# ESTIMATES FOR THE KOEBE CONSTANT AND THE SECOND COEFFICIENT FOR SOME CLASSES OF UNIVALENT FUNGTIONS 

D. BSHOUTY, W. HENGARTNER AND G. SCHOBER

1. Introduction. Let $S$ be the set of all normalized univalent analytic functions $f(z)=z+a_{2} z^{2}+\ldots$ in the open unit disk $U$. Then $f(U)$ contains the disk $\left\{|w|<\frac{1}{4}\right\}$. Here $\frac{1}{4}$ is the best possible constant and is referred to as the Koebe constant for $S$. On the other extreme, $f(U)$ cannot contain the disk $\{|w|<1\}$ unless $f$ is the identity mapping.

In order to interpolate between the class $S$ and the identity mapping, one may introduce the families $S(d), \frac{1}{4} \leqq d \leqq 1$, of functions $f \in S$ such that $f(U)$ contains the disk $\{|w|<d\}$. Then $S\left(d_{1}\right) \supset S\left(d_{2}\right)$ for $d_{1}<d_{2}$, $S\left(\frac{1}{4}\right)=S$, and $S(1)$ contains only the identity mapping. It is obvious that $d$ is the "Koebe constant" for $S(d)$. The relation between $d$ and the second coefficient $a_{2}$ has been studied by E. Netanyahu [5, 6].

In this article we shall introduce new families of univalent functions that interpolate in a natural way between $S$ and the identity mapping. We shall give estimates both for the "Koebe constants" for these families and for the second coefficients $a_{2}$ of functions in these families.
2. Definitions. For $0<\rho \leq \infty$ let $S^{\rho}$ consist of those functions $f \in S$ such that the inverse function $f^{-1}$ has a univalent analytic continuation to $\{|w|<\rho\}$. Then $S^{\rho_{1}} \supset S^{\rho_{2}}$ for $\rho_{1}<\rho_{2}, S^{\rho}=S$ for $0<\rho \leqq \frac{1}{4}$, and $S^{\infty}$ contains only the identity mapping. It is obvious that $S(d) \subset S^{d}$, and by means of examples in Sections 3 and 4 we shall see that this containment is proper for $d \neq \frac{1}{4}$. Therefore, it is an interesting question to determine the radius $d_{\rho}$ of the largest disk $\left\{|w|<d_{\rho}\right\}$ that is contained in $f(U)$ for every $f \in S^{\rho}$. We call $d_{\rho}$ the Koebe constant for $S^{\rho}$.
We also introduce a family $\mathscr{S}^{\rho}$ that is closely related to $S^{\rho}$. For $0<\rho<\infty$ let $\mathscr{S}_{\rho}$ consist of those functions $f \in S$ such that $f=\psi \circ \phi^{-1}$ where $\phi$ and $\psi$ are analytic and univalent in $U$, normalized so that $\phi(0)=\psi(0)=0, \phi^{\prime}(0)=\psi^{\prime}(0)$, and

$$
\{|w|<1\} \subset \phi(U),\{|w|<\rho\} \subset \psi(U) .
$$

It is clear that $\mathscr{S}^{\rho}$ is a subset of $S^{\rho}: \mathscr{S}^{\rho} \subset S^{\rho}$. In Section 8 we shall show that it is a proper subset for $\frac{1}{4}<\rho<\infty$. In addition, if we define

[^0]$S^{\infty}=\bigcap_{0<\rho<\infty} S^{\rho}$, then $S^{\rho_{1}} \supset S^{\rho_{2}}$ for $\rho_{1}<\rho_{2}, S^{\rho}=S$ for $0<\rho \leqq \frac{1}{4}$, and $S^{\infty}$ contains only the identity mapping. By analogy we define $\partial_{\rho}$ to be the Koebe constant for $S^{\text {. }}$. By choosing $\phi$ as the identity mapping we see that $S(d) \subset \mathscr{S}^{d}$. However, in Section 4 we note that $\partial_{d}<d$, so that this containment is also proper, except for $d=\frac{1}{4}$.

The classes $S^{1}$ and $\mathscr{S}^{1}$ were introduced by M. Lewin [4]. They have been studied in [4], [5], [3], and [7]. The functions in $S^{1}$ are called $b i$ univalent.
3. Examples. The following examples will be useful.

Example 1. For $\frac{1}{4}<d<1$, let $w=k(z, d)$ be the normalized ( $k(z, d)$ $=z+\ldots$ ) mapping of the unit disk onto the complement of an arc of the circle $|w|=d$, with midpoint $-d$, and a slit along the negative axis from $-d$ to $-\infty$. As extreme cases, let $w=k(z, 1)$ be the identity mapping, and let $k\left(z, \frac{1}{4}\right)$ be the Koebe function that maps $U$ onto the complement of just the slit along the negative axis from $-\frac{1}{4}$ to $-\infty$.

Of course, $k\left(z, \frac{1}{4}\right)=z /(1-z)^{2}$, and for $\frac{1}{4}<d \leqq 1$ the function $k(z, d)$ is defined implicitly by

$$
k(z, d)=\frac{d t(1-\epsilon t)}{\epsilon-t} \text { and } \frac{d t}{(1+t)^{2}}=\frac{\epsilon z}{(1+z)^{2}}
$$

where $4 d=(1+\epsilon)^{2}$. We choose the branch of $t=t(z)$ that takes $0<z<1$ to the positive real axis.

The function $k(z, d)$ belongs to $S(d)$ and, hence, to $S^{d}$ and $\mathscr{S}^{d}$. It is extremal in $S(d)$ for the following two results, which we shall need later.

