
J. Fluid Mech. (2023), vol. 962, A45, doi:10.1017/jfm.2023.314

Three-dimensional numerical simulation of flow
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Flow past a rotating step cylinder is investigated through three-dimensional numerical
simulations for a diameter ratio of 0.5 and a Reynolds number of 150. The step cylinder
comprises two cylinders with different diameters arranged coaxially with a step between
them. The rotation rate α is defined as the ratio of the rotation speed of the larger cylinder
surface to the free-stream velocity. Vortex shedding happens for both cylinders at α = 0,
0.5 and 1, and is suppressed only for the larger cylinder at α = 2 and 3 and fully suppressed
for both cylinders at α = 4. The vortex shedding suppression for the larger cylinder or for
both cylinders has significant effects on the wake. The S-, N- and L-cells at α = 0 are
in good agreement with those reported in previous studies and still exist at α = 1. The
N-cell disappears at α = 0.5, and as a result, the L- and S-cells interact with each other
directly at the step position. An additional cellular zone is found at α = 0.5 and 1 and
this zone has multiple cells with vortex dislocation between them. At α = 2 and 3, there
is a strong hub vortex in the streamwise direction behind the step and the vortices in the
wake of the smaller cylinder form helical vortices after they roll around this hub vortex.
The hub vortex is generated by the difference between the Magnus effect between the
smaller and larger cylinders. At α = 4, the hub vortex still exists but the helical vortices
disappear because vortex shedding is suppressed for both cylinders. At this rotation rate,
the pressure on the cylinder surface oscillates with a frequency much higher than the
vortex shedding frequency. The oscillation of the pressure is caused by the combination of
periodic generation of ring vortices and their motion along the span of the larger cylinder.

Key words: vortex shedding

1. Introduction

Studies of flow past circular cylinders extend from a uniform cylinder to many more
complex geometries. A step cylinder is two cylinders with different diameters arranged
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coaxially with a step between them. The focus of the studies of flow past step cylinders
has been the difference between the wake on different parts of the cylinder. Lewis &
Gharib (1992) conducted experiments of flow past a step cylinder at Reynolds numbers
between 35 and 200 and reported two wake modes: the direct mode at D/d < 1.25 and
indirect mode at D/d > 1.55, where D and d are the diameters of the larger and smaller
cylinders, respectively. In the direct mode, two distinct shedding frequencies exist in
the wake and they interact directly with each other in the interaction region. In the
indirect mode, a third vortex shedding frequency lower than the other two shedding
frequencies exists in the larger diameter wake. Vallès, Andersson & Jenssen (2002)
conducted numerical simulations and presented flow visualization of the vortex linkage
and half-loop formation of the direct mode that were observed in experiments. Dunn &
Tavoularis (2006) conducted further experimental study of flow past a step cylinder at
a diameter ratio of d/D = 0.51 and found that the wake was divided into three cells: the
L-cell, S-cell and N-cell. Local frequency analysis confirmed that the dominant frequency
in the cell boundary regions varied with time. The N-cell is essentially the modulation
zone defined by Lewis & Gharib (1992) and the interaction region defined by Morton,
Yarusevych & Carvajal-Mariscal (2009) and Morton et al. (2009). Morton & Yarusevych
(2014) confirmed that the three cells have constant vortex shedding frequencies for a
Reynolds number of 1050 and d/D = 0.5. To some extent, the classification of the cells
in the wake is similar to the classification of the wake of a tapered cylinder into many cells
with different shedding frequencies (Narasimhamurthy, Andersson & Pettersen 2009) but
with fewer cell numbers. When the step cylinder is placed in a spanwise sheared flow, the
length of the N-cell and the vortex shedding frequencies of the cells are affected by the
degree of the shearing of the flow (Dunn & Tavoularis 2011).

Many numerical simulations of flow past step cylinders have also been conducted mainly
in the indirect mode because it has more complex flow features than direct mode. Morton
& Yarusevych (2010) conducted numerical simulations at Re = 150 and 300 and d/D = 0.5
to investigate the L-, S- and N-cells. The Reynolds number is defined as Re = UD/v. They
found the fluctuations in the downwash velocity was linked to the beat frequency in the
N-cell. Furthermore, they found that each N-cell vortex forms at least two filaments that
are connected to a S-cell vortex and a subsequent N-cell vortex. The downwash was found
to cause the reduction of vortex shedding frequency in the earlier experimental study by
Yagita, Kojima & Matsuzaki (1984).

Studies on step cylinders have been extended to dual steps recently. Morton &
Yarusevych (2012) conducted experiments of flow past a dual step cylinder (larger diameter
at the centre part) at Re = 1050 and d/D = 0.5 and identified four wake regimes depending
on the larger cylinder length. Morton, Yarusevych & Scarano (2016) further conducted
a particle image velocimetry investigation to visualize the wake pattern of the four
wake regimes. Ji et al. (2020) conducted numerical simulations of flow past a dual step
cylinder with fixed cylinder lengths and reported three vortex shedding modes by varying
the diameter ratios. Ji et al. (2019) conducted numerical simulations of vortex induced
vibration of a dual step cylinder and found the vibration amplitude was reduced compared
with a uniform cylinder. In addition, a new wake pattern entitled the ‘out-of-phase vortex
shedding’ was found downstream of the smaller cylinder at D/d = 2.

If a uniform cylinder is rotating in a fluid flow with a rotation rate α, defined as the ratio
of the rotation speed of the cylinder surface to the free-stream velocity, the vortex street in
the wake of the cylinder is similar to a von Kármán vortex street the wake at low rotation
rates (α < 2), (Stojković, Breuer & Durst 2002; Pralits, Brandt & Giannetti 2010). The
vortex shedding in the wake of a rotating cylinder is fully suppressed if the rotation rate is
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greater than a critical value, which is dependent on the Reynolds number (Badr et al. 1990;
Chew, Cheng & Luo 1995; Chou 2000). The critical rotation rates for the vortex shedding
suppression for Re = 60, 100 and 160 are 1.4, 1.8 and 1.9, respectively (Kang, Choi &
Lee 1999). El Akoury et al. (2008) and Rao et al. (2013) found that the three-dimensional
wake of a rotating cylinder at large rotating rates is significantly different from that of
non-rotating cylinder. The three-dimensional study of flow past a rotating cylinder at high
rotation rates has a wake with ring-shaped and finger-shaped vortices (Mittal 2004; Munir
et al. 2019).

When a step cylinder rotates in a flow, the wake must have combined features of a
non-rotating step cylinder and a rotating uniform cylinder. Studies of the effect of the
combination of step and rotation on the flow past a cylinder are very limited. Shin (2019)
conducted numerical simulations of flow around a rotating step cylinder with d/D = 0.5
at Re = 16 129 and 32 258, and α = 0.5 and 1 (based on the larger cylinder) using the
Reynolds-averaged Navier–Stokes equations. It was found that that vortex creation and
interaction is affected by the larger cylinder more than the smaller cylinder. In this paper,
uniform flow past a rotating step cylinder is studied through three-dimensional direct
numerical simulations at Re = 150, d/D = 0.5 and α = 0, 0.5, 1, 2, 3 and 4. Both the
Reynolds number and the rotation rate are defined based on the larger cylinder diameter.
A small Reynolds number in the laminar flow regime is chosen in order to clearly identify
the flow features caused by rotation and step without the effects from turbulence. The
diameter ratio of d/D = 0.5 in the indirect mode regime has been used in many studies
of the non-rotating cylinder considering it has more complex flow features. With the
increase of the rotation rate, the wake goes through three stages: vortex shedding from
both cylinder, suppression of vortex shedding from the larger cylinder and suppression
of vortex shedding from both cylinders. This paper discusses significantly different wake
flow features in these three stages and their effect on the forces on the cylinder.

