
EXTREME POINTS IN H(R) 

FRANK FORELLI 

1. Let R be an open Riemann surface. / belongs to HX(R) if / is holomorphic 
on R and if the subharmonic function |/| has a harmonie majorant on R. Let 
p be in R and define | |/ | | to be the value at p of the least harmonic majorant 
of |/|. | |/ | | is a norm on the linear space Hl(R), and with this norm Hl(R) is 
a Banach space (7). The unit ball of Hl(R) is the closed convex set of all / 
in Hl(R) with ||/ | | < 1. Problem: What are the extreme points of the unit ball 
of Hl(R)t de Leeuw and Rudin have given a complete solution to this problem 
where R is the open unit disk (1). The purpose of this paper is to give a neces
sary condition for an extreme point of the unit ball of Hl(R) when R is con-
formally equivalent to the interior of a compact bordered Riemann surface. 

2. We let L1 be the Banach space of Lebesgue measurable functions on the 
unit circle that are Lebesgue summable. The norm of/ in L1 is 

We let H1 be the closed subspace of functions/ in L1 whose Fourier coefficients 
vanish for negative indices: 

J e~indfda = 0 

for n < 0. Because of the uniformization theorem, Hl{K) has a canonical 
representation as a closed subspace of H1 (7). I give a sketch of a proof 
of this. 

I shall assume that H1^) contains non-constant functions. Then R carries 
a non-constant positive harmonic function, and therefore the universal cover
ing surface of R is the open unit disk D. Let t be the analytic function from D 
onto R with the property that (D, t) is a regular covering surface of R and 
/(0) = p, and let G be the group of cover transformations of (D, t). G is the 
group of fractional linear transformations T that take D onto D with t(T) = t. 

Let T be a fractional linear transformation that takes the open unit disk 
onto itself. Then T is also a homeomorphism of the unit circle T, and T~l 

takes Lebesgue measurable subsets of T into sets of the same kind and does 
it in such a way that Lebesgue null sets are taken into Lebesgue null sets. Thus 
Tf — f(T) is Lebesgue measurable when / i s , and Tf = Tg a.e. when/ = g a.e. 
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Consequently Tf is defined when/ is in L1. In addition, Tf belongs to L1 when 
/ belongs to L1 and 

J Tfda =JfPTda, 
where PT is the Poisson kernel 

(1) PT(ei9) = Re[(e" + T(0))/(et9 - 7\0))] . 

Return to the group G of cover transformations of (D, t). Hl/G is the closed 
subspace of functions in H1 that are invariant under G. Thus / belongs to 
Hl/G if and only if / belongs to H1 and Tf = / a . e . when T is in G. L e t / be in 
H1(R) and let g = f{t) be the function we get by lifting / to D. g belongs to 
Hl(D) and is invariant under G. Let h be the radial limit of g. Then h belongs 
to Hx/G} and the linear transformation/—» g —> h is an isometry from Hl(R) 
onto ifVG. 

I shall work in the following with Hl/G and not with H1(R). 

3. I have defined Hl/G} and the spaces LP/G and Hp/G are defined in the 
same way. Thus L°°/G is the closed subspace of functions in L°° that are 
invariant under G. There is another way to describe these spaces (3). Let S 
be the sigma-field of Lebesgue measurable subsets of T, and let S/G be the 
sigma-field of X in 2 with a{XLT~lX) = 0 for all T in G: then LP/G is the 
closed subspace of functions in LP that are measurable with respect to the 
smaller sigma-field 2/G. 

The conditional expectation given 2/G will be denoted by E (3, 6). £ is 
the projection of L1 onto the linear set of S/G measurable functions in L1 

given by 

(2) JxEfda=Jxfda 

wThen X is in 2/G. (The right side of (2) is a bounded complex measure on 
S/G that is absolutely continuous with respect to a, and therefore by the 
Radon-Nikodym theorem there is a X/G measurable function Ef in L1 such 
that (2) holds.) When 1 < p < °°, Ef is in Z^ w h e n / is, and thus, because 
L?/G is the linear set of functions in LP that are S/G measurable, £ is a pro
jection of LP onto ! / / £ • In particular, E carries L°° onto Lœ/G. The norm of E 
as a linear transformation of LP is 1 ; E commutes with complex conjugation, i.e. 