Lemma 1. ([1]). For $f \in S(d)$ and $|z|<1$, we have

$$
-k(-|z|, d) \leqq|f(z)| \leqq k(|z|, d)
$$

Lemma 2. ([6]). For $f(z)=z+a_{2} z^{2}+\ldots$ in $S(d)$, we have

$$
\left|a_{2}\right| \leqq \frac{2}{d}(1-\sqrt{d})(3 \sqrt{d}-1) .
$$

Equality occurs if and only if $f(z)=e^{-i \alpha} k\left(e^{i \alpha_{z}}, d\right)$ for some real $\alpha$.
In $[\mathbf{5}, \mathbf{6}]$ Netanyahu actually considered the class $S(d) \backslash \cup_{\hat{\alpha}>d} S(\hat{d})$ in terms of our notation. However, since the bound in Lemma 2 is a decreasing function of $d$, it is valid for the full class $S(d)$.

Example 2. The functions $f(z)=-(1 / d) k\left(-k^{-1}(d z, d), d^{\prime}\right)$ belong to $\mathscr{S}^{d^{\prime} / d}$. (Here $k^{-1}$ is with respect to the first argument.) They will be useful in the explicit determination of $\partial_{\rho}$ in Section 4.

Example 3. For $0<\theta \leqq \pi$, the function

$$
f(z)=\frac{z-\frac{1}{2}\left(1+e^{-i \theta}\right) z^{2}}{(1-z)^{2}}
$$

is close-to-convex and maps the unit disk onto the entire plane except for a straight line slit. Since $f( \pm i)=-\frac{1}{2} \pm \frac{1}{4} i\left(1+e^{-i \theta}\right)$, the slit passes through the point $-\frac{1}{2}$. In addition, $f^{\prime}\left(e^{i \theta}\right)=0$ so that

$$
f\left(e^{i \theta}\right)=-\frac{1}{4}+\frac{i}{4} \cot \frac{\theta}{2}
$$

is the tip of the slit. If $\delta_{f}$ denotes the distance of the slit from the origin, then $\delta_{f}=\frac{1}{2} \cos (\theta / 2)$ for $0<\theta \leqq \pi / 2$ and $\delta_{f}=\frac{1}{4} \csc (\theta / 2)$ for $\pi / 2 \leqq \theta \leqq \pi$.

For $0<\theta<\pi / 2$ the Schwarz reflection principle allows us to continue $f^{-1}$ analytically and univalently across the slit. Two points restrict the continuation. One is, of course, the tip of the slit. The other is the reflection of the origin at $e^{i \theta / 2} \cos \theta / 2$, which leads to a pole of $f^{-1}$. The latter is closer to the origin than the tip of the slit if $0<\theta<\pi / 6$. The three different situations are summarized as follows: For $0<\theta \leqq \pi / 6$ the function $f$ belongs to $S^{\rho}$ where

$$
\rho=2 \delta_{f}=\cos (\theta / 2)
$$

For $\pi / 6 \leqq \theta \leqq \pi / 2$ the function $f$ belongs to $S^{\rho}$ where

$$
\rho=\left|f\left(e^{i \theta}\right)\right|=\frac{1}{4} \csc (\theta / 2) \text { and } \delta_{f}=\frac{1}{2} \cos (\theta / 2) .
$$

For $\pi / 2 \leqq \theta \leqq \pi$ the function $f$ belongs to $S^{\rho}$ where

$$
\rho=\delta_{f}=\left|f\left(e^{i \theta}\right)\right|=\frac{1}{4} \csc (\theta / 2)
$$

Example 4. The Möbius transformation $f(z)=\rho z /(\rho-z)$ belongs to $S^{\rho}$, and

$$
\delta_{f}=\min _{t}\left|f\left(e^{i t}\right)\right|=\frac{\rho}{\rho+1}
$$

Examples 3 and 4 provide a family of functions that vary continuously from the Koebe function $k\left(z, \frac{1}{4}\right)$ to the identity mapping. They also provide the following upper estimates for $d_{\rho}$.

Proposition. The following are upper bounds for the Koebe constants $d_{\rho}$ for the families $S^{\rho}$ :

$$
d_{\rho} \leqq \begin{cases}\rho & \text { for } \frac{1}{4} \leqq \rho \leqq \frac{\sqrt{2}}{4} \\ \sqrt{16 \rho^{2}-1} / 8 \rho & \text { for } \frac{\sqrt{2}}{4} \leqq \rho \leqq \frac{1}{4} \csc \frac{\pi}{12} \approx .966 \\ \frac{1}{2} \rho & \text { for } \frac{1}{4} \csc \frac{\pi}{12} \leqq \rho \leqq 1 \\ \rho /(\rho+1) & \text { for } \rho \leqq 1\end{cases}
$$

We shall improve these bounds at the end of the next section.
4. The Koebe constant in $\mathscr{S}^{\rho}$. The following is a preliminary result.