2. Numerical method

Figure 1 shows a sketch of flow past a rotating step cylinder along its axis with an angular
velocity σ . The length and diameter of the larger cylinder are L and D, respectively, and
those for smaller cylinder are l and d, respectively. The Reynolds number is defined as
Re = UD/ν, where U and ν are the free-stream velocity and kinematic viscosity of the
fluid, respectively, and the rotation rate is defined as α = 0.5σD/U. A coordinate system
Oxyz is defined with its origin located at the centre of the step, x in the flow direction and
z in the spanwise direction. A 60D long, 40D wide and L + l high computational domain
is used for the numerical simulations.

The flow is simulated by solving the non-dimensional three-dimensional Navier–Stokes
(NS) equations for incompressible flow

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂x2
j

, (2.2)

where x1, x2 and x3 represent non-dimensional x-, y- and z-coordinates, respectively, ui
is the non-dimensional velocity in the xi-direction and p and t are the non-dimensional
pressure and time, respectively. The coordinates, time, velocity and pressure are
non-dimensionalized by the larger cylinder diameter and free-stream velocity as:
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Figure 1. Computational domain for flow past a rotating step cylinder with an angular speed σ .

xi = x̂i/D, t = Ut̂/D, ui = ûi/U and p = p̂/(ρU2), respectively, where a hat on a variable
stands for the dimensional value, and ρ is the density of the fluid. Throughout the paper,
all the variables are non-dimensional unless specified otherwise.

At the inlet boundary, the non-dimensional velocity in the x-direction is given as 1. On
the outlet boundary, the pressure is zero and the gradient of the velocity in the x-direction
is zero. On the surface of the cylinder, a no-slip boundary condition is used, i.e. the
flow velocity is same as the velocity of the motion of the cylinder surface. The free-slip
boundary condition is employed at the top, bottom and the two side boundaries.

The NS equations are solved by the Petrov–Galerkin finite element method and the
computer code developed by Zhao, Cheng & Zhou (2009). The computational domain
is divided into approximately 14 million and 28 million 8-node linear hexahedral finite
elements for L/D = 30 and 100, respectively. Figure 2 shows the computational mesh near
the cylinder surface. On the larger and smaller cylinders, the mesh is refined using 40
inflation layers with a growth rate of 1.05. The first layer thickness of the mesh on the
cylinder surface is 0.0025. On the edge of the step, the mesh size is 0.0025 both in the
radius and spanwise directions. There are 120 finite elements along the circumferential
direction of both larger and smaller cylinders. Tian et al. (2020b), whose numerical model
has the same order of accuracy in space as the present model, proved that a mesh size
of 0.015 is sufficiently dense for converged results at Re = 150 and d/D = 0.5. The first
layer mesh size is much smaller than that used by Tian et al. (2020b) considering the
high rotation rates to be simulated. This smallest mesh size of 0.0025 was found to be
sufficiently small for flow past a rotating cylinder at Re = 500 and α = 6 (Munir et al.
2018). The wall unit of the first layer mesh is defined based on the distance from the wall
as y+ = utΔ1/ν, where Δ1 is the first layer mesh thickness. The maximum y+ on the
whole surface of the cylinder is found to be approximately 1 for the largest rotation rate of
4.
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(a) (b)

Figure 2. Computational mesh near the step. (a) Three-dimensional view of the cylinder surface near the
step; (b) two-dimensional view on z =−2 plane on the larger cylinder side.

3. Validation and mesh dependency study

Since the numerical model was developed and validated for the study of uniform and
sheared flow past a circular cylinder in Zhao et al. (2009), it has been further validated in
many papers for complex flow conditions including flow induced vibration of a rotating
cylinder (Munir et al. 2018, 2019) and flow past finite length square cylinders on a
boundary layer flow (Zhao, Mamoon & Wu 2021). In this section, numerical results
of flow past a non-rotating step cylinder with Re = 150, d/D = 0.5, l = 15, L = 30 and
α = 0 are compared with the numerical results by Tian et al. (2020a, 2020b). Simulation
is conducted for a non-dimensional time of 500 and the averaged flow is obtained by
averaging the results over the last 200 non-dimensional time. Figure 3(a) shows the
mean velocity distribution along three lines parallel to z on the larger cylinder side,
figure 3(b) shows the mean pressure coefficient distribution along a line parallel to z
on the larger cylinder side and figure 3(c) shows the mean velocity distribution along a
line in front of the smaller cylinder. In this paper, u, v and w are used to represent the
velocity in the x-, y- and z-directions, respectively. The pressure coefficient is defined as
Cp = (p̂ − p̂0)/(0.5ρU2), where p̂0 is the dimensional pressure of the free stream. An
overbar on top of a variable stands for time averaged (mean) value. The good agreement
between the present results with those of the other two numerical studies in figure 3
demonstrate the validation of the present numerical simulation for the simulation of flow
past a step cylinder. In addition, in the discussion of the numerical results in § 4, the wake
flow features for α = 0 found in this study agree with those observed in previous studies.

The non-dimensional computation step used in this study is �t = 0.002. A time step
dependency is conducted using a smaller time step of �t = 0.001. A mesh dependency
study is conducted by conducting a numerical simulation using a denser mesh with the
first layer element thickness of 0.0015 on the cylinder surface and 132 elements along the
circumference of the cylinder. The numbers of elements of the normal mesh and denser
mesh are approximately 14 million and 30 million, respectively. The normal mesh is the
mesh density used in all the simulations in this paper. Simulation using a smaller time
step and a denser mesh is conducted at the largest rotation rate of α = 4. Figures 4(a) and
4(b) shows the distribution of the time-averaged (mean) sectional drag and lift coefficients
along the cylinder span. The sectional drag and lift coefficients at a z-location is defined as
CDs(z) = 2FDs(z)/(ρDU2), CLs(z) = 2FLs(z)/(ρDU2), whereFDs(z) and FLs(z) are the
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Figure 3. Comparison between the presents results of the mean velocity and pressure coefficient with other
numerical results for Re = 150, d/D = 0.5, l = 15, L = 30 and α = 0. (a) Mean velocity distribution along
three vertical lines of (x,y) = (2,0), (3,0) and (5,0) on the larger cylinder side; (b) distribution of the pressure
coefficient along the vertical line of (x,y) = (−0.53, 0) on the larger cylinder side; (c) mean velocity distribution
along a vertical line of (x,y) = (−0.4,0).

sectional drag and lift forces per unit length calculated by integrating the pressure and
shear stress over the circumference of the cylinder, respectively. The results of the mean
sectional drag and lift coefficient from the two meshes and two time steps are very close to
each other, except the sectional drag coefficient in the zone between z = −4.2 and −2.4. In
§ 4 of this paper, it can be seen that the flow near this zone is very dynamic and aperiodic.
In the mesh dependency study, simulations are conducted for non-dimensional time of
200. The slight difference between the two meshes in this region is because the simulated
time is not very long. Figure 4(c) shows the comparison between the mean velocity along
the x-axis calculated from the normal and denser meshes. The agreement of the velocities
from the two meshes is very good, indicating that the normal mesh is sufficiently dense
for capturing the wake flow structures.