(3) Ëf = Ef; 

E is formally self-adjoint, i.e. 

(4) JEfgda=jfE-gda 

when / is in LP and g is in I-5; and E has the property 

£(/g) =fEs< 

when / is in LP/G and g is in Lq. Here 1 < /> < °° and g is the dual exponent 
P/(P -1). 
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4. The basic lemma about extreme points of the unit ball of Hl/G is due to 
de Leeuw and Rudin (1,5), and is as follows. 

LEMMA 1. Letf be in Hl/G with 

j J/J da = 1. 

Then f is not an extreme point of the unit ball of Hl/G if and only if there is a 
non-constant real-valued function </> in U°/G with 4>f in Hl/G. 

I shall give the proof because it is not long. 
Suppose that there is such a <t>. Subtracting from <j> the constant 

J <t>\f\ da, 
we can assume that 

Multiplying <j> by a positive constant, we can also assume that — 1 < <j> < 1. 
But now/ ± <t>f belongs to the unit ball of Hl/G, a n d / is not an extreme point 
of the unit ball of Hl/G for / ^ / db <£/ a n d / = | ( / + <tf) + | ( / - </>/). 

To see that the condition is also necessary, suppose that there is a non-zero 
function g in Hl/G with / d= g in the unit ball of Hl/G. Let $ = g/f. Then 

J (|1 + <j>\ + |1 -cf>\ - 2 ) | / | AT = 0, 

which gives |1 + #| + |1 — <f>\ = 2, which in turn gives — 1 < <£ < 1. 0 is 
non-constant for 

j\f\da=j (l+<p)\f\da, 
and hence 

J *|/| da = 0. 
/ in H°° is said to be an inner function if |7| = 1, and F in H1 is said to be an 

outer function if FH™ is dense in H1. L e t / be in H1 with 

j |/| da = 1, 

and l e t / = IF be an inner outer factoring of/ (1, 5). (There is an argument 
free of function theory for this factoring in (2).) When I is non-constant, 
4> = I + I satisfies the conditions of Lemma 1. On the other hand, if/ is outer 
and 4>f belongs to H1, where <f> is in L°°, then </> must belong to Hœ since/if °° is 
dense in H1. Thus if <j> is also real, </> must be a constant. This is the de Leeuw-
Rudin theorem: Let f be in H1 with 

J\f\da = l. 

Thenf is an extreme point of the unit ball of H1 if and only iff is an outer function. 
Now let / b e in H l/G with 

J l/l da = 1. 

When / is outer, / is an extreme point of the unit ball of ^/G. On the other 
hand, if/ is not outer, we cannot infer as before t h a t / is not extreme in the 
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unit ball of Hl/G, because I + I may not belong to Lœ/G. Lemma 2 is a dual 
version of Lemma 1, and says that being an extreme point of the unit ball of 
Hl/G is the same as behaving in a manner resembling that of an outer function. 

LEMMA 2. Let f be in Hl/G and let 

j l/l da = 1. 

Then f is an extreme point of the unit ball of Hl/G if and only if the linear space 

(5) / E(H0
œ) + C + f E(H<T) 

is dense in L1/G. 

H0
œ is the subspace of functions g in Hœ with 

j g da = 0, 

and C is the one-dimensional space of constant functions. 

Proof. Suppose (5) is not dense in L1/G. Then there is an h in Lœ/G with 
h 9e 0 that annihilates (5). Because 

J h da = 0, 

h is non-constant, h also annihilates (5), and therefore there is a non-constant 
real-valued function <j> in U°/G that annihilates (5). We have, by (3) and (4) 
and E(<i>f) = <j>fy that 

fct>fgda=J<l>fEgda = 0 

for all g in Hoœ, and thus <j>f belongs to Hl/G (since Hl/G is the subspace of 
functions in Ll/G whose Fourier coefficients vanish for negative indices). 
Hence (Lemma 1) / is not an extreme point of the unit ball of Hl/G. 