Lemma 3. Let f belong to $\mathscr{S}^{\rho}$. Then for $\frac{1}{4} \leqq \rho \leqq 4$
(a) $\min _{1 / 4 \leq \rho x, x \leq 1}-\frac{1}{x} k\left(-k^{-1}(|z| x, x), \rho x\right) \leqq|f(z)|$

$$
\leqq \max _{1 / 4 \leq \rho x, x \leq 1} \frac{1}{x} k\left(-k^{-1}(-|z| x, x), \rho x\right)
$$

and for $\rho>4$
(b) $\min _{1 / 4 \leq \rho \leq \leq 1}-\frac{1}{x} k\left(-k^{-1}\left(|z| x, \frac{1}{4}\right), \rho x\right) \leqq|f(z)|$ $\leqq \max _{1 / 4 \leq \rho \leq \leq 1} \frac{1}{x} k\left(-k^{-1}\left(-|z| x, \frac{1}{4}\right), \rho x\right)$.
These estimates are sharp.
Proof. If $f \in \mathscr{S}^{\mathrm{P}}$, then $f=\psi \circ \phi^{-1}$ where $\phi(0)=\psi(0)=0, a \equiv \phi^{\prime}(0)$ $=\psi^{\prime}(0)$, and $U \subset \phi(U),\{|w|<\rho\} \subset \psi(U)$. Thus $(1 / a) \psi \in S(\rho x)$ and ( $1 / a) \phi \in S(x)$ for $x=1 /|a|$, and so by Lemma 1 we have

$$
|f(\phi(\zeta))|=|\psi(\zeta)| \leqq \frac{1}{x} k(|\xi|, \rho x) .
$$

Here $f(\phi(\zeta))$ for $|\phi(\zeta)| \geqq 1$ is defined by analytic continuation.
Let now $z=\phi(\zeta)$ so that

$$
|f(z)| \leqq \frac{1}{x} k(|\xi|, \rho x) \quad \text { for }|\xi|<1 .
$$

By applying Lemma 1 to $\phi$, we have

$$
-\frac{1}{x} k(-|\zeta|, x) \leqq|\phi(\zeta)|=|z| .
$$

It follows by monotonicity that $|\zeta| \leqq-k^{-1}(-|z| x, x)$ and

$$
|f(z)| \leqq \frac{1}{x} k\left(-k^{-1}(-|z| x, x), \rho x\right) .
$$

This estimate is sharp since the functions of Example 2 (§3) belong to the class. The upper estimate in (a) follows from considering all admissible choices of $x$. The lower estimate in (a) is proved similarly.

If $\rho>4$, then $\psi$ exists only for $x<\frac{1}{4}$. The necessary adjustments are reflected in (b).

We shall now determine the Koebe constants for the families $\mathscr{S}_{\rho}$ explicitly.

Theorem 1. The Koebe constants for the families $\mathscr{S}^{\rho}$ are

$$
\partial_{\rho}=\rho \frac{2(1+\sqrt{\rho})^{2}-(2 \sqrt{\rho}-1) \sqrt{(1+\sqrt{\rho})(4+\sqrt{\rho})}}{2(1+\sqrt{\rho})^{2}+(2 \sqrt{\rho}-1) \sqrt{(1+\sqrt{\rho})(4+\sqrt{\rho})}}
$$

and

$$
\partial_{\rho}=\rho \frac{\sqrt{4+\rho}-\sqrt{\rho}}{\sqrt{4+\rho}+\sqrt{\rho}} \quad \text { for } \rho>4 \text {. }
$$

Proof. Case 1: $\frac{1}{4} \leqq \rho \leqq 4$. It follows from Lemma 3 that

$$
\partial_{\rho}=\min _{1 / 4 \leqq \rho x, x \leqq 1}-\frac{1}{x} k\left(-k^{-1}(x, x), \rho x\right) .
$$

If $\zeta=k^{-1}(x, x)$, then

$$
\begin{aligned}
& x=k(\zeta, x)=x t \frac{1-\epsilon t}{\epsilon-t} \text { where } \\
& \frac{x t}{(1+t)^{2}}=\frac{\epsilon \zeta}{(1+\zeta)^{2}}
\end{aligned}
$$

and $4 x=(1+\epsilon)^{2}$. Since $\epsilon t^{2}-2 t+\epsilon=0$, we have $t=\left(1-\sqrt{1-\epsilon^{2}}\right) / \epsilon$. Therefore

$$
\frac{\epsilon \zeta}{(1+\zeta)^{2}}=\frac{x t}{(1+t)^{2}}=\frac{x \epsilon}{2(1+\epsilon)}=\frac{1}{4} \epsilon \sqrt{x}
$$

and $\zeta=(2-\sqrt{x}-2 \sqrt{1-\sqrt{x}}) / \sqrt{x}$. We are interested in $-(1 / x) k(-\zeta, \rho x)$, and so we compute

$$
\frac{-\zeta}{(1-\zeta)^{2}}=\frac{-\sqrt{x}}{4(1-\sqrt{x})} .
$$

If

$$
\frac{\rho x \tau}{(1+\tau)^{2}}=\frac{-\eta \zeta}{(1-\zeta)^{2}}
$$

where $4 \rho x=(1+\eta)^{2}$, then

$$
\begin{aligned}
-\eta \tau=2 \rho \sqrt{x}(1-\sqrt{x})+ & \eta \\
& -2 \rho \sqrt{x}(1-\sqrt{x}) \sqrt{1+\frac{\eta}{\rho \sqrt{x}(1-\sqrt{x})}}
\end{aligned}
$$

and

$$
\begin{aligned}
-\eta / \tau=2 \rho \sqrt{x}(1-\sqrt{x}) & +\eta \\
& +2 \rho \sqrt{x}(1-\sqrt{x}) \sqrt{1+\frac{\eta}{\rho \sqrt{x}(1-\sqrt{x})}} .
\end{aligned}
$$