4. Numerical results

Simulations were undertaken for two Reynolds numbers Re = 150 and 100, and it is found
that the flow characteristics found at Re = 150 are also found at Re = 100. Section 4.1
presents a detailed discussion on the vortex shedding, the flow variation along the cylinder
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Figure 4. (a,b) Mean sectional drag and lift coefficient from different meshes and time steps for Re = 150,
α = 4 and L = 30; (c) mean velocity along the x-axis from normal and denser meshes.

span and the force coefficient at Re = 150, while § 4.2 shows the results for Re = 100 and
mainly discuss the difference between the flow features at Re = 150 and 100.

4.1. The case Re = 150
After simulations were first conducted at l = 15 and L = 30, we found that the length of the
larger cylinder is insufficient for α = 0, 0.5 and 1 because either the wake vortices still vary
along the cylinder span or are not parallel to the larger cylinder near its bottom boundary.
Specifically, the length of the newly found cellular zone for α = 0.5 and 1 is approximately
35 to 40 diameters along the larger cylinder span. To ensure the bottom boundary does
not have effects on the result and to capture both the cellular zone and the L-cell on the
larger cylinders, simulations at these three rotation rates are repeated with L = 100. The
small cylinder length of l = 15 is sufficient because the vortices are two-dimensional and
parallel to the smaller cylinder near the top end and L = 30 is sufficiently long for α = 2
and above because vortex shedding in the wake of the larger cylinder is supressed.

Numerical results at α = 0 are discussed first to further validate the current model and
to illustrate the aspects of the wake that have not been reported before. Since oscillatory
fluid forces on the cylinder are the direct results of vortex shedding, one can understand
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the effects of the step on the vortex shedding by correlating the vortex shedding pattern
with the force coefficients.

Figure 5 shows the wake pattern presented by the iso-surfaces of the second eigenvalue
λ2 of velocity tensor function for α = 0 and L = 100. Jeong & Hussain (1995) has proven
the accuracy of using λ2 to identify the vortex cores and presented a detailed method for
calculating λ2. The vortices in the wake of the larger cylinder are aligned obliquely, instead
of being parallel to the cylinder, as indicated in the schematic figure 2 in the paper by Dunn
& Tavoularis (2006), probably because of the difference in the Reynolds number. This
well-organized oblique arrangement of wake vortices can only be found when the cylinder
length is sufficiently long, and the Reynolds number is in the laminar flow regime. Vortex
shedding with oblique wake vortices caused by a disturbance is termed oblique shedding
and the vortex shedding with wake vortices parallel to the cylinder is termed parallel
shedding (Williamson 1989). Oblique shedding reduces the vortex shedding frequency
and significantly affects the integrated total force on the whole larger cylinder span because
the phase of vortex shedding varies along the cylinder, which can be demonstrated by the
mapping of the sectional lift coefficient on the temporal–spatial plane (tz-plane) in figure 6,
where positive and negative sectional lift coefficients are mapped on the tz-plane using
green and white colours, respectively. The variation of the phase of the oscillatory lift
coefficient along the span of the large cylinder can be proven by the inclined lift coefficient
straps in figure 6. The straps of the lift coefficient on the small cylinder (z > 0) are nearly
parallel to the z-axis, indicating that the wake vortices are parallel to the cylinder. It can
be seen that the inclination of the wake vortices progresses gradually in the negative
z-direction and reaches the bottom end of the larger cylinder at approximately t = 650.

The disconnection of the lift coefficient straps in figure 6 is correlated to the vortex
dislocation (VD) at the boundary between the N- and L-cells, and VD causes discontinuity
of the phase of the lift coefficient. For example, the disconnection of the lift coefficient
straps near t = 725 in figure 6 can be explained by the VD illustrated in figure 5(b). In the
rest of this paper, vortices with positive and negative vorticity in the z-direction are referred
to as positive and negative vortices, respectively. In figure 5(b), vortices are labelled using
a cell name followed by a vortex number. The odd and even vortex numbers represent
positive and negative vortices, respectively. For example, N1, N3 and N5, etc. are positive
vortices and N2, N4, N6, etc. are negative vortices in N-cells. At t = 710 in figure 5(b),
N1 and L1 are one integral vortex but with some bend at the boundary between N- and
L-cells. Following N1 and L1, N3 and L3 at t = 717.5 are still connected but the degree of
bend becomes strong. At t = 722.5 to 727.5, N5 and L5 dislocate from each other and this
VD corresponds to the disconnection of the lift strap at approximately t = 725 in figure 6.
After disconnected from L5 at t = 732.5 in figure 5, N5 curls and forms a half-circle, which
was defined as a fake loop by Tian et al. (2017). Afterwards, N6 and L6 disconnect from
each other at t = 730 and N7 and L7 disconnect from each other at t = 736. Subsequently,
N6 and N7 form a whole loop at t = 735, as indicated in figure 5(b). Tian et al. (2017)
defined this loop as an N–N loop and the half-loop formed by L7 and L9 at t = 737.5 as a
half-L–L loop. The loops observed in figure 5 were also presented in the numerical study
by Morton & Yarusevych (2010). The vortex features in figure 5(b) also agree well with
those found in previous studies (Tian et al. 2020b). This paper further proved that the
well-defined oblique vortex shedding behind the large cylinder that can only be identified
when the length if the larger cylinder is L = 100.

The phase difference between different cells is the reason of the VD caused by any
disturbance, including a step (Norberg 1994). Tian et al. (2020b) reported that the phase
difference accumulation is the main mechanism of VD between N- and L-cells and used
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(a) (b)

t = 710 t = 712.5 t = 715 t = 717.5

t = 720 t = 722.5 t = 725 t = 727.5

t = 730 t = 732.5 t = 735 t = 737.5

N1

L1

L3

N1N3

L1
L3

N1
N3

L1L3

N5 N5
N5

N6 N6

N3

L5
L5

L7 L7 L7

N7

L6
L6

L5
L5

L9

L3

N7 N7 N7 N6N8
N6 N6

N-loop
N–N loop

L–L half loop

L7
L7

L6

L9

L9 L7
L9

L10

N3

L1L3

Figure 5. Vortex flow pattern represented by the iso-surfaces of λ2 = −0.1 for Re = 150, L = 100 and α = 0.
The red and blue colours represent positive and negative vorticities in the z-direction, respectively. (a) The
global view of the wake at t = 735 and (b) close-up views near the step from t = 710 to 737.5.

vortex shedding patterns similar to figure 5 to demonstrate the phase difference of vortex
shedding. The vortex shedding phase difference causes phase difference between the
oscillatory lift coefficients between N- and L-cells. The periodic synchronization and
desynchronization between the time histories of the sectional lift coefficients in N- and
L-cells shown in figure 7 further proves the periodic occurrence of VD. When the vortex
shedding of the two cells desynchronize, for example at t = 725, VD occurs (figure 5 at
t = 725) and the lift coefficients of the two cells are out of phase with each other (figure 7).
When the lift coefficients of the two cells are in phase with each other, for example at
t = 737.5 in figure 7, vortices in the wake of the larger cylinder become continuous without
any dislocation at the boundary between N- and L-cells. The periodic desynchronization
of the lift coefficient in figure 7 indicates the periodic VD. The periodicity of VD can
also be easily identified in figure 6 and its period is found to be approximately 7 vortex
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Figure 6. Mapping of the lift coefficient on the tz-plane for Re = 150, L = 100 and α = 0. The green and
white colours on the map represent positive and negative lift coefficients, respectively.
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Figure 7. Periodic synchronization and desynchronization between the lift coefficients at N- and L-cells for
Re = 150.

shedding periods of the L-cell, which is constant with what was reported by Tian et al.
(2020a).

