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Whereas streamwise effective slope (ESx) is accepted as a key topographical parameter in
the context of rough-wall turbulent flows, the significance of its spanwise counterpart (ESy)
remains largely unexplored. Here, the response of turbulent channel flow over irregular,
three-dimensional rough walls with systematically varied values of ESy is studied using
direct numerical simulation. All simulations were performed at a fixed friction Reynolds
number 395, corresponding to a viscous-scaled roughness height k+ ≈ 65.8 (where k is
the mean peak-to-valley height). A surface generation algorithm is used to synthesise
a set of ten irregular surfaces with specified ESy for three different values of ESx. All
surfaces share a common mean peak-to-valley height and are near-Gaussian, which allows
this study to focus on the impact of varying ESy, since roughness amplitude, skewness
and ESx can be eliminated simultaneously as parameters. Based on an analysis of first-
and second-order velocity statistics, as well as turbulence co-spectra and the fractional
contribution of pressure and viscous drag, the study shows that ESy can strongly affect the
roughness drag penalty – particularly for low-ESx surfaces. A secondary observation is
that particular low-ESy surfaces in this study can lead to diminished levels of outer-layer
similarity in both mean flow and turbulence statistics, which is attributed to insufficient
scale separation between the outer length scale and the in-plane spanwise roughness
wavelength.
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1. Introduction

Surface roughness is prevalent in many practical flows. Examples include flow through
rough pipes (Allen et al. 2007), flow past bio-fouled ship hulls (Utama et al. 2021) and flow
over vegetation canopies (Brunet 2020). It is well known that a hydrodynamically rough
surface experiences an increased level of drag relative to a smooth surface at matched flow
conditions (Moody 1944), and that practical surfaces often exhibit irregular roughness
across a wide range of length scales, e.g. turbine-blade roughness (Barros & Christensen
2014), machined surfaces (Thakkar, Busse & Sandham 2016) and additively manufactured
parts (Townsend et al. 2016). Yet predicting the drag penalty of irregular, multi-scale
roughness remains an elusive goal and continues to be a focal point of research (Flack
2018; Chung et al. 2021).

In practice, the drag penalty due to surface roughness is described using a single
parameter: the Nikuradse (1933) sand-grain roughness, ks. However, ks cannot be derived
from any direct measure of roughness, e.g. using digital data obtained from a surface scan.
Instead, an equivalent value of ks must be assigned to a particular surface by exposing it
to a range of known flow conditions and then relating measurements of the Hama (1954)
roughness function �U+ ≡ �U/uτ , or the skin-friction coefficient Cf ≡ τw/(1

2ρU2
b), to

the Nikuradse (1933) sand-grain data. Here, �U+ is the downward shift of the inner-scaled
mean streamwise velocity profile in the logarithmic (log) layer, relative to the smooth-wall
profile at matched flow conditions, and uτ ≡ √

τw/ρ is the friction velocity, where τw is
the wall shear stress, ρ is the density, and Ub is the streamwise bulk velocity. To express
ks in terms of some measure for the physical roughness height, say k, a scaling factor
C = ks/k can be determined by collapsing the measured values of �U+ onto Nikuradse’s
fully rough asymptote, �U+

FR(k+
s ) = κ−1 log k+

s + A − 8.5, where subscript FR denotes
fully rough conditions, κ is the von Kármán constant, k+

s ≡ ksuτ /ν is the viscous-scaled
sand-grain roughness, and A is the smooth-wall intercept. However, the scaling factor
C = ks/k is surface-specific and must be determined for each type of roughness, e.g.
virtual sandpaper roughness (Yuan & Piomelli 2014), egg-carton roughness (Chan et al.
2015), tube-worm roughness (Monty et al. 2016), grit-blasted roughness (Thakkar, Busse
& Sandham 2018), irregular near-Gaussian roughness (Jelly & Busse 2019b), orange-peel
roughness (Nugroho et al. 2021) or industrial grade sandpaper roughness (Berghout et al.
2021). Models that reliably predict ks/k (or �U+) based solely on key topographical
parameters are therefore of great value.