On the other hand, if/ is not an extreme point of the unit ball of Hl/G, let 
4> be the function given by Lemma 1, and let h = <j> — c, where 

c = j (j) da. 

Then h ^ 0 and h annihilates (5). 

5. The things set down in this section are given with more details in (3). 
L e t / be in L2 and le t /* be the function conjugate t o / . /* is the function in 
L2 with Fourier series 

E K O icn e
m + ZM>o ~icn em, 

where 
L cn e

ine 

is the Fourier series of / . When T is a fractional linear transformation that 
takes D onto J9, 

T(f*) = (Tf)*-ffPT*da, 
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where PT is the Poisson kernel (1). Therefore, w h e n / is in L2/G and T is in G, 

(6) T(J*)=f-jfvTda, 

where 

(7) vT = E(PT*). 

vT is a bounded real function since P r * is. Let N be the complex linear span 
of the functions vT (T in G). N is contained in L°°/G, and the orthogonal 
complement in L2/G of N consists of the functions in L2/G whose conjugates 
also belong to L2/G. Let N2 be the L2 closure of N. Then we have the orthogonal 
decomposition 

(8) L2/G = N2 e HJJG © c e H0
2/G. 

Let d(N) be the dimension of A7, let G' be the commuta to r subgroup of G, 
and let r(G/Gf) be the smallest number of elements t h a t will generate the 
homology group G/Gf. When R is not simply connected, r(G/G') is the first 
Bet t i number of R. (6) implies t h a t 

(9) vST = vs + vT 

for all 5 and T in G, and this in turn implies t ha t d(N) < r(G/G'). Let d(R) 
be the largest number of bounded harmonic functions on R with cohomolo-
gously independent conjugate differentials. Then d(N) = d(R) always. When 
R is the interior of a compact bordered Riemann surface t h a t is not simply 
connected, d(R) is finite and is equal to r(G/G')> and, conversely, a Riemann 
surface with this proper ty is conformally equivalent to the interior of a com
pact bordered Riemann surface. 

Let % be a homomorphism of G into the multiplicative group of unimodular 
complex numbers . A non-zero v e c t o r / in H1 is called an eigenvector of G with 
eigenvalue x if Tf = x(T) f for all T in G. T h e following lemma is a simple 
consequence of (6) and (9), and is a paraphrase of a well-known fact abou t 
compact bordered Riemann surfaces. 

L E M M A 3. Suppose d(N) is finite and is equal to r(G/Gf). Let x oe anJ 
homomorphism of G into the multiplicative group of unimodular complex numbers. 
Then there is a unit u in the algebra if00 with log \u\ in N that is an eigenvector 
of G with eigenvalue x-

Wi th the hypothesis of Lemma 3 it is also t rue t ha t 

(10) E(H<T) = N + Hoœ/G, 

(11) E(Hœ) = N + Hœ/G, 

and t ha t there is a function k in Hœ/G with 

(12) kE(Hœ) = Hœ/G. 

(10) and (11) are simple consequences of (7) and (8). T o prove t h a t there is 
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a function k such that (12) is true is a little complicated; however (12) will 
be used only for exposition. 

L e t / be in Hl/G and assume the hypothesis of Lemma 3. When f is an outer 
function, fHœ/G is dense in Hl/G and fHçT/G is dense in H0

1/G. There are 
several proofs of this, and among them is one using (12) that I find attractive. 
Let cj> in kHœ be such that £ (0 ) = 1. Now let g be in Hl/G. Because/ is outer, 
there is b in Hœ (and in H0

œ if g is in H0
1/G) with 

j \fb -g\da< e. 