The vortex shedding frequency of the N-cell is found to change in time to allow periodic
synchronization vortex shedding between N- and L-cells. The variation of the vortex
shedding frequency at α = 0 is proven by the time histories of the Strouhal number in
figure 8(a). The Strouhal number is the non-dimensional frequency of the vortex shedding.
It is the modulation of amplitude and frequency that cause the temporal variation of
the amplitude and frequency, which was also reported by Lewis & Gharib (1992). The
instantaneous vortex shedding frequency is defined by the zero-crossing method indicated
on the right of figure 8. Dunn & Tavoularis (2006) found that the local frequency near the
boundary between two cells varies with time. Zhao (2021) also found when dislocation
occurs, both the amplitude of the lift coefficient and vortex shedding frequency very
with time. In this study, it is found that the instantaneous vortex shedding frequency
also varies with time in the whole N-cell. At α = 0, the Strouhal number at z = −0.28
oscillates between 0.143 and 0.167 periodically in figure 8(a). The maximum Strouhal
number of z = −0.28 is slightly smaller than the Strouhal number of the L-cell, which is
0.179. Morton & Yarusevych (2010) presented the beating of flow velocity in the N-cell at
Re = 150 and d/D = 0.5, which is similar the beating of the CLS in figure 8. The beating is
essentially the periodic slowing down and speeding up of the vortex shedding of the N-cell
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Three-dimensional numerical simulation
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Figure 8. Time history of the sectional lift coefficient CLS and the instantaneous Strouhal number with time
in two sections in N-cells for Re = 150, α = 0 and 1, respectively. The definition of the instantaneous frequency
is defined in the sketch on the right of the figure.

relative to the L-cell and is correlated with the periodic occurrence and disappearance of
dislocation.

Another feature observed in figure 5(a) is that the inclination of the wake vortices
extends towards the free end of the large cylinder gradually. Only after t = 650 do all
the wake vortices become fully oblique, and the vortex shedding becomes fully oblique
shedding. To quantify the effect of the vortex inclination in the L-cell on the lift coefficient,
the variation of the phase angle (ϕ) of the lift coefficient along the span of the larger
cylinder is presented in figure 9. If the lift coefficient on a z-section follows a sinusoidal
function with time, it can be represented by CLS(z, t) = AL(z) sin(2πft + ϕ). The phase
angle of the lift coefficient of a spanwise location is defined as the phase difference
between the lift coefficient at this location and that at the centre of the large cylinder
as the reference position. The detailed method for calculating the phase angle using the
cross-correlation method was given in Zhao (2021) and will not be repeated here. The
phase in figure 9 varies linearly, except near two ends of the L-cell. If the non-dimensional
length of the larger cylinder is L = 100, the gradient of the phase variation is 24.3° per
cylinder diameter, indicating that the phase changes 360° after 14.8D, or the lift coefficient
repeats after every 14.8D along the N-cell span or if total lift of 14.8D or multiple of 14.8D
long L-cell span should be zero.

Figure 10 shows the distribution of the standard derivation (SD) and Strouhal number
of the sectional lift coefficient on the cylinder span for α = 0, 0.5 and 1. The SDs of the
sectional drag and lift coefficients are represented by C′

LD and C′
LS, respectively. In the

case where the vortex shedding frequency varies in time, as seen in figure 8, the Strouhal
number in figure 10 is the averaged non-dimensional frequency of the lift coefficient
St = f = 1/T̄ , where T̄ is the non-dimensional time-averaged oscillatory period of the
lift coefficient; St is found to be the same as the non-dimensional peak frequency of the
fast Fourier transform (FFT) spectrum.

Comparison between the results of L = 30 and 100 in figure 10 demonstrates that the end
effect on the force of the large cylinder at L = 30 is negligibly small within −20 ≤ z ≤ 0
for all the three rotation rates. The results for L = 100 demonstrate that L = 30 is sufficient
for the simulation of flow near the step but insufficient to cover the whole part of the
larger cylinder where the effect of the step disappears, especially for α = 0.5 and 1.
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Figure 9. Variation of the phase of the oscillatory lift coefficient along the L-cell span of the cylinder for
Re = 150.

When z < −20, the difference between C′
LS at L = 30 and at L = 100 increases with the

decrease of z. In figure 10(d), the cylinder span is divided into three zones with three
distinct Strouhal numbers for α = 0 and these three zones are the L-, S- and N-cells,
respectively. The nearly constant vortex shedding frequency in every cell agrees with the
observation by Morton & Yarusevych (2014).

The variation of the Strouhal number with z for α = 0.5 and 1 is different from that for
α = 0 in the following ways. Fist, the low-frequency N-cell becomes very short at α = 1
and disappears at α = 0.5. Second, an additional cellular zone with frequencies lower than
the frequency of the L-cell and higher than the frequency of the N-cell is observed in
figure 10(d). In this zone, the wake vortices are divided into a few cells with VD between
them, as discussed below. It is defined as the cellular zone because the wake feature is
very similar to the cellular vortices in the wake of a tapered cylinder (Narasimhamurthy
et al. 2009), which is also characterized by VD between cells and reduction of vortex
shedding frequency. The N-cell is on the large cylinder is in the range −5.3 ≤ z ≤ 0 for
α = 0 but reduced to −1.5 ≤ z ≤ 0 for α = 1. Figure 10(d) demonstrated that the Strouhal
number does not vary along the cylinder span within the N-cell. However, the sectional lift
coefficient varies significantly within the N-cell. At α = 0, the variation of the sectional
lift coefficient in the L-cell is strong at z ≤ 15 and becomes weak when at z > 15. The left
boundary of the cellular zone is found to between z = −40 and −35 for α = 0.5 and 1 in
figure 10(d).

The strong variation of the lift coefficient and Strouhal number in the long cellular
zones for α = 1 and 0.5 shown in figure 10(d) suggests a complex wake in these zones.
The iso-surfaces of λ2 = −0.1 for L = 100 and α = 1 are shown in figure 11 to illustrate
the wake pattern of the cellular zone. The vortices in the wake of the larger cylinder are
labelled to facilitate the discussion. The vortex street in the wake of the larger cylinder
is found to include three zones: a very short N-cell zone, a long cellular zone with many
VDs and an L-cell with parallel shedding. The vortex shedding frequency in the N-cell is
much lower than other zones, as shown in figure 10(d). However, the length of the N-cell is
much shorter than that at α = 0 and is negligibly shorter than the cellular zone. Figure 11
is mainly for showing the flow features in the cellular zone and the N-cell will be discussed
through a close-up view near the step in figure 12 after the discussion of figure 11.
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Three-dimensional numerical simulation
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Figure 10. Distribution of the standard deviation of sectional lift coefficient and Strouhal number along the
cylinder span for Re = 150 and α = 0; (a) SD lift coefficient, (b) mean drag coefficient, (c) Strouhal number
and (d) classification of zones based on Strouhal number.
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Figure 11. Vortex flow pattern in the wake of larger cylinder represented by the iso-surfaces of λ2 = −0.1
for Re = 150, L = 100 and α = 1. The red and blue colours represent positive and negative vorticities in the
z-direction, respectively.