Whilst the ultimate goal for roughness research is to produce a universal model that
correlates key topographical parameters to ks/k (or �U+ for transitionally rough flows),
a complete exploration of the parameter space that defines the ‘roughness problem’ is
simply not feasible. To overcome this challenge, it is widely accepted that a minimal set
of key topographical parameters must first be identified (Flack 2018; Chung et al. 2021),
which can then be used to develop predictive models for ks/k or �U+. Eight predictive
models for ks/k and �U+ proposed in past work are listed in table 1. Despite their variety,
the models share three common topographical parameters. These include: (i) a measure
of the physical roughness height, e.g. the mean absolute height Sa, the root-mean-square
(r.m.s.) height Sq, or the mean peak-to-valley height Sz,5×5; (ii) the skewness of the height
distribution Ssk; and (iii) the streamwise effective slope ESx. The latter quantity is defined
as ESx = A−1 ∫

A |∂h(x, y)/∂x| dA (where h(x, y) is the roughness height distribution, and
A is the planform area of the surface), and is related to frontal solidity through the
formula λx ≡ 1

2 ESx (see MacDonald et al. (2016) for details). Although models based
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Reference Roughness Empirical model for ks/k or �U+

Townsin (1991) Ship hull �U+ = κ−1 ln
[
m0

√
m4/m2

(uτ

ν

)
+ 1
]

Van Rij, Belnap & Ligrani (2002) Turbine blade
ks

k
=

⎧⎪⎨
⎪⎩

1.583 × 10−5Λs, Λs ≤ 7.842,

1.802Λ0.03038
s , 7.842 ≤ Λs ≤ 28.12,

1.583 × 10−5Λs, 28.12 ≤ Λs,

where k is the roughness height

Bons (2005) Turbine blade
ks

k
= aα2

rms + bαrms,

where k is the average roughness height
Chan et al. (2015) Egg-carton �U+ = f (k+, ESx) = a log k+ + b log ESx + c,

where k+ is the sinusoidal semi-amplitude

Flack et al. (2016) Irregular
ks

k
= f (Sq, Ssk) = aSq(1 + Ssk)b, where k is S+

q

Thakkar et al. (2016) Surface scans �U+ = a ln
(

Sf

S

)[
1 + 0.067 ln

(
Lx,cor

k

)]
+ b,

where k is Sz,5×5

Forooghi et al. (2017) Irregular
ks

k
= f (Ssk) g(ESx), where k is Sq and

where f = (aSsk2 + bSsk + c), g = d(1 − exp[−eESx])

De Marchis et al. (2020) Irregular �U+ = κ−1 ln(ESxk+) + B,
where k+ is either S+

a or S+
q

Table 1. Predictive models for ks/k and �U+ based on topographical parameters, including: generalised
Sigal–Danberg parameter Λs = (S/Sf )(Sf /Ss)

−1.6 (where S is the planform area of the corresponding smooth
surface, Sf is the total projected frontal area of all the roughness elements, and Ss is the total area of
all roughness elements wetted by the flow S); nth spectral moment mn = ∫∞0 κnEhh dκ (where Ehh is the
spectrum of surface elevation, and κ is an in-plane wavenumber); r.m.s. forward-facing surface angle αrms =√

n−1
f
∑nf

j=1 α2
j (where nf is the total number of forward-facing roughness elements, the local forward-facing

surface angle is αj = tan−1(�s−1[hj+1 − hj]), and �s is the streamwise spacing of the roughness elements);

mean absolute roughness height Sa = A−1 ∫∫ |h(x, y)| dA; r.m.s. roughness height Sq =
√

A−1
∫∫

h(x, y)2 dA;

skewness Ssk = A−1S−3
q
∫∫

h(x, y)3 dA; kurtosis Sku = A−1S−4
q
∫∫

h(x, y)4 dA; streamwise effective slope
ESx = A−1 ∫

A |∂h(x, y)/∂x| dA; and streamwise correlation length based on a 0.2 cutoff criterion, Lx,cor . Note
that A is the planform area of the height map h(x, y).

on parameters (i)–(iii) have shown promise in predicting the roughness drag penalty
(Forooghi et al. 2017), a truly universal correlation will likely depend on additional
topographical parameters related to other surface properties such as directionality or
anisotropy.