Therefore

$$
-\frac{1}{x} k(-\zeta, \rho x)=\rho \frac{1-\eta \tau}{1-\eta / \tau}=\rho \frac{1-\sqrt{\rho h}(y)}{1+\sqrt{\rho h}(y)}
$$

where

$$
h(y)=\frac{1-y}{1+\sqrt{\rho}(1-y)} \sqrt{1+\frac{2 \sqrt{\rho} y-1}{\rho y(1-y)}}
$$

and $y=\sqrt{x}$ is restricted by $\frac{1}{2} \leqq y, \sqrt{\rho} y \leqq 1$. For $\frac{1}{4} \leqq \rho \leqq 4$ the maximum of $h(y)$ over the given interval occurs at $y=(1+\sqrt{\rho}) /(3 \sqrt{\rho})$. The indicated value for

$$
\partial_{\rho}=\rho \frac{1-\sqrt{\rho} \max h(y)}{1+\sqrt{\rho} \max h(y)}
$$

follows by substitution.
Case 2: $\rho>4$. In this case, it follows from Lemma 3 that

$$
\partial_{\rho}=\min _{1 / 4 \leqq \rho x \leqq 1}-\frac{1}{x} k\left(-k^{-1}\left(x, \frac{1}{4}\right), \rho x\right) .
$$

Thus we are interested in $-(1 / x) k(-\zeta, \rho x)$ where

$$
x=k\left(\zeta, \frac{1}{4}\right)=\frac{\zeta}{(1-\zeta)^{2}} .
$$

Now

$$
-\frac{1}{x} k(-\zeta, \rho x)=\rho \frac{1-\eta \tau}{1-\eta / \tau}
$$

where

$$
\frac{\rho x \tau}{(1+\tau)^{2}}=\frac{-\eta \zeta}{(1-\zeta)^{2}}=-\eta x \quad \text { and } \quad 4 \rho x=(1+\eta)^{2} .
$$

Since

$$
-\eta \tau=\eta+\frac{1}{2} \rho-\frac{1}{2} \sqrt{\rho^{2}+4 \rho \eta}
$$

and

$$
-\eta / \tau=\eta+\frac{1}{2} \rho+\frac{1}{2} \sqrt{\rho^{2}+4 \rho \eta}
$$

we may write

$$
-\frac{1}{x} k(-\zeta, \rho x)=\rho \frac{1-\sqrt{\rho} H(\eta)}{1+\sqrt{\rho} H(\eta)}
$$

where

$$
H(\eta)=\frac{\sqrt{\rho+4 \eta}}{2+2 \eta+\rho}
$$

and $\eta$ is in the interval from 0 to 1 . The maximum of $H(\eta)$ occurs for $\eta=1$, and the indicated value for

$$
\partial_{\rho}=\rho \frac{1-\sqrt{\rho} \max H(\eta)}{1+\sqrt{\rho} \max H(\eta)}
$$

follows by substitution.
Remarks. Since $\mathscr{S}^{\rho} \subset S^{\rho}$, it follows that $d_{\rho} \leqq \partial_{\rho}$. Therefore the values of $\partial_{\rho}$ from Theorem 1 provide upper bounds for $d_{\rho}$. They improve the ones at the conclusion of Section 3. In the next section we shall use the fact that $d_{\rho}=\partial_{\rho}=\frac{1}{4}$ for $0<\rho \leqq \frac{1}{4}$ and $d_{\rho} \leqq \partial_{\rho}<\min \{\rho, 1\}$ for $\frac{1}{4}<\rho<\infty$.
5. The Koebe constant in $S^{\rho}$. Let $f$ belong to $S^{\rho}, 0<\rho<\infty$. Then a continuation of the function $g(w)=f^{-1}(\rho w) / \rho$ belongs to $S^{1 / \rho}$. Therefore by Lemma 1 we have

$$
|g(w)| \leqq k\left(|w|, d_{1 / \rho}\right) \quad \text { in }|w|<1
$$

where as before, $d_{1 / \rho}$ denotes the Koebe constant for the class $S^{1 / \rho}$. That is, for all $z$ with $|f(z)|<\rho$ we have

$$
|z|=\rho\left|g\left(\frac{f(z)}{\rho}\right)\right| \leqq \rho k\left(\frac{|f(z)|}{\rho}, d_{1 / \rho}\right) .
$$

Since $f$ is arbitrary and $d_{\rho} \leqq \rho$, we may conclude by letting $|z| \rightarrow 1$ that (1) $1 \leqq \rho k\left(\frac{d \rho}{\rho}, d_{1 / \rho}\right)$.

There is no restriction on $\rho$, and so we may replace $\rho$ by $1 / \rho$ in (1) to obtain the dual inequality
(2) $1 \leqq \frac{1}{\rho} k\left(\rho d_{1 / \rho}, d_{\rho}\right)$.

Motivated by the inequalities (1) and (2), we shall consider the system of equations

$$
\begin{array}{ll}
1=\rho k\left(\frac{x}{\rho}, \tilde{y}\right) & \tilde{y}=\max \left\{y, \frac{1}{4}\right\}  \tag{3}\\
1=\frac{1}{\rho} k(\rho y, \tilde{x}) & \tilde{x}=\max \left\{x, \frac{1}{4}\right\}
\end{array}
$$

for fixed $\rho, 0<\rho<\infty$. The following theorem shows that an iterative solution of this system leads to a lower bound for $d_{\rho}$.