In figure 11, the wake in the cellular zone is divided into three cells 1 to 3 with VD
between them. The inclined vortices in the cellular zone are in wavy shapes. The flow
pattern in the cellular zone resembles the flow visualization of the cellular vortex shedding
behind a tapered cylinder presented by Narasimhamurthy et al. (2009). The difference
is that the cellular zone has finite length in figure 11 for the rotating step cylinder. The
wavy vortices with VD are also like the wavy wake vortices of the flow in the wake of a
uniform circular that transitions from two-dimensional to three-dimensional as the result
of increase of the Reynolds number (Williamson 1996). In figure 11, the cellular zone is
divided into three cells and each cell corresponds to a wavelength. At t = 622.5, all the
wavy vortices 1 to 6 are continuous but each vortex will be divided into two filaments
before dislocation occurs, as is the case for each vortex in the N-cell. At t = 632.5, one
filament of vortex 5 in cell 2 starts to link to vortex 7 in cell 3, whose one filament also
starts to link to cell 9 in cell 4. At t = 637.5, vortices 7–9 join each other at the boundary
between cells 2 and 3 and vortices 9–11 join each other at the boundary between cells 3
and 4. After vortices 5, 7 and 9 dislocate, they are linked to other vortices. At t = 642.5
in figure 11, vortices 9–11 link to each other at the boundary between cells 2 and 3 and
vortices 11–13 linked at the boundary between cells 3 and 4 are fully established.
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Three-dimensional numerical simulation
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Figure 12. Vortex flow pattern near the step represented by the iso-surfaces of λ2 = −0.1 for Re = 150,
L = 100 and α = 1. The red and blue colours represent positive and negative vorticities in the z-direction,
respectively.

The wake flow pattern downstream of the N-cell at α = 1 shown in figure 12 resembles
that at α = 0, but with some slight difference. Vortex dislocation on the top and bottom
boundaries of the N-cells can be clearly seen in figure 12. Compared with α = 0, the closed
N–N loop was not found in figure 12. Each N–N loop at α = 0 is formed by one negative
vortex and one positive vortex that are shed from the two sides of N-cells. When a cylinder
is rotating, positive vortices on one side of the cylinder become significantly weaker than
the negative vortices on another side (El Akoury et al. 2008; Lam 2009; Zhao, Cheng & Lu
2014). C-shaped N-loops instead of N–N loops are observed in figure 12 because vortices
from one side of the N-cell contribute to the loop formation much more than the vortices
from the other side. In addition, the very short length of the N-cell also makes it difficult to
form a closed N–N loop. The C-shaped N-loop vortices in figure 12 resemble the hairpin
vortices in the wake of a very short cylinder (Yang, Feng & Zhang 2022) or a sphere
(Nagata et al. 2018). When a rotating sphere is placed in a flow a single-sided harpin
vortex street was found (Giacobello, Ooi & Balachandar 2009; Rajamuni, Thompson &
Hourigan 2018). The C-shaped N-loop vortices do not form a hairpin wake vortex street
because of the strong influences form the S-cell and L-cell vortices. Although a completed
hairpin vortex street was not observed, a series of N-loop vortices are seen at t = 603.75
and 605 in figure 12. The L–L loops are clearly identified in figure 12 and in the same
shape as the L–L loop at α = 0 in figure 5.

Figure 13 shows the mapping of the sectional lift coefficient the tz-plane for L = 100
and α = 1. The VD illustrated in figure 12 causes the discontinuity of the lift coefficient
straps in figure 13. Based on the intermittent occurrence of the discontinuity of the lift
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Figure 13. Mapping of the sectional lift coefficient on the tz-plane for Re = 150, L = 100 and α = 1. The
green and white colours on the map represent positive and negative lift coefficients, respectively.

coefficient straps in figure 13, we can deduce that the VD occurs intermittently in the
cellular zone instead of periodically like the one on the boundary between the N- and
L-cells at α = 0. The number of cells and the boundaries between cells in the cellular zone
change. The inclination of the lift coefficient straps in figure 13 indicates that the vortices
in the cellular zone are oblique to the cylinder. However, vortices in the L-cell are nearly
parallel to the cylinder. It appears that, after each VD area in figure 13, a parallel vortex
zone extends towards to the step (z = 0). This observation indicates that VD can correct
the alignment angle of wake vortices to make them parallel to the larger cylinder. This is
also proved in figure 12 by the fact that vortices are oblique at t = 622.5, but after VD and
reorganization at t = 642.5 vortices 9–11–13 are overall parallel to the cylinder although
not straight. The VD and reorganization have the function of maintaining a parallel vortex
zone in the bottom part of the larger cylinder. The straps of the lift coefficient in the very
short N-cell in figure 12 have the same characteristics as that at α = 0 in figure 6, i.e. they
disconnect periodically.

Figure 14 shows flow patterns near the step for α = 0.5 represented by the iso-surfaces
of λ2 = −0.1. The biggest difference between the flow at α = 0.5 and those at α = 0 and 1
is that the N-cell does not exist. Without the N-cells, vortices in the S- and L-cells interact
with each other directly and dislocation occurs at the step position in figure 14. The VD
mechanism at the boundary between S- and L-cells resembles the VD that occurred at
the boundary between the N- and S-cells at α = 0. At α = 0, the vortices of the N-cell
form N–N loops because they are short and dislocation occurs at their both ends, while at
α = 0.5, the vortices of the L-cell form half-L–L loops. The vortex shedding of the S-cell
is faster than the L-cell, but continuity of vortices at the step occurs whenever the vortex
shedding from the larger and smaller cylinders are in phase with each other. Vortices S1-L1
at t = 505 and S5-L3 at t = 520 in figure 14 are examples of continuous vortices.

Vortex shedding for flow past a rotating cylinder is suppressed at α = 1.9 for Re = 160
(Kang et al. 1999; Kang 2006) and at approximately α = 2 for Re = 150 (Munir et al. 2019).
The Reynolds number for the smaller cylinder is 75 and the rotation rate α = 2 for the
larger cylinder corresponds to a rotation rate of αs = 1 for the smaller cylinder, where αs
is defined as the rotation rate for the smaller cylinder. Figure 15 shows the vortex shedding
for α = 2 and 3 represented by the iso-surfaces of λ2 = −0.02. The vortex shedding is
fully supressed in the wake of the larger cylinder, but still exists in the wake of the smaller
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Three-dimensional numerical simulation
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Figure 14. Vortex flow pattern near the step represented by the iso-surfaces of λ2 = −0.1 for Re = 150,
L = 100 and α = 0.5. The red and blue colours represent positive and negative vorticities in the z-direction,
respectively.

cylinder at α = 2 and 3. The noteworthy phenomenon observed in figure 15 is the strong
streamwise vortex in the wake of the step. The large-scale streamwise vortex is very similar
to the hub vortex in the wake of the hub and impeller (Shi et al. 2022) and is thereafter
referred to as a hub vortex. The strong vorticity of the hub vortex can be further seen in the
contours of vorticity magnitude on the two planes shown in figure 16. The magnitude of the

vorticity is defined as ω =
√

ω2
x + ω2

y + ω2
z , where ωx, ωx and ωx are the vorticity in the x-,

y- and z-directions, respectively. The low pressure of this streamwise hub vortex attracts
the vortices that are shed from the smaller cylinder towards its centre. As a result, the
vortices from the smaller cylinder roll around the hub vortex and form helical vortices, as
seen in figure 15. Because vortices from the smaller cylinder roll in the positive x-direction
around the hub vortex, their vorticity on the negative y-side is much stronger than on the
positive y-side in figure 15. The helical vortices generated from the smaller cylinder wake
vortices resemble the helical tip vortices in the wake of impellers that are generated from
the tips of impeller blades. The difference is that the helical vortices in figure 15 are much
closer to the hub vortex than the helical vortices of an impeller. Within the vortex shedding
regime, the strength of wake vortices of a rotating cylinder reduces with the increase of α

(Lam 2009). This is the reason why the helical vortices at α = 3 are weaker than at α = 2
in figure 15. Figure 16 shows the contours of vorticity magnitude on two planes that pass
through the centre of the hub vortices. The vorticity of the hub vortex is much greater than
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Figure 15. Vortex flow pattern near the step at t = 437.5 represented by streamlines and iso-surfaces of λ2 =
−0.02 for Re = 150, L = 30 and α = 2. The red and blue colours represent positive and negative vorticities
in the z-direction, respectively. Streamlines start from 20 points evenly distributed along the straight line of
(x, y) = (−1, 0) and z from −4 to 4.

that of the helical vortices. The hub vortex still exists after helical vortices have dissipated
in figures 15 and 16.