Whilst the drag behaviours of highly directional two-dimensional surfaces have
been studied extensively, e.g. streamwise-aligned riblets (Gatti et al. 2020; Modesti
et al. 2021), spanwise-aligned bars (Volino, Schultz & Flack 2009; Krogstad &
Efros 2012) and spanwise-alternating rough-to-smooth surfaces (Bakhuis et al. 2020;
Wangsawijaya et al. 2020), systematic studies of surface anisotropy in the context of
irregular, three-dimensional roughness remain scarce. One exception to this trend is
the work by Busse & Jelly (2020), which demonstrated that irregular roughness with
spanwise-elongated features induces an over 200 % increase in �U+, relative to roughness
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Figure 1. Irregular surface roughness with identical mean peak-to-valley height Sz,5×5/δ = 1/6, skewness
Ssk ≈ 0 and ESx ≈ 0.35, but differing ESy. (a) Isotropic surface with ESy/ESx = 1. (b) Spanwise-elongated
roughness with ESy/ESx ≈ 0.63. (c) Spanwise-elongated roughness with ESy/ESx ≈ 0.29. Each surface is
shown on a (2 × 2)/δ tile, where δ is the mean channel half-height.

with streamwise-elongated features in fully developed turbulent channel flow. In that
work, the level of surface anisotropy was quantified using the surface anisotropy ratio
(SAR) parameter, which was defined as SAR ≡ Lx,cor/Ly,cor, where Lx,cor and Ly,cor are
the streamwise and spanwise correlation lengths based on a 0.2 cutoff criterion (see
Thakkar et al. (2016) for details). Yet the sensitivity of wall drag with respect to the
SAR parameter or other measures of surface anisotropy cannot be predicted using any
combination of the topographical parameters included in table 1. This shortcoming is
illustrated by the three roughness topographies shown in figure 1, which, based on their
mean peak-to-valley height, skewness and streamwise effective slope, are identical in the
statistical sense – despite showing obvious differences along the spanwise (y) direction.
Hence further consideration of directional topographical parameters is required to predict
the drag penalty of anisotropic surface roughness.

As a first step, spanwise effective slope ESy can be considered, which, in
analogy to ESx, is defined as the mean absolute spanwise slope of the height
distribution, ESy ≡ A−1 ∫

A |∂h(x, y)/∂y| dA, and is related to ‘lateral’ solidity through
the formula Λy ≡ 1

2 ESy. The degree of surface anisotropy can then be inferred from
the ratio of spanwise effective slope to streamwise effective slope, i.e. surfaces with
ESy/ESx = 1 are isotropic (figure 1a), surfaces with ESy/ESx < 1 are spanwise-elongated
(figures 1b,c), and surfaces with ESy/ESx > 1 are streamwise-elongated. The limiting
cases are streamwise homogeneous roughness with ESx = 0 and ESy > 0, i.e.
two-dimensional riblet-like surfaces with ESy/ESx → ∞, and spanwise homogeneous
roughness with ESx > 0 and ESy = 0, i.e. two-dimensional spanwise bar-like surfaces with
ESy/ESx → 0.

Whilst systematic studies of irregular anisotropic roughness (ESy/ESx /= 1) remain
scarce, the drag penalty of isotropic surface roughness (ESy/ESx = 1) has been studied
for various regular (Bhaganagar, Kim & Coleman 2004; Coceal et al. 2006; Chan et al.
2015; Seddighi et al. 2015; Ma et al. 2020) and irregular (De Marchis et al. 2020; Flack,
Schultz & Barros 2020; Ma, Alamé & Mahesh 2021; Nugroho et al. 2021; Portela, Busse
& Sandham 2021) topographies. The current lack of studies on turbulent flow over surface
roughness with systematically varied ESx and ESy is conveyed in figure 2, where data
points from the present study and past work are plotted on the ESx–ESy plane. Relative
to the combinations of ESx and ESy considered in the present study (shown as filled
black circles in figure 2), most past data appear scattered, and few systematic patterns
can be discerned. An exception to this trend is the past work of Busse & Jelly (2020),
although, as was mentioned previously, that study focused on varying the SAR parameter
systematically, and did not change ESx or ESy independently (see filled green circles in
figure 2). Also, whilst practical roughness often shows appreciable levels of anisotropy
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Figure 2. Combinations of ESx and ESy considered in the present study (black circles) and past work by:
Napoli, Armenio & De Marchis (2008), yellow circles; Schultz & Flack (2009), grey circles; Chan et al. (2015),
blue circles; Thakkar et al. (2016), red circles; Forooghi, Stripf & Frohnapfel (2018a), cyan circles; Busse &
Jelly (2020), green circles; and Jouybari et al. (2021), white circles. The diagonal grey dotted line demarcates
isotropic roughness ESy/ESx = 1.