E{(j>b) is in Hœ/G (and in H^/G if b is in H<? by (2)) and 

j \fE(4>b) ~g\da=J \E(f<t>b - g<t>)\ da 

<f\f4>b ~ g<t>\da < € | | 0 | | œ , 

showing that fHœ/G is dense in Hl/G. 
I now give an argument that does not use (12). The finite-dimensional space 

fN has only the vector 0 in common with H1. For if fv is in Hl, where v is in 
N, then v must be in Hœ since fHœ is dense in H1, and hence by (8) 

f\v\*da = 0. 

Thus there is a constant K such that 

j \h\ da < Kj \fv + h\ da 

for all v in N and h in H1. Now let g and b be as before. Then by (11) 

Eb = v + h> 

where v is in N and h is in Hœ/G (and in H^/G if b is in H0
œ), and 

f\fh-g\da<KJ\fv+fh-g\d<r 
= X j |£(/è - g) | da < iCj |/è -g\da< Ke. 

6. THEOREM 1. Suppose d(N) is finite and equal to r(G/G'). Let f be in Hl/G 
with 

f l/l dc = 1 

and let n be the codimension in Hl/G of the L1 closure offHœ/G. Then for f to be an 
extreme point of the unit ball of Hl/G it is necessary that 2n < d (N). 

Proof. Let / = IF be an inner outer factoring of / . Though / is invariant 
under G, I and F need not be. What is true is that / and F are eigenvectors of 
G with eigenvalues % and %• (An inner outer factoring is determined up to 
constant unimodular factors, and the collections of inner and outer functions 
are carried onto themselves when composed with a fractional linear trans
formation that takes the open unit disk onto itself.) Let u be the unit given 
by Lemma 3. Then / = Iuu~1F} lu belongs to Hœ/G, u~1F belongs to Hl/G, 
and u~lF is an outer function. Because u~1FHQO/G is dense in Hl/G, the L1 
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closure of fHœ/G is IuHl/G. We are not going to work with the L1 closure of 
flP/G, but with the V closure oîfH0

œ/G. The L1 closure oîfH0
œ/G is IuH^/G 

because u~1FH^/G is dense in Ho1/G1 and the co-dimension of this space in 
Ho1/G is again n. Since the co-dimension of H0

1/G in Hl/G is 1, the co-dimen
sion of IuHQ

1/G in IuHl/G is 1 too, the co-dimension of IuH0
1/G in Hl/G is 

n + 1, and the co-dimension of IuH0
1/G in Ho1/G is w. 

Let 5 be the L1 closure of iloVG + HJ/G. When / is in Ho1/G and 2" is in G, 

J > r d « r = jfE(PT*)da =jfPT*da = -jf*PTda 
= ijfPTda = iff da = 0. 

Therefore 
J/wdo- = 0 

for / in S and v in iV, and N and 5 have only 0 in common. (8) shows that 
N + C + S is dense in Lx/G, and as TV is finite dimensional, N + C + S is 
also closed in Lx/G. Thus we have the direct sum decompositions 

V/G = N+ C + 5, 

ZoVG = iV + 5, 

and the co-dimension of 5 in Lo1/G is d(N). 

Let M be the L1 closure oîfH0
œ/G +fH0

œ/G. M is contained in S, and the 
co-dimension of M in 5 is 2w. Here is one proof. Let 0 < r < 1. There is a 
constant X(r) such that 

(!\Pg\Td*)l»<K(r)I\g\d<r 

for all g in Z,1, where P , when restricted to trigonometric polynomials, is given 
by 

PCEcne*9) = T,n>ocne
ine 

(8, p. 254). P takes L1 into if0
r, where H0

r is the closure in Lr of trigonometric 
polynomials of the form J2n>o cn e

ind. Let m be finite and < ^ and let gi through 
gm be in Ho1/G and be linearly independent modulo IuH0