Theorem 2. For fixed $\rho, 0<\rho<\infty$, define $x_{0}=y_{0}=0$ and

$$
\begin{array}{ll}
\tilde{y}_{n}=\max \left\{y_{n}, \frac{1}{4}\right\}, & x_{n+1}=\rho k^{-1}\left(\frac{1}{\rho}, \tilde{y}_{n}\right)  \tag{4}\\
\tilde{x}_{n}=\max \left\{x_{n}, \frac{1}{4}\right\}, & y_{n+1}=\frac{1}{\rho} k^{-1}\left(\rho, \tilde{x}_{n}\right)
\end{array}
$$

for $n \geqq 0$. Then the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{\tilde{x}_{n}\right\},\left\{\tilde{y}_{n}\right\}$ are nondecreasing, and their respective limits $x, y, \tilde{x}, \tilde{y}$ are a solution of the system (3). The Koebe constant $d_{\rho}$ for the family $S^{\rho}$ satisfies
(5)

$$
\tilde{x} \leqq d_{\rho} \quad \text { and } \quad \tilde{y} \leqq d_{1 / \rho} .
$$

In particular, for $\rho \geqq 4$

$$
d_{\rho}=\rho \frac{\sqrt{4+\rho}-\sqrt{\rho}}{\sqrt{4+\rho}+\sqrt{\rho}}
$$

Proof. Since $k(r, d)>r$ for $0<r<1$, it follows that $x_{n}, y_{n}, \tilde{x}_{n}, \tilde{y}_{n}$ are bounded by 1 and that the sequences are well defined. In addition, assuming that $\widetilde{x}_{n} \leqq d_{\rho}$ and $\tilde{y}_{n} \leqq d_{1 / \rho}$, by (1), (2), and (4) we have

$$
\rho k\left(\frac{x_{n+1}}{\rho}, \tilde{y}_{n}\right)=1 \leqq \rho k\left(\frac{d_{\rho}}{\rho}, d_{1 / \rho}\right) \leqq \rho k\left(\frac{d_{\rho}}{\rho}, \tilde{y}_{n}\right)
$$

and

$$
\frac{1}{\rho} k\left(\rho y_{n+1}, \tilde{x}_{n}\right)=1 \leqq \frac{1}{\rho} k\left(\rho d_{1 / \rho}, d_{\rho}\right) \leqq \frac{1}{\rho} k\left(\rho d_{1 / \rho}, \tilde{x}_{n}\right)
$$

since $k(r, d)$ is decreasing in its second variable. From this it follows that $x_{n+1} \leqq d_{\rho}$ and $y_{n+1} \leqq d_{1 / \rho}$ since $k(r, d)$ is increasing in its first variable. Thus, by induction, we have $x_{n} \leqq \tilde{x}_{n} \leqq d_{\rho}$ and $y_{n} \leqq \tilde{y}_{n} \leqq d_{1 / \rho}$ for all $n$.

Assume now that $x_{n-1} \leqq x_{n}$ and $y_{n-1} \leqq y_{n}$. Then $\tilde{x}_{n-1} \leqq \tilde{x}_{n}$ and $\tilde{y}_{n-1} \leqq \tilde{y}_{n}$. Again, since $k(r, d)$ is decreasing in its second variable and increasing in its first variable, the relations

$$
\rho k\left(\frac{x_{n}}{\rho}, \tilde{y}_{n}\right) \leqq \rho k\left(\frac{x_{n}}{\rho}, \tilde{y}_{n-1}\right)=1=\rho k\left(\frac{x_{n+1}}{\rho}, \tilde{y}_{n}\right)
$$

and

$$
\frac{1}{\rho} k\left(\rho y_{n}, \tilde{x}_{n}\right) \leqq \frac{1}{\rho} k\left(\rho y_{n}, \tilde{x}_{n-1}\right)=1=\frac{1}{\rho} k\left(\rho y_{n+1}, \tilde{x}_{n}\right)
$$

imply that $x_{n} \leqq x_{n+1}$ and $y_{n} \leqq y_{n+1}$. Therefore, by induction, the sequences are all nondecreasing. Since $k(r, d)$ is continuous, the limits provide a solution of the system (3), and they remain lower bounds for $d_{\rho}$ and $d_{1 / \rho}$, respectively.

If $\rho \geqq 4$, then $d_{1 / \rho}=\frac{1}{4}$ and so $\tilde{y}=\frac{1}{4}$. Consequently, the first equation in (3) implies

$$
1=\rho k\left(\frac{x}{\rho}, \frac{1}{4}\right)=\frac{x}{(1-x / \rho)^{2}}
$$

and $x=\rho(\sqrt{4+\rho}-\sqrt{\rho}) /(\sqrt{4+\rho}+\sqrt{\rho})$. Therefore $d_{\rho}$ has the indicated lower bound. One has equality since the function

$$
f(z)=\rho k^{-1}\left(\frac{z}{\rho}, \frac{1}{4}\right)
$$

belongs to $S^{\rho}$ for $\rho \geqq 4$.

Remarks. Note that $d_{\rho}=\partial_{\rho}$ for $\rho \geqq 4$. The bounds obtained in Theorem 2 are computable. The following table compares $\partial_{\rho}$ to the lower bounds (5) that we have computed for $d_{\rho}$. Also recall that $\partial_{\rho}$ provides an upper bound for $d_{\rho}$ for all $\rho$.

| $\rho$ | $1 / 4$ | $1 / 2$ | $3 / 4$ | 1 | $4 / 3$ | 2 | 4 | 10 | 100 |
| :--- | :--- | :--- | :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| $d_{\rho} \geqq$ | .250 | .281 | .348 | .399 | .454 | .537 | .686 | .839 | .980 |
| $\partial_{\rho}$ | .250 | .332 | .389 | .433 | .481 | .553 | .686 | .839 | .980 |

The lower bound for the Koebe constant $d_{1}$ for the bi-univalent class $S^{1}$ was computed more closely and found to be .39979.... We have not been able to improve it to .4.
6. The second coefficient for $S^{\rho}$. It is possible to give a sharp estimate for the coefficient $a_{2}$ in the class $\mathscr{S}^{\rho}$.