(e.g. see surface scan data of Thakkar et al. (2016); filled red circles in figure 2), the
values of ESx and ESy cannot be specified a priori, which complicates the analysis of
results. Combined with the empirical models listed in table 1 and the data points plotted
in figure 2, these past studies draw further attention to the lack of available data regarding
the impact of ESy upon rough-wall turbulent flows.

To determine whether or not ESy should be considered an important topographical
parameter, the present investigation takes a ‘slice’ through a region of the roughness
parameter space that has not hitherto been explored. This is achieved by synthesising
a set of ten irregular height maps with specified values of ESy (whilst holding
roughness amplitude, skewness and streamwise effective slope nearly constant), and then
performing direct numerical simulations (DNS) of a rough-walled turbulent channel at
friction Reynolds number 395 for each surface, corresponding to roughness Reynolds
number k+ ≈ 65.8 (where k is the mean peak-to-valley height). The sensitivity of
key hydrodynamic parameters, such as the Hama roughness function, and associated
physical mechanisms, such as the relative contributions of pressure and viscous drag,
are then quantified with respect to systematic variations in ESy for a fixed value of k+.
Some observations regarding the levels of outer-layer similarity (or lack thereof) above
particular low-ESy surfaces are also discussed. The numerical aspects of this study are
described in § 2. Results are presented in § 3. Finally, in § 4, the conclusions of this work
are given.

2. Numerical aspects

This section describes the numerical aspects of this work and is divided into three
parts. First, a description of the surface synthesis procedure is given. Second, the
embedded boundary DNS algorithm used to simulate rough-wall turbulent channel flow is
summarised, and key simulation parameters are provided. Finally, the statistical averaging
procedure is described.
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2.1. Surface synthesis procedure
Irregular three-dimensional surfaces with doubly periodic boundaries were generated by
taking linear combinations of Gaussian random number matrices using a weighted moving
average process based on past work by Patir (1978). Numerical details of the surface
synthesis procedure are provided in Appendix A and/or in the past work of Jelly &
Busse (2018, 2019a). The height distribution of each surface is near-Gaussian, i.e. zero
mean, negligible skewness (Ssk ≈ 0), and kurtosis equal to 3 (Sku ≈ 3). The values of
ESx and ESy for each surface were specified by varying the cutoff length of an exponential
autocorrelation function in the streamwise (x1) and spanwise (x2) directions, and the cutoff
wavenumber of a two-dimensional low-pass Fourier filter (Busse, Lützner & Sandham
2015). The filtered height maps were scaled to a common mean peak-to-valley height
Sz,5×5/δ = 1/6, where δ is the channel half-height. Following Thakkar et al. (2016), the
mean-peak-to-valley height was calculated by subdividing each height map into 5 × 5
tiles and then taking the average of the maximum peak-to-valley-heights of the different
tiles. Thakkar et al. (2018) showed for an irregular, multi-scale rough surface resembling
Nikuradse’s sand-grain roughness that �U+ becomes independent of Sz,5×5/δ for fixed
S+

z,5×5 when Sz,5×5/δ ≤ 1/6; this criterion is met for all surfaces included in the present
study.

Whilst all surfaces investigated here share a common mean peak-to-valley height,
their mean absolute height (Sa) and r.m.s. roughness height (Sq) show some variation
(see second and third columns in table 2). In particular, Sa varies by up to 26 % for
Group A surfaces (see below), which could potentially mask the sensitivity of �U+ with
respect to ESy. The impact of variations in Sa upon �U+ can be estimated by recasting
Nikuradse’s fully rough asymptote as �U+

FR = κ−1 log(CSa) + A − 8.5, where C = ks/Sa
is a surface-specific scaling factor. Multiplying Sa by a factor 1.26 would therefore change
the Hama roughness function by approximately 0.6 wall units. As will be shown later, this
variation is a factor of four smaller than the observed range of �U+ for Group A surfaces.
As a result, variations in Sa are herein considered to have a negligible effect on �U+,
relative to the impact of varying ESy.