1/G. The 2m functions 
gi through gm and gi through gm belong to 5, and we wish to show that they 
are linearly independent modulo M. Suppose that Yl cn gn + S dk gk belongs 
to M. Approximating this function by functions taken from / Hoœ/G + / Ho°°/G 
and then applying the linear transformation P shows that g = 2Z dk gk belongs 
to the Lr closure of fHoœ. The LT closure of /i?o°° is IH0

r, and thus g = Ih, 
where h is in H0

r. Because h is in L1, h is in fact in Ho1 (8, p. 278). Hence 
g = Iuu~% is in IuH0

1/G, and thus the dk are all 0 because of the assumed 
linear independence. We now have J2 c* g& i n -̂ "» a n d the argument just given 
shows that the ck are also all 0. Thus the co-dimension of M in S is >2w, and 
clearly it cannot be larger than this. 

I shall use Lemma 2 to complete the proof of Theorem 1. The co-dimension 
of M in W/G is 2n + d(N). Moreover (by (10)), 

(13) fE(Hon+fE(H0
œ) =fN+fN + f H0

œ/G + f H0
œ/G 
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and (13) is contained in 

(14) fN+fN+M. 

The dimension of f N + fN is <2^(iV), and therefore the co-dimension of M 
in (14) is <2d(iV!), and thus, to have (13) dense in L0

1/G, it is necessary that 
2n + d(N) < 2d(N). 

Here is a corollary to Theorem 1. 

THEOREM 2. Let R be conformally equivalent to an annulus and let f be in 
Hl/G with 

J l/l da = 1. 

Then f is an extreme point of the unit ball of Hl/G if and only if f is an outer 
function. 

Proof. d(N) = r{G/Gf) = 1. 

Gamelin in (4) shows that there are extreme points of the unit ball of Hl/G 
that are not outer functions when R is the interior of a compact bordered 
Riemann surface wTith first Betti number > 2 . 

So far nothing has been said about the anatomy of an inner function, and 
in particular no use has been made of this anatomy (because I wanted to give 
a proof of Theorem 1 that did not use it). When the anatomy of an inner 
function is taken into account, however, there is another version of Theorem 1. 

Assume the conditions of Theorem 1. The inner factor I oî f has a factoring 
/ = BS where B is a Blaschke product and 5 is a singular inner function (5). 
When S appears, n is infinite. For let k be a positive integer. Then there is a 
factoring, 

(15) S = W\ 

where W is a singular inner function too. Now 5 and B are eigenvectors of G 
because i" is (for the factoring of an inner function into a Blaschke product 
and a singular inner function is determined up to constant unimodular factors, 
and the collections of Blaschke products and singular inner functions are car
ried onto themselves when composed with a fractional linear transformation 
that takes the open unit disk onto itself). In turn (15) implies that W is an 
eigenvector of G also. (For let T be in G. Then 

TS = S(T) = \kS, 

where X is a unimodular complex number, and hence 

U^iTW - \j XW) = (TWY - \kWk = TS - \kS = 0, 

where Xi through \k are the k roots of 1. This implies that one of the factors 
in the product is the zero vector since Hœ does not have zero divisors.) Let u 
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and v be units in Hœ such that Bu and Wv belong to Hœ/G (Lemma 3). Then 
the L1 closure oîfHœ/G is (Wv)kBuHl/G} and 

(Wvk)BuHl/G < (Wv)k~lBuHl/G < ... < WvBuH\/G < BuHl/G 

is a strictly ascending chain of k + 1 (closed) subspaces from (Wv)kBuHl/G 
to BuHl/G, showing that k < n. When S does not appear, n is equal to the 
number of zeros on R of f (by a like argument). Thus for f to be an extreme 
point of the unit ball of Hl/G it is necessary that f have no singular part and that 
twice the number of zeros of f on R does not exceed the first Betti number of R. 
This condition on the zeros of/ is also given by Gamelin in (4). Gamelin's 
methods, however, do not show that an extreme point has no singular part. 
Moreover, an argument is needed to get rid of the singular part, since a singular 
inner function can be an eigenvector of G and have the property that there is 
no non-constant inner function that is invariant under G and divides it. 
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