Figure 17 shows iso-surfaces of λ2 = −0.5 of the mean flow for α = 2 and 3. The mean
flow is obtained by averaging the stabilized flow over 200 non-dimensional time. The
dynamics of helical vortices is filtered out in the mean flow and the strong hub vortex
remains. The twisting streamlines circle around the hub vortex because the low pressure
of the strong hub vortex attracts the flow towards its centre. The flow directions on the
negative and positive sides of the step bend towards the larger and smaller cylinders,
respectively. The strength of the hub vortex is found to increase with the increase of
rotation rate α.

The formation of the hub vortex can be explained by the deflection of the flow in
the wake of the rotating cylinder due to the Magnus effect (Mittal & Kumar 2003).
Figures 18(a) and 18(b) show the contours of pressure and streamlines of the mean flow
on two constant-z planes on the smaller and larger cylinder sides of the step, respectively.
The Magnus effect makes the flow biased towards the positive y-side of the cylinder in
the wake. At the same time, negative pressure is generated on the negative side of the
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Three-dimensional numerical simulation
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Figure 16. Contours of vorticity magnitude on two sections that go through the centre of the hub vortex for
Re = 150 and α = 3 at t = 300; (a) section y = 1.3 and (b) section z = −1.
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Figure 17. Streamwise vortex of the mean flow represented by streamlines and iso-surfaces of λ2 = −0.5 for
Re = 150, L = 30 and α = 2 and 3. Streamlines start from 20 points evenly distributed along the straight line of
(x, y) = (−2, 0); (a) α = 2 and (b) α = 3.

cylinder, as seen in figures 18(a) and 18(b). The degree of biased flow and the magnitude
of the negative pressure on the negative y-side increase with the increase of the rotation
rate. Because the rotation rate of the larger cylinder is twice the rotation rate of the smaller
cylinder, the flow behind the larger cylinder is biased towards the positive side more than
behind the smaller cylinder. As illustrated in figure 16(b), if the flow direction on the larger
cylinder side bends towards the positive y-side, the flow direction on the smaller cylinder
side must passively bend towards the negative side considering mass conservation. This
forms a helical flow pattern and a hub vortex. In addition, the stronger lower pressure
on the negative y-side of the larger cylinder shown in figure 18 causes downward flow
behind the step, as indicated in figure 17(b), and this downward flow on one side of the
cylinder also enhances the circulating flow of the hub vortex. With the increase of α, the
hub vortex becomes stronger because the flow behind the larger cylinder is more biased
and the downward flow velocity on the negative y-side indicated in figure 17(b) increases.
Figures 18(c)–18(e) show the centre of the hub vortex at three x-locations for α = 3.
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Figure 18. Streamlines and contours of pressure of mean flow on different sections for Re = 150 and α = 3;
(a) z = 3, (b) z =−3, (c) x = 0, (d) x = 2 and (e) x = 4.

The centre of the hub vortex is the location where the vorticity in the x-direction reaches
its minimum and is the centre of the circular streamlines. It moves away from the cylinder
with the increase of x in figure 18.

The variations of the position on the yz-plane, the mean streamwise velocity and the
mean pressure of the hub vortex core are quantified in figure 19. The hub vortex is located
on the negative z-side because the larger wake of the larger cylinder attracts the vortex
towards its side. The biased flow toward the positive y-side (see figure 17b) pushes the hub
vortex toward the positive y-side. The core of the hub vortex moves away from the x = 0
axis (i.e. magnitudes of y and z increase) with the increase of rotation rate. The maximum
values of y and |z| at α = 4 are 2.85 and 2.31, respectively. The pressure reduction of the
hub vortex core is the maximum at the smallest x in figure 19(d) and it decreases with the
increase in x. Significant reduction of the streamwise velocity u is found in figure 19(c). At
α = 4, the velocity ū is only 0.18 in the range between x = 3 and 23.

As the rotation rate is increased to 4, vortex shedding is suppressed from both larger and
smaller cylinders. Figure 20 shows the streamlines and iso-surfaces λ2 = −0.02 for L = 30
and α = 4. Since the vortices are predominately in the x-direction, red and blue colour
iso-surfaces are used to represent positive and negative x-vorticities, respectively. As the
rotation rate is increased to α = 4, the ration rate of the smaller cylinder of αs = 2 becomes
greater than the critical value for the vortex shedding suppression. The hub vortex still
exists at α = 4 with the increased strength compared with those at α = 2 and 3, evidenced
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Figure 19. Variation of the position, pressure and streamwise velocity u of the hub vortex core in the
x-direction based on the mean flow (Re = 150); (a) y-position of hub vortex core, (b) z-position of hub vortex
core, (c) mean velocity u of hub vortex core and (d) mean pressure of hub vortex core.

by the smaller pressure of the hub vortex in figure 19(c). Flow past a uniform rotating
cylinder is characterized by finger-shaped vortices (FVs) at Re = 150 and α = 4 (Munir
et al. 2019) and some other close combinations of Re and α (Navrose & Mittal 2015). The
FVs in the wake of the larger cylinder are clearly seen in figure 20. In addition, the FVs
near the step are strongly affected by the helical flow and trapped in the hub vortex.

Although vortex shedding is fully supressed for both smaller and larger cylinders, the
flow at α = 4 is found to be very dynamic, especially near the step, which can be proved
by the temporal variation of the pressure along the vertical line of (x, y) = (0, −0.5) on
one side of the larger cylinder shown in figure 21. The horizontal straps below z = −5
in the contour figure are caused by the finger-shaped vortices indicated in figure 20. The
disconnection and reoccurrence of these horizontal straps indicated that the finger-shaped
vortices are dynamic, and they may disappear and reappear at a particular location.
The pressure variation below z = −5 is very similar to that of a uniform cylinder. The
attention-grabbing phenomenon in figure 21 is the high-amplitude and high-frequency
oscillation of the pressure in the region of −1 < z < −3, which has never been reported
previously. The oscillation of the pressure causes the high-frequency oscillation of the
sectional force as seen in the time histories of the sectional lift coefficient at the bottom
of figure 22. The reason for the high-frequency and high-amplitude oscillation of the
pressure and sectional lift coefficient of the larger cylinder near the step is the combination
of ring-shaped vortices and the downward motion of the flow along the cylinder span
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FV trapped into hub vortex

Ring vortices

x x
y

y

z z

FV trapped into hub vortex
View 1 View 2(a) (b)

Figure 20. Vortex flow pattern near the step at t = 250 represented by streamlines and iso-surfaces of λ2 =
−0.02 for Re = 150, L = 30 and α = 4. The red and blue colours represent positive and negative vorticities
in the x-direction, respectively. Streamlines start from 20 points evenly distributed along the straight line of
(x, y) = (−1, 0) and z from −6 to 4.