The ten roughness topographies investigated here are shown in figure 3. Each surface is
named using the identification code

010︸︷︷︸
ESx

_ 035︸︷︷︸
ESy

, (2.1)

where the first three digits represent the value of the streamwise effective slope, e.g. ESx =
0.10, and the last three three digits represent the value of the of the spanwise effective
slope, e.g. ESy = 0.35. Decimal points have been omitted for brevity. The ten surfaces
were sorted into three groups according to their ESx value. Group A contains four height
maps, with ESx = 0.10 and ESy = {0.70, 0.35, 0.22, 0.10}. Group B contains three height
maps, with ESx ≈ 0.22 and ESy = {0.35, 0.22, 0.10}. Group C contains three height maps,
with ESx ≈ 0.35 and ESy = {0.35, 0.22, 0.10}. Further, according to the classification of
Chung et al. (2021), Group A surfaces lie on the cusp of the sparse regime (ESx � 0.10),
Group C surfaces fall within the dense regime (ESx � 0.30), and Group B surfaces fall
within an intermediate regime (0.10 � ESx � 0.30). The present study therefore focuses
mainly on the sparse and intermediate regimes. This choice was motivated by the surface
scan data obtained by Thakkar et al. (2016) (filled red circles in figure 2), which shows
that many practical surfaces satisfy the criterion ESx � 0.30.
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ID code
Sa

δ

Sq

δ
Ssk Sku

Sz,5×5

δ

hmax

δ
ESx ESy

ESy

ESx

λ̄x

δ

λ̄y

δ

λ̄y

λ̄x

A 010_070 0.025 0.033 0.00 2.93 0.167 0.120 0.10 0.70 7.00 2.86 0.24 0.08
010_035 0.028 0.035 −0.01 2.99 0.167 0.109 0.10 0.35 3.50 2.34 0.50 0.21
010_022 0.031 0.039 −0.05 3.03 0.167 0.128 0.10 0.22 2.20 2.14 0.86 0.40
010_010 0.034 0.042 −0.06 2.97 0.167 0.121 0.10 0.10 1.00 1.96 1.76 0.90

B 022_035 0.023 0.029 0.01 3.01 0.167 0.119 0.22 0.35 1.59 0.82 0.43 0.52
022_022 0.026 0.033 0.00 2.99 0.167 0.143 0.21 0.22 1.05 1.00 0.86 1.00
022_010 0.027 0.033 0.01 2.90 0.167 0.109 0.22 0.10 0.45 0.80 1.79 2.24

C 035_035 0.022 0.028 0.01 3.00 0.167 0.102 0.34 0.34 1.00 0.46 0.44 0.96
035_022 0.023 0.028 0.01 2.98 0.167 0.100 0.34 0.22 0.65 0.46 0.73 1.59
035_010 0.025 0.031 −0.02 2.94 0.167 0.104 0.35 0.10 0.29 0.48 2.00 4.17

Table 2. Surface statistics, including: mean absolute height Sa; r.m.s. height Sq; skewness Ssk; kurtosis Sku;
mean peak-to-valley height Sz,5×5; height of the highest crest hmax; streamwise effective slope ESx; spanwise
effective slope ESy; ratio of spanwise to streamwise effective slope ESy/ESx; ratio of mean streamwise in-plane
wavelength to channel half-height λ̄x/δ; ratio of mean spanwise in-plane wavelength to channel half-height
λ̄y/δ; and ratio of mean spanwise and streamwise in-plane wavelengths λ̄y/λ̄x.

To assign a particular spanwise length scale to each value of ESy, the mean spanwise
wavelength λ̄y was obtained from the ratio of spectral moments (Townsin 2003),
defined here as λ̄y/(2π) ≡ m0/m1, where the nth spectral moment is given by mn =∫∞

0 κn
y Ehh dκy, with κyEhh the premultiplied spanwise spectra of the height distribution,

and κy the in-plane spanwise wavenumber (see Chung et al. (2021) for details). The
ratio λ̄y/δ is plotted against its streamwise counterpart λ̄x/δ for each surface in figure 4,
spanning the ranges 0.5 � λ̄x/δ � 3.0 and 0.25 � λ̄y/δ � 2.0. For three out of the ten
surfaces considered here, namely, 010_010, 022_010 and 035_010, the mean spanwise
wavelength exceeds the outer length scale, i.e. λ̄y/δ > 1. As will be shown later,
insufficient scale separation between λ̄y and δ can lead to atypical behaviour in both mean
flow and turbulence statistics. The ratios λ̄x/δ and λ̄y/δ are listed in table 2 along with
other key topographical parameters.