Theorem 3. For $f(z)=z+a_{2} z^{2}+\ldots$ in the class $\mathscr{S}^{\rho}$ we have

$$
\left|a_{2}\right| \leqq \begin{cases}\frac{2}{3 \rho}(4 \sqrt{\rho}-1-\rho) & \text { for } \frac{1}{4} \leqq \rho \leqq 4 \\ 2 / \rho & \text { for } \rho>4\end{cases}
$$

and the estimates are sharp.
Proof. Case 1: $\frac{1}{4} \leqq \rho \leqq 4$. Since $f(z)=z+a_{2} z^{2}+\ldots$ belongs to $\mathscr{S}^{\rho}$, we may write $f=\psi \circ \phi^{-1}$ where for $x=1 /|a|$

$$
\frac{1}{a} \psi(z)=z+b_{2} z^{2}+\ldots \text { is in } S(\rho x)
$$

and

$$
\frac{1}{a} \phi(z)=z+c_{2} z^{2}+\ldots \text { is in } S(x) .
$$

Since $a_{2}=\left(b_{2}-c_{2}\right) / a$, Lemma 2 implies

$$
\begin{aligned}
&\left|a_{2}\right| \leqq x\left(\left|b_{2}\right|+\left|c_{2}\right|\right) \leqq \frac{2}{\rho}(1-\sqrt{\rho x})(3 \sqrt{\rho x}-1) \\
&+2(1-\sqrt{x})(3 \sqrt{x}-1) .
\end{aligned}
$$

At the same time, $x$ is restricted by $\frac{1}{4} \leqq \rho x, x \leqq 1$. As $x$ varies through its admissible values, the maximum occurs when

$$
\sqrt{x}=\frac{1}{3}+\frac{1}{3 \sqrt{\rho}},
$$

and the first bound is obtained by substituting this value. This estimate is sharp for the corresponding function of the form of Example 2 ( $\S 3$ ).

Case 2: $\rho>4$. In this case

$$
\frac{1}{\rho} f^{-1}(\rho w)=w-a_{2} \rho w^{2}+\ldots
$$

belongs to $S$, so that $\left|a_{2}\right| \rho \leqq 2$. Equality occurs for

$$
f(z)=\rho k^{-1}\left(\frac{z}{\rho}, \frac{1}{4}\right)
$$

which belongs to $\mathscr{S}^{\rho}$.
7. Bounds for the second coefficient in $S^{\rho}$. We shall derive three different estimates for the second coefficient $a_{2}$ of a function $f(z)=z+$ $a_{2} z^{2}+\ldots$ belonging to $S^{\rho}$. Although valid for all $\rho$, they will be valuable for large, small, and intermediate ranges of $\rho$, respectively.

First bound. If $f \in S^{\rho}$, then $\rho^{-1} f^{-1}(\rho w)=w-a_{2} \rho w^{2}+\ldots$ belongs to $S$, so that

$$
\left|a_{2}\right| \leqq 2 / \rho
$$

just as in the second part of Theorem 3. Although valid for all $\rho$, this bound is not of interest for $\rho<1$. However, it is sharp for all $\rho \geqq 4$ since the function $\rho k^{-1}\left(z / \rho, \frac{1}{4}\right)$ belongs to $S^{\rho}$ for $\rho \geqq 4$.

Second bound. For $f \in S^{\rho}$ we have a bound $d_{\rho} \geqq \widetilde{x}$ from Theorem 2, and so by Lemma 2 we have the estimate

$$
\left|a_{2}\right| \leqq g(\rho) \quad \text { where } \quad g(\rho)=\frac{2}{\tilde{x}}(1-\sqrt{\tilde{x}})(3 \sqrt{\tilde{x}}-1)
$$

For $0<\rho \leqq \frac{1}{4}$ this bound coincides with the sharp estimate $\left|a_{2}\right| \leqq 2$ in $S=S^{\rho}$.

Third bound. This estimate parallels the work of Lewin [4] for the biunivalent class. Using the notation of [2], we let

$$
\begin{aligned}
& l_{1}=a_{2}, \quad l_{2}=a_{3}-a_{2}^{2}, \quad l_{3}=a_{4}-\frac{5}{2} a_{2} a_{3}-\frac{3}{2} a_{2}^{3} \\
& l_{4}=a_{5}-3 a_{2} a_{4}-\frac{3}{2} a_{3}^{2}+\frac{37}{6} a_{2}^{2} a_{3}-\frac{8}{3} a_{2}^{4}
\end{aligned}
$$

be associated with $f(z)=z+a_{2} z^{2}+\ldots$ in $S^{\rho}$. Then for the function $\rho^{-1} f^{-1}(\rho w)$ the corresponding $\tilde{l}_{j}$ satisfy $\tilde{l}_{j}=-\rho^{j} l_{j}, j=1,2,3,4$.

With this notation the Grunsky inequalities for $f \in S$ and $N=2$ become (see [2] or [4, p. 67])

$$
\left|l_{2} x_{1}^{2}+2\left(l_{3}+\frac{1}{2} l_{1} l_{2}\right) x_{1} x_{2}+\left(l_{4}+l_{1} l_{3}+\frac{1}{3} l_{1}^{2} l_{2}\right) x_{2}^{2}\right| \leqq\left|x_{1}\right|^{2}+\frac{1}{2}\left|x_{2}\right|^{2}
$$

for all $x_{1}, x_{2} \in \mathbf{C}$. The corresponding inequalities for $\rho^{-1} f^{-1}(\rho w)$ are