illustrated by the contours of streamwise vorticity and streamlines on the yz-plane in
figures 22(a)–22( f ). Near the step, finger-shaped vortices originate from the ring vortices
that surround the large cylinder, as seen in figures 20(a) and 20(b). Some of the ring
vortices are labelled in figure 22 for the convenience of discussion. It can be seen in
figures 18(a) and 18(b) that the negative y-side of the larger cylinder has greater negative
pressure than the same side of the smaller cylinder. As a result, a downward flow in
the negative z-direction is generated on the negative y-side of the cylinder, as seen in
figures 22(a)–22( f ). In figure 22(a), a ring vortex A1 is growing immediately below
z = −1 and the vertical flow makes it move downwards during t = 252.2 to 254.95 and
finally merges into vortex C in figure 22( f ). While vortex A1 is moving downwards,
vortex A2 is generated and repeats the downward motion of vortex A1. The position of
A2 in figure 22( f ) is the same as the position of A1 in figure 22(b) and the duration
between figures 22( f ) and 22(b) is the oscillation period of the pressure. Near the step,
the frequency of the generation of ring vortices that move downward is the same as
the frequency of oscillation of the pressure in the zone between z = −1 and −3 shown
figure 21. From figures 21 and 22 it can be seen that the high-frequency oscillation of
the pressure mainly occurs in the zone between z = −1 and −3. The downward flow
at the negative y-side of the large cylinder near the step is caused by the difference
in the pressures between the larger and smaller sides of the step. The combination of
this downward flow and the periodic generation of ring vortices is the reason for the
high-frequency oscillation of the pressure. The vorticity below z = −5 in figure 22 become
much weaker than that above this line. The hub vortex behind the step in figure 20 is
generated under the same mechanism as the hub vortices at α = 2 and 3.

Figure 23 shows the distribution of the SD sectional lift coefficient and mean sectional
drag coefficient along the z-direction for various values of α. Munir et al. (2019) reported
that flow past a rotational cylinder with Re = 150 is stationary and two-dimensional at
α = 2 and 3 and is dynamic and three-dimensional with finger- and ring-shaped vortices
at α = 4. The C′

LS on the larger cylinder is zero at α = 2 and 3 because the vortex shedding
of the larger cylinder is fully suppressed as in the flow visualization in figure 15. When the
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Three-dimensional numerical simulation
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Figure 21. Contours of the non-dimensional pressure along the line of (x, y) = (0, −0.5) on tz-plane for

Re = 150 and α = 4.

rotation rate is increased to α = 4, C′
LS of the smaller cylinder becomes zero because the

rotation rate relative to the smaller cylinder (αs = 2) reaches the level for vortex shedding
suppression. However, C′

LS of the larger cylinder is not zero at α = 4 because the flow is
still dynamic with finger-shaped vortices, as shown in figure 20, especially near the step,
as discussed before. That the SD sectional lift coefficient is big on the larger cylinder near
the step is because of the dynamic helical vortices at α = 2 and 3 shown in figure 15 and
the dynamic ring vortices shown in figures 20 and 22. The increase of the mean sectional
drag coefficient below the step at α = 2, 3 and 4 in figure 23(b) is caused by low pressure
in the hub vortex.

Dynamic mode decomposition (DMD) analyses are carried out to further illustrate the
vortex shedding modes identified through flow visualization. DMD based on a sufficiently
large number of samples of the flow field with a constant time interval between them can
predict the flow field at the next time with high accuracy if all the dominant modes are
contained in the dataset. A modal convergence study is firstly conducted by calculating
the root mean square error (RMSE) between the snapshot data and DMD reconstruction
result at time m + 1, i.e. the L2 norm of xm+1 − ỹm+1

||xm+1 − ỹm+1||2 =
√√√√

n∑
i=1

(xi,m+1 − ỹi,m+1)
2, (4.1)

where m is the sample number, In this study, different non-dimensional sampling time
intervals �ts = 0.025, 0.05, 0.075, 0.1, 0.125 (capturing the modes in the frequency range
of 0 ≤ Stmode ≤ 20, 10, 6.67, 5, 4, respectively) and non-dimensional coverage periods
Ts = 2 T to 5 T, where T = 5.5 is the non-dimensional vortex shedding period of the larger
cylinder, are tested to investigate the effect of sampling time interval and coverage period
on the modal convergence.

Figure 24 shows the RMSE between the snapshot data and the DMD reconstruction
result for the case of α = 0.5. The reconstruction error decreases with the increase of the
coverage periods and the decrease of the sampling interval. For Ts = 5 T, the RMSE is
maximum at �ts = 0.125 and reduces with the decrease of �ts. Moreover, for �ts = 0.025,
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Figure 22. (a–f ) Contours of streamwise vorticity ωx and streamlines on the yz-plane for Re = 150 and α = 4;
(g) time histories of sectional lift coefficient on four sections; (a) t = 252.2, (b) t = 252.7, (c) t = 253.15,
(d) t = 253.55, (e) t = 253.95, ( f ) t = 254.95.
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Figure 23. Distribution of the SD sectional lift coefficient and mean sectional drag coefficient along the
z-direction various values of α for Re = 150; (a) SD lift coefficient and (b) mean drag coefficient.
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Figure 24. The RMSE of the DMD reconstruction as a function of sampling interval with coverage period
for Re = 150 and α = 0.5, where T = 5.5 is the vortex shedding period of the larger cylinder.

the difference in error between Ts = 4 T and Ts = 5 T is negligibly small. Hence, we
consider the snapshot number m = 1100 (�ts = 0.025 and Ts = 5 T) for use for the DMD
analyses in this study.

DMD is only conducted for the cases where periodic vortex shedding exists, i.e. α = 0,
0.5 and 1. Only the DMD modes for α = 0 and 0.5 are considered since they cover all
the modes found at α = 1. Figure 25 shows the iso-surface of the DMD modes for two
rotation rates at α = 0 and 0.5. The modes corresponding to the L-, S- and N-cells are
separated from each other successfully using DMD in the figure. In figures 25(a) and
25(d), only the modes of the L-cell behind the larger cylinder are retained and other modes
are removed. The DMD mode frequencies of the L-cells in figure 25 agree with their values
shown in figure 10. The DMD mode of the N-cell in figure 25(b) is not well organised
because vortices deform significantly after they are shed from the cylinder in this zone.
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Figure 25. Three-dimensional DMD modes presented by iso-surfaces of λ2 = −0.0001 for Re = 150;
(a) α = 0, St = 0.176; (b) α = 0, St = 0.153; (c) α = 0, St = 0.301; (d) α = 0.5, St = 0.184; (e) α = 0.5, St = 0.165
and ( f ) α = 0.5, St = 0.301.

DMD modes whose frequency is the same as the S-cell frequency only have vortices
behand the smaller cylinder in figures 25(c) and 25( f ). The DMD mode of the cellular
zone in figure 25(c) is very chaotic because dislocation of vortices occurs frequently in
this zone. The vortex shedding in the L-cell is in oblique mode at α = 0 and parallel mode
at α = 0.5 in figures 25(a) and 25(d), respectively. At α = 0, frequencies of the L-, S- and
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Three-dimensional numerical simulation

(a) (b) (c) (d ) (e) ( f )

Figure 26. Vortex flow pattern in the wake of cylinder represented by the iso-surfaces of λ2 = −0.1 for
Re = 100. The red and blue colours represent positive and negative vorticities in the z-direction, respectively;
(a) α = 0, (b) α = 0.5, (c) α = 1, (d) α = 2, (e) α = 3 and ( f ) α = 4.

N-cells are distinctly different from each other, as shown in figure 10. As a result, the DMD
modes of these three cells are also well defined in figure 25, i.e. the DMD mode of one
cell does not have other components of other cells. At α = 0.5, the closeness between the
frequencies of the L-cell and cellular zone makes these two zones not absolutely separated
from each other by DMD, as shown in figures 25(d) and 25(e).