2.2. Direct numerical simulations of rough-wall turbulent channel flow
For each surface listed in table 2, DNS of incompressible fully developed turbulent channel
flow with roughness on both the upper and lower walls were performed using the iterative
embedded boundary algorithm of Busse et al. (2015), which has been employed in past
works related to the present study, e.g. Thakkar et al. (2016, 2018), Jelly & Busse (2018,
2019b), Busse & Jelly (2020) and Portela et al. (2021). Second-order central differences
are used for the discretisation of spatial derivatives. Time advancement is achieved using
a second-order accurate Adams–Bashforth scheme. An iterative variant of the Yang &
Balaras (2006) embedded boundary algorithm is used to resolve the rough walls. The
velocity components in the streamwise (x1 or x), spanwise (x2 or y) and wall-normal (x3 or
z) directions are u1, u2 and u3, respectively, and p is the fluctuating hydrodynamic pressure.
The flow is driven by a constant (negative) streamwise pressure gradient Π , which
defines the mean friction velocity as uτ = √

(−δ/ρ)Π . The friction Reynolds number
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Figure 3. Surface topographies under consideration in this study. Streamwise effective slope (ESx) remains
constant in each column, whereas spanwise effective slope (ESy) remains constant along each row. Group
A surfaces: (a) 010_070, (b) 010_035, (c) 010_022, and (d) 010_010. Group B surfaces: (e) 022_035,
( f ) 022_022,and (g) 022_010. Group C surfaces: (h) 035_035, (i) 035_022, and (j) 035_010. The spanwise
domain width for surfaces 010_010, 022_010 and 035_010 has been truncated by a distance 2δ for visualisation
purposes.

is defined here as Reτ ≡ uτ δ/ν, where δ is the mean channel half-height, and ν is the
kinematic viscosity. All simulations reported here were conducted at friction Reynolds
number 395. For cases with ESy > 0.10, a spanwise domain size L2/δ = 4.0 was specified.
For the three cases with ESy = 0.10, the spanwise domain size was increased by 50 %
to L2/δ = 6.0 to ensure that the topographical features decorrelate within the spanwise
extent of the domain. Inner-scaled quantities are marked by superscript +, e.g. time
t+ = tu2

τ /ν, space x+
i = xiuτ /ν, and velocity u+

i = ui/uτ . The key simulation parameters
used throughout this study are consistent with the recommendations of Busse et al. (2015)
and are listed in table 3.

For each simulation, data were accumulated for a minimum of Tuτ /δ = 40
non-dimensional time units after the initial transient. In addition to collecting
time-averaged data, instantaneous three-dimensional snapshots were also collected for
further post-processing and analysis. Approximately 800 snapshots separated by twenty
viscous-scaled time units, i.e. �t+ ≡ �tu2

τ /ν ≈ 20, were obtained for each case listed
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Figure 4. Ratio of mean in-plane spanwise wavelength and outer length scale of the flow, λ̄y/δ, plotted against
its streamwise counterpart λ̄x/δ for the ten surfaces under investigation in the present study. Symbol types and
colours are given in table 3.

ID code
L1

δ

L2

δ

L3

δ
N1 N2 N3 �x+

1 �x+
2 �x+

3,min �x+
3,max Line Symbol

A 010_070 8.0 4.0 2.0 640 720 576 4.94 2.19 0.67 4.66
010_035 8.0 4.0 2.0 640 320 576 4.94 4.94 0.67 4.66
010_022 8.0 4.0 2.0 640 320 576 4.94 4.94 0.67 4.48
010_010 8.0 6.0 2.0 640 480 600 4.94 4.94 0.67 4.96

B 022_035 8.0 4.0 2.0 640 320 576 4.94 4.94 0.67 4.48
022_022 8.0 4.0 2.0 640 320 576 4.94 4.94 0.67 4.48
022_010 8.0 6.0 2.0 640 480 576 4.94 4.94 0.67 4.39

C 035_035 8.0 4.0 2.0 640 320 576 4.94 4.94 0.67 4.95
035_022 8.0 4.0 2.0 640 320 576 4.94 4.94 0.67 4.39
035_010 8.0 6.0 2.0 640 480 576 4.94 4.94 0.67 4.58

Smooth 8.0 4.0 2.0 480 240 320 6.58 6.58 0.17 4.26

Table 3. Simulation parameters, including: domain sizes in the streamwise (L1) and spanwise (L2) directions;
mean channel height L3; numbers of points in the streamwise (N1), spanwise (N2) and wall-normal
(N3) directions; and viscous-scaled grid spacings, including streamwise (�x+

1 ), spanwise (�x+
2 ), minimum

wall-normal (�x+
3,min) and maximum wall-normal (�x+

3,max) values. The line and symbol types for each case
are also listed for reference.

in table 3. Reference smooth-wall data were also accumulated at matched flow conditions
for comparison.