$$
\begin{aligned}
\left\lvert\,-\rho^{2} l_{2} y_{1}{ }^{2}+2 \rho^{3}\left(-l_{3}+\frac{1}{2} l_{1} l_{2}\right) y_{1} y_{2}+\rho^{4}\left(-l_{4}+l_{1} l_{3}-\right.\right. & \left.\frac{1}{3} l_{1}{ }^{2} l_{2}\right) y_{2}{ }^{2} \mid \\
& \leqq\left|y_{1}\right|^{2}+\frac{1}{2}\left|y_{2}\right|^{2}
\end{aligned}
$$

for all $y_{1}, y_{2} \in \mathbf{C}$. We choose $x_{1}=l_{1}, x_{2}=\beta>0, y_{1}=-l_{1} / \rho$, $y_{2}=\beta / \rho^{2}>0$ and add both inequalities to obtain

$$
2 \beta(2+\beta)\left|l_{1} l_{3}\right| \leqq\left(1+\frac{1}{\rho^{2}}\right)\left|l_{1}\right|^{2}+\frac{1}{2}\left(1+\frac{1}{\rho^{4}}\right) \beta^{2}
$$

The optimal choice of $\beta$ is

$$
\beta=\frac{\rho^{2}\left|l_{1}\right|^{2}\left(\rho^{2}+1\right)(c+1)}{\rho^{4}+1}
$$

where

$$
c=\sqrt{1+\frac{2\left(\rho^{4}+1\right)}{\rho^{2}\left|l_{1}\right|^{2}\left(\rho^{2}+1\right)}},
$$

and it leads to the inequality
(6) $\left|l_{1} l_{3}\right| \leqq \frac{\rho^{4}+1}{2 \rho^{4}(c+1)}$.

In a similar fashion the Grunsky inequalities for $\sqrt{f\left(z^{2}\right)} \in S$ with $N=3$ and $x_{2}=0$ become (see [4, p. 67])

$$
\begin{aligned}
\left\lvert\, \frac{1}{2} l_{1} x_{1}{ }^{2}+\left(l_{2}+\frac{1}{4} l_{1}^{2}\right) x_{1} x_{3}+\left(\frac{1}{2} l_{3}+\frac{1}{4} l_{1} l_{2}+\frac{1}{24} l_{1}^{3}\right)\right. & x_{3}{ }^{3} \mid \\
& \leqq\left|x_{1}\right|^{2}+\frac{1}{3}\left|x_{3}\right|^{2}
\end{aligned}
$$

for all $x_{1}, x_{3} \in \mathbf{C}$. The corresponding inequalities for $\rho^{-1} f^{-1}(\rho w)$ are

$$
\begin{array}{r}
\left|-\frac{1}{2} \rho l_{1} y_{1}^{2}+\rho^{2}\left(-l_{2}+\frac{1}{4} l_{1}\right) y_{1} y_{3}+\rho^{3}\left(-\frac{1}{2} l_{3}+\frac{1}{4} l_{1} l_{2}-\frac{1}{24} l_{1}^{3}\right) y_{3}{ }^{2}\right| \\
\leqq\left|y_{1}\right|^{2}+\frac{1}{3}\left|y_{3}\right|^{2}
\end{array}
$$

for all $y_{1}, y_{3} \in \mathbf{C}$. Now choose $x_{1}=l_{1}, x_{3}=\beta>0, y_{1}=-i l_{1} / \sqrt{\rho}$, $y_{3}=i \beta /(\rho \sqrt{\rho})$ and add both inequalities to obtain

$$
\left|\left(1+\frac{1}{2} \beta+\frac{1}{12} \beta^{2}\right) l_{1}^{3}+\beta^{2} l_{3}\right| \leqq\left(1+\frac{1}{\rho}\right)\left|l_{1}\right|^{2}+\frac{1}{3}\left(1+\frac{1}{\rho^{3}}\right) \beta^{2}
$$

Multiplying by $\left|l_{1}\right|$ and using the bound in (6), we find

$$
\left(1+\frac{1}{2} \beta+\frac{1}{12} \beta^{2}\right)\left|l_{1}\right|^{4} \leqq \beta^{2} \frac{\rho^{4}+1}{2 \rho^{4}(c+1)}+\frac{\rho+1}{\rho}\left|l_{1}\right|^{3}+\frac{\rho^{3}+1}{3 \rho^{3}} \beta^{2}\left|l_{1}\right|
$$

and so

$$
\begin{aligned}
\left(\frac{1}{12}\left|l_{1}\right|^{4}-\frac{\rho^{4}+1}{2 \rho^{4}(c+1)}-\frac{\rho^{3}+1}{3 \rho^{3}}\left|l_{1}\right|\right) \beta^{2}+\frac{1}{2}\left|l_{1}\right|^{4} \beta & +\left|l_{1}\right|^{4} \\
& -\frac{\rho+1}{\rho}\left|l_{1}\right|^{3} \leqq 0
\end{aligned}
$$

for all positive $\beta$. By letting $\beta \rightarrow \infty$ we learn that the coefficient of $\beta^{2}$ is nonpositive, and evidently the coefficient of $\beta$ is nonnegative. Therefore, the maximum of this quadratic expression in $\beta$ occurs for a positive $\beta$. Since this maximum value is nonpositive, the discriminant of the expression is also nonpositive. This discriminant condition is

$$
\begin{aligned}
& \frac{1}{4}\left|l_{1}\right|^{8}-4\left(\frac{1}{12}\left|l_{1}\right|^{4}-\frac{\rho^{4}+1}{2 \rho^{4}(c+1)}-\frac{\rho^{3}+1}{3 \rho^{3}}-\left|l_{1}\right|\right) \\
& \times\left(\left|l_{1}\right|^{4}-\frac{\rho+1}{\rho}\left|l_{1}\right|^{3}\right) \leqq 0
\end{aligned}
$$

There, if we let $h(\rho)$ be the smallest positive zero of the function

$$
\frac{1}{4} x^{5}-4\left(\frac{1}{12} x^{4}-\frac{\rho^{4}+1}{2 \rho^{4}}\left[c(x)+1 \left\lvert\,-\frac{\rho^{3}+1}{3 \rho^{3}} x\right.\right)\left(x-\frac{\rho+1}{\rho}\right)\right.
$$

where

$$
c(x)=\sqrt{1+\frac{2\left(\rho^{4}+1\right)}{\rho^{2}\left(\rho^{2}+1\right) x^{2}}}
$$

then $\left|a_{2}\right|=\left|l_{1}\right| \leqq h(\rho)$.
The following theorem simply summarizes the bounds that have been obtained.

