w = 1. Let f_R be the Riemann mapping function, $f_R(0) = 0$, $f_R'(0) > 0$, of the unit disk U onto Δ_R . As $R \to \infty$ the functions f_R converge to a rotation and dilation of a function of the form of Example 3 in §3. In particular, $\lim_{R\to\infty} f_R'(0) > 1$. As $R \to 1$ the functions f_R converge to a function that is bounded by 1 and is different from the identity. Therefore, $\lim_{R\to 1} f_R'(0) < 1$. Thus we may choose a value \hat{R} so that $f_{\hat{R}}'(0) = 1$.



The branch of the inverse function $f_{\hat{k}}^{-1}$ that is defined for $|w| < \frac{1}{2}$ extends by the Schwarz reflection principle to a univalent analytic function in |w| < 1. Therefore $f_{\hat{k}} \in S^1$.

We shall show that $f_{\hat{k}}$ does not belong to \mathscr{S}^1 . Indeed, suppose that

 $f_{\hat{R}} = \psi \circ \phi^{-1}$ where ϕ and ψ are analytic and univalent in U, $\phi(0) = \psi(0) = 0$, $\phi'(0) = \psi'(0)$, and $\phi(U) \supset U$, $\psi(U) \supset U$. Then $D = \phi^{-1}(U)$ is a subset of U, and ψ maps D onto $\Delta_{\hat{R}}$.

Since ψ extends to U and $\psi(U) \supset U$, part of the boundary of D is an analytic slit γ that ψ maps to the segment of σ that is in |w| < 1. Since $\psi(U)$ is simply connected, it contains the point w = 1, and we denote the corresponding endpoint of γ by p. In the other direction, the function ϕ maps D onto U. On the one hand, each point of $\gamma \setminus \{p\}$ corresponds to two points of ∂U . On the other hand, ϕ has a unique continuation to U, and hence to γ . This presents a contradiction.

Consequently, the function $f_{\hat{R}}$ belongs to S^1 , but not to \mathscr{S}^1 .

References

- 1. A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139-169.
- 2. E. Jabotinsky, Analytic iteration, Trans. Amer. Math. Soc. 108 (1963), 457-477.
- E. Jensen and H. Waadeland, A coefficient inequality for bi-univalent functions, Det. Kgl. Norske Vidensk. Selsk, Skr. 15 (1972), 1–11.
- 4. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
- 5. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient, Arch. Rational Mech. Anal. 32 (1969), 100-112.
- 6. E. Netanyahu, On univalent functions in the unit disk whose image contains a given disk, J. Analyse Math. 23 (1970), 305–322.
- 7. H. V. Smith, Bi-univalent polynomials, Simon Stevin 50 (1976-77), 115-122.

The Technion, Haifa, Israel; Université Laval, Québec, Québec; Indiana University, Bloomington, Indiana