2.3. Double-averaging methodology
Statistical quantities were computed using a time-then-space averaging procedure, more
commonly known as double-averaging (Raupach & Shaw 1982; Nikora et al. 2007). An
instantaneous field variable, say a(x, t), can be double-averaged (DA) by applying first the
time-averaging operator,

ā(x) ≡ lim
T→∞

1
T

∫ t0+T

t0
a(x, t) dt, (2.2)
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and then the spatial-averaging operator,

〈ā〉(x3) ≡ 1
φ(x3)

1
A

∫∫
A

ā(x) dx1 dx2. (2.3)

In (2.3), the void fraction function φ ≡ Af (x3)/A represents the ratio of the fluid-occupied
area to the total area of the wall-parallel plane, A = L1L2. Instantaneous field variables
are set equal to zero in solid-occupied regions, i.e. a(x, t) = 0. Averaging the flow in this
way ensures that only fluid-occupied points contribute towards DA statistics beneath the
roughness crests. The DA quantities reported herein therefore correspond to an intrinsic
average (Gray & Lee 1977).

Considering (2.2) and (2.3), instantaneous field variables are decomposed as

a(x, t) = 〈ā〉(x3) + ã(x)︸ ︷︷ ︸
ā(x)

+ a′(x, t), (2.4)

where the dispersive component is defined as ã(x) ≡ ā(x) − 〈ā〉(x3), and the
turbulent component is defined as a′(x, t) ≡ a(x, t) − [〈ā〉(x3) + ã(x)]. Using the triple
decomposition (2.4), the local Reynolds stress tensor can be defined as

Rij(x) ≡ (ui − ūi)(uj − ūj) = u′
iu

′
j. (2.5)

The spatial average of the local Reynolds stress tensor 2.5 is defined here as

〈Rij〉(x3) ≡ 〈u′
iu

′
j〉. (2.6)

Finally, the dispersive stress tensor is defined here as

Dij(x3) ≡ 〈(ūi − 〈ūi〉)(ūj − 〈ūj〉)
〉 = 〈ũiũj〉. (2.7)

3. Results

This section contains the key results of this study and is divided into four parts. First,
the impact of ESy upon the Hama roughness function is examined. Second, the effect of
varying ESy upon the fractional contribution of pressure and viscous drag to the total drag
is examined. Third, the influence of ESy upon first-order velocity statistics is discussed.
Finally, the impact of ESy upon second-order velocity statistics and turbulence co-spectra
is discussed.

3.1. Impact of spanwise effective slope upon the Hama roughness function
Surface roughness induces a downward shift in the log-law velocity profile, relative to
the smooth-wall profile at matched flow conditions, commonly referred to as the Hama
(1954) roughness function, �U+. Strictly speaking, �U+ is an additive constant, which
assumes that the inner-scale streamwise mean velocity difference between the smooth
and rough walls – defined here as δU+(x+

3 ) ≡ 〈u+
1 〉s(x+

3 ) − 〈u+
1 〉r(x+

3 ) – is uniform in the
log region. Profiles of δU+ normalised by the mean friction velocity are plotted against
outer-scaled wall-normal position in figure 5. A histogram of the height distribution is
also included (grey bars) and marks the wall-normal extent of the roughness canopy
(hmin < x3 < hmax). Looking from left-to-right across figures 5(a–c), it is clear that δU+
remains approximately constant from the highest crest (x3/hmax = 1) to the channel
half-height (x3/δ = 1) for the majority of surfaces investigated here. Two exceptions are
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Figure 5. Streamwise velocity difference δU+(x3) = 〈u+
1 〉s − 〈u+

1 〉r plotted as a function of wall-normal
position for (a) Group A, (b) Group B, and (c) Group C. The histogram (grey) for each height distribution
P(h) is included for reference. All data are scaled using the mean friction velocity uτ and mean channel
half-height δ.

surface 022_010 (black dotted line in figure 5b) and surface 010_010 (red dotted line in
figure 5a), with the latter surface showing an increase of almost 15 % when comparing
the value of δU+ at the channel half-height against that of the roughness crest. To remove
any ambiguity related to variations of δU+ in the outer region, �U+ is herein defined as
the mean value of the streamwise velocity difference between the highest roughness crest
and the channel half-height, �U+ ≡ 1/(δ − hmax)

∫ δ
hmax

δU+(x3) dx3. Other definitions of
�U+ are possible: Chan et al. (2015) defined �U+ as the streamwise velocity difference
50 wall units above the roughness crests in rough-wall turbulent pipe flow, whereas Busse
et al. (2015) defined �U+ as the streamwise velocity difference at the centreline in
rough-walled turbulent channel flow; Chung et al. (2015) defined �U+ as the streamwise
velocity difference at wall-normal height zc = 0.4L3 in rough-wall minimal open-channel
flow.