4.2. The case Re = 100
Figure 26 shows the vortex flow pattern in the wake of the step cylinder for Re = 100 and
various values of α. The wake patterns observed at Re = 150 are also found at Re = 100,
except for helical vortices and finger-shaped vortices.

The helical vortices form through two mechanisms: a large streamwise vortex that
forms the hub and the wake vortices that are shed from the smaller cylinder, as seen in
figure 25(d). At Re = 100, the vortex shedding from the smaller cylinder disappears when
the hub vortices form. As a result, helical vortices do not exist. At Re = 100 and α = 2,
the Reynolds number and rotation rate based on the smaller cylinder diameter are 50 and
1, respectively. The wake of Re = 50 and α = 1 for the small cylinder is the boundary of
the steady flow regime, where there is no vortex shedding (El Akoury et al. 2008). The
non-existence of vortex shedding from the smaller cylinder is also seen in figure 26(d). A
helical vortex structure cannot form without the supply of the vortices. The finger-shaped
vortices in the wake of the large cylinder were not found at Re = 100 because the flow is
two-dimensional at Re = 100 and α values up to 4 (Munir et al. 2019).

The inclination of wake vortices in the wake of the larger cylinder found at Re = 150 is
also observed at Re = 100 in figure 26. However, the VD in the L-cell was not observed at
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Figure 27. Contours of the section lift coefficient on the tz-plane for Re = 100; (a) α = 0, (b) α = 0.5 and
(c) α = 1.

Re = 100 after t = 750 when the wake is fully developed. Vortex dislocation is not found
in the L-cell mainly because Re = 100 is a low Reynolds number in the laminar flow
regime, where any flow disturbance can be dissipated. Figure 27 shows the contours of
the sectional lift coefficient at Re = 100 and α = 0, 0.5 and 1. The time required for the
vortex shedding flow to be developed to the stable stage for Re = 100 is much longer than
Re = 150. A non-dimensional time of 800 is necessary to let the flow develop to its stable
stage at Re = 100. The progress of the flow disturbance by the step can be evidenced by
extending the inclined lift straps towards the free end of the large cylinder in figure. 27.
The three-cell wake feature at Re = 100 and α = 0 in figure 26(a) is the same as the one
at Re = 150, but with a longer N-cell length. The periodic occurrence of the VD at the
boundary between the N-cell and L-cell exist at Re = 100 (reflected by the disconnections
of the lift coefficient strap) in figure 26(a). At α = 0.5 and 1, VD occurs at the early stage
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Figure 28. Variations of the SD sectional lift coefficient, mean sectional drag coefficient and Strouhal number
along the cylinder span for Re = 100; (a) SD lift coefficient, (b) mean drag coefficient and (c) Strouhal number.

of the flow development when the disturbance by the step progresses towards the free end
of the large cylinder, as illustrated in figures 27(b) and 27(c).

Based on the comparison between the flow features at Re = 150 and 100, it can be
derived that the wake pattern of a step cylinder for Reynolds numbers in the laminar flow
regime can be predicted based on the findings of flow past a uniform rotating cylinder.
If vortex shedding occurs from larger and smaller cylinders, the wake can be divided into
three cells (S-, N- and L-cells) and two cells (S- and L-cells). If the vortex shedding occurs
in the smaller cylinder but not in the larger cylinder, the wake can be dominated by a
strong streamwise vortex surrounded by helical vortices (figure 15). If vortex shedding is
suppressed in the wake of both cylinders, the wake has only a strong streamwise vortex
(figures 20 and 26d,e).

Figure 28 shows the variations of the SD sectional lift coefficient, mean sectional
drag coefficient and Strouhal number along the cylinder span for Re = 100. The SD lift
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coefficient on the smaller cylinder at α = 2 is slightly greater than zero, indicating that
this α is the critical rotation rate for vortex shedding. The boundary between the inclined
vortex zone and parallel vortex zone can be determined based on the SD lift coefficient
variation and St along the cylinder span. In the inclined vortex zone SD lift coefficient and
the Strouhal number are smaller than in the parallel shedding zone. However, the mean
drag coefficients in the parallel and inclined vortex shedding zones do not have noticeable
differences. If the N-cell exists (α = 1), its Strouhal number is smaller than the L-cell’s
Strouhal numbers, as seen in figure 28.

5. Conclusions

This paper is aimed at investigating the effect of rotation of a step cylinder in uniform
flow on the vortex shedding. Three-dimensional numerical simulations are conducted at
Reynolds numbers Re = 150 and 100, a diameter ratio d/D = 0.5 and rotation rates α = 0,
0.5, 1, 2, 3 and 4. The simulated rotation rates cover three possible vortex shedding
regimes: (i) vortex shedding for both cylinders, (ii) vortex shedding only from the smaller
cylinder and (iii) vortex suppressed for both cylinders. The wake patterns of these three
vortex shedding regimes are very different from each other. All three regimes are found at
Re = 150, but only regimes (i) and (iii) are found at Re = 100. Wake features for Re = 150
and 100 are summarized in §§ 5.1 and 5.2, respectively.

5.1. The case Re = 150
The S-, N- and L-cells in the wake of a non-rotating step cylinder (α = 0) are the same
as those reported in previous studies. When the cylinder rotates at α = 0.5 and 1, vortex
shedding occurs from both cylinders, but the N-cell at α = 1 is shorter than α = 0 and
disappears at α = 0.5. The vortices of the shorter N-cell at α = 1 form C-shaped loop
instead of the closed N–N loop as that in α = 0. Without the N-cell at α = 0.5, vortices
of the L- and S-cells interact with each other directly at the step position. In addition to
the S-, N- and L-cells, an additional cellular zone occurs between N- and L-cells for α = 1
and between S- and L-cells for α = 0.5. The vortices in this cellular zone are divided into
many cells with VD between them. The vortex shedding frequency in this cellular zone
is smaller than the vortex shedding frequency in the L-cell and greater than the vortex
shedding frequency in the N-cell. The cellular zone is much longer than the N-cells.

If the cylinder rotates at α = 2 and 3, vortex shedding is fully suppressed for the larger
cylinder but still exists for the smaller cylinder. The wake in these two rotational rates
is characterized by a strong streamwise hub vortex downstream of the step surrounded
by helical vortices. The helical vortices are formed by the vortices that are shed from
the smaller cylinder and roll around the hub vortex. The hub vortex is formed by two
mechanisms. One is the stronger biased wake flow on the larger cylinder side than the
smaller cylinder side. The other one is the spanwise velocity at the step position pointing
to the larger cylinder side, which is caused by a pressure gradient. The helical vortices
make the lift coefficient oscillate with high amplitude near the step on the larger cylinder.

When the rotation rate is increased to 4, vortex shedding from both cylinders is fully
suppressed but the flow near the step and on the larger cylinder span is characterized
by dynamic ring-shaped vortices and finger-shaped vortices. Near the step, the spanwise
flow pointing towards the larger cylinder side and the periodic generation of ring-shaped
vortices make the pressure on the cylinder surface oscillate with high frequency and high
amplitude. As a result, the sectional lift coefficient on the larger cylinder span near the
step also oscillates with high frequency and high amplitude.
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5.2. The case Re = 100
All the wake features found at Re = 150 are also found at Re = 100 except for two: helical
vortices and finger-shaped vortices. At Re = 100, the wake with helical vortices is not
found because the vortex shedding is suppressed at the same rotation rate of 2 for both
cylinders. The finger-shaped vortices are not observed at Re = 100 and α = 3 or 4 because
the flow in the wake of the larger cylinder is two-dimensional. At α = 0, 0.5 and 1, the
time required for the flow to develop to stable vortex shedding flow for Re = 100 is much
longer than for Re = 150.
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