Theorem 4. If $f(z)=z+a_{2} z^{2}+\ldots$ belongs to $S^{\rho}$, then

$$
\left|a_{2}\right| \leqq \min \left\{\frac{1}{\rho}, g(\rho), h(\rho)\right\} .
$$

In the following table we have computed this estimate of $\left|a_{2}\right|$ in the class $S^{\rho}$ for various values of $\rho$.

| $\rho$ | $1 / 4$ | $1 / 2$ | $3 / 4$ | 1 | $4 / 3$ | 2 | 4 | 10 | 100 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\left\|a_{2}\right\| \leqq$ | 2.000 | 1.973 | 1.782 | 1.509 | 1.337 | 1.000 | .500 | .200 | .020 |

The special case $\rho=1$ is Lewin's result [4] in the biunivalent case.
8. A bi-univalentfunction that is not in $\mathscr{S}^{1}$. The class $\mathscr{S}_{\rho}$ is always a subset of $S^{\rho}$. However, for $0<\rho \leqq \frac{1}{4}$ both classes are $S$, and for $\rho=\infty$
both contain only the identity mapping. The question arises whether the classes are the same for $\frac{1}{4}<\rho<\infty$.

By constructing a function in $S^{1} \backslash \mathscr{S}^{1}$ we shall show that the classes $S^{1}$ and $\mathscr{S}^{1}$ are not the same. This settles a question raised in [4]. Similar constructions can be made for other values of $\rho$.


For $R>1$, let $\Delta_{R}$ denote the disk $|w|<R$ minus a straight line slit $\sigma$ that osculates the upper half of the circle $|w|=\frac{1}{2}$ and ends at the point $w=1$. Let $f_{R}$ be the Riemann mapping function, $f_{R}(0)=0, f_{R}{ }^{\prime}(0)>0$, of the unit disk $U$ onto $\Delta_{R}$. As $R \rightarrow \infty$ the functions $f_{R}$ converge to a rotation and dilation of a function of the form of Example 3 in §3. In particular, $\lim _{R \rightarrow \infty} f_{R}{ }^{\prime}(0)>1$. As $R \rightarrow 1$ the functions $f_{R}$ converge to a function that is bounded by 1 and is different from the identity. Therefore, $\lim _{R \rightarrow 1} f_{R}^{\prime}(0)<1$. Thus we may choose a value $\hat{R}$ so that $f_{\hat{R}}^{\prime}(0)=1$.


The branch of the inverse function $f_{\hat{R}^{-1}}$ that is defined for $|w|<\frac{1}{2}$ extends by the Schwarz reflection principle to a univalent analytic function in $|w|<1$. Therefore $f_{\hat{R}} \in S^{1}$.
We shall show that $f_{\hat{R}}$ does not belong to $\mathscr{S}^{1}$. Indeed, suppose that
$f_{\hat{R}}=\psi \circ \phi^{-1}$ where $\phi$ and $\psi$ are analytic and univalent in $U, \phi(0)=$ $\psi(0)=0, \phi^{\prime}(0)=\psi^{\prime}(0)$, and $\phi(U) \supset U, \psi(U) \supset U$. Then $D=\phi^{-1}(U)$ is a subset of $U$, and $\psi$ maps $D$ onto $\Delta_{\hat{R}}$.

Since $\psi$ extends to $U$ and $\psi(U) \supset U$, part of the boundary of $D$ is an analytic slit $\gamma$ that $\psi$ maps to the segment of $\sigma$ that is in $|w|<1$. Since $\psi(U)$ is simply connected, it contains the point $w=1$, and we denote the corresponding endpoint of $\gamma$ by $p$. In the other direction, the function $\phi$ maps $D$ onto $U$. On the one hand, each point of $\gamma \backslash\{p\}$ corresponds to two points of $\partial U$. On the other hand, $\phi$ has a unique continuation to $U$, and hence to $\gamma$. This presents a contradiction.

Consequently, the function $f_{\hat{R}}$ belongs to $S^{1}$, but not to $\mathscr{S}^{1}$.

## References

1. A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139-169.
2. E. Jabotinsky, Analytic iteration, Trans. Amer. Math. Soc. 108 (1963), 457-477.
3. E. Jensen and H. Waadeland, A coefficient inequality for bi-univalent functions, Det. Kgl. Norske Vidensk. Selsk, Skr. 15 (1972), 1-11.
4. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
5. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient, Arch. Rational Mech. Anal. 32 (1969), 100-112.
6. E. Netanyahu, On univalent functions in the unit disk whose image contains a given disk, J. Analyse Math. 23 (1970), 305-322.
7. H. V. Smith, Bi-univalent polynomials, Simon Stevin 50 (1976-77), 115-122.

The Technion,
Haifa, Israel;
Université Laval,
Québec, Québec;
Indiana University, Bloomington, Indiana


[^0]:    Received January 5, 1979. This work was supported in part by the National Research Council of Canada and the National Science Foundation of the United States.