The Hama roughness function is plotted as a function of ESy in figure 6(a). Three
key observations can be drawn from these data. First, �U+ varies by a factor of three
(2.5 < �U+ < 7.6) for the ten roughness topographies investigated here. Second, �U+
decreases monotonically as ESy increases for each value of ESx. Third, �U+ becomes
increasingly sensitive with respect to ESy as ESx is reduced. To be specific, whereas
increasing ESy from 0.10 to 0.35 reduces �U+ by 12 % for surfaces with ESx ≈ 0.35 (blue
symbols, Group C, figure 6a), a 35 % reduction is observed for surfaces with ESx ≈ 0.10
for the same change of ESy (red symbols, Group C, figure 6a). A further 23 % reduction
in the Hama roughness function is observed for surface 010_070 (red diamond, figure 6a)
relative to that of surface 010_035 (red circle, figure 6a), resulting in a �U+ value of
just 2.4 wall units for the latter riblet-like surface. Together, these three observations
demonstrate that ESy is an important topographical parameter, particularly for lower-ESx
surfaces.

The Hama roughness function is plotted against ESx in figure 6(b). In line with the
findings of Napoli et al. (2008) and others, increasing ESx from 0.10 to 0.35 causes �U+
to increase for each value of ESy considered here. However, it is important to note that
�U+ may show the opposite trend for higher-ESx surfaces that fall within the dense
regime (MacDonald et al. 2016). The Hama roughness function is plotted against the
effective slope ratio ESy/ESx in figure 6(c), where data points from Busse & Jelly (2020)
have been included for comparison. Despite their differing ESx and ESy combinations, a
reasonable collapse between the two datasets is observed, and most of the �U+ values
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Figure 6. Hama roughness function �U+ plotted as a function of (a) spanwise effective slope, ESy,
(b) streamwise effective slope ESx, (c) ratio of spanwise and streamwise effective slopes ESy/ESx. Data points
from the past work of Busse & Jelly (2020) are also included (grey circles) for comparison, along with an an
exponential fit (grey line) of the form �U+ = b1 + b2 exp[−b3(ESy/ESx)

2], where bi = {2.35, 5.33, 0.207}.
Symbol types are given in table 3.

exhibit a similar dependence upon ESy/ESx. To be specific, the relationship between �U+
and ESy/ESx can be approximated as an exponential function of the form �U+ = b1 +
b2 exp[−b3(ESy/ESx)

2], where the coefficients bi = {2.35, 5.33, 0.207} were determined
via nonlinear regression. A similar dependence between �U+ and the SAR parameter was
reported by Busse & Jelly (2020). Whilst figure 6(c) shows that �U+ varies significantly
across the range 0.3 � ESy/ESx < 7.0 for a fixed value of k+, predicting the limiting
behaviour of �U+ using the available data remains challenging. For instance, for the case
where ESy/ESx → ∞ with ESx = 0 and very low ESy, �U+ would likely tend to zero,
since this ESx–ESy combination corresponds to an almost smooth surface. On the other
hand, for ESy/ESx → ∞ with ESx = 0 and high ESy, it is possible that �U+ /= 0, since
this ESx–ESy combination corresponds to a riblet-like surface, which could either increase
or decrease the levels of (viscous) drag; e.g. see Gatti et al. (2020). Also, since the data in
figure 6(c) correspond for a fixed viscous-scaled roughness height k+ ≈ 65.8, questions
regarding how the limiting behaviour of �U+ varies with roughness Reynolds number
remain open.

Nevertheless, figure 6(c) demonstrates that the Hama roughness function is sensitive
with respect to surface anisotropy and gives insight into how ESy/ESx affects �U+ at a
fixed roughness Reynolds number k+ ≈ 65.8 . Whilst �U+ values have been obtained
for a variety of anisotropic roughness in past work by Thakkar et al. (2016) and Jouybari
et al. (2021), these studies not only were performed at different k+ values compared to the
present study, but also did not eliminate the potential effects of other key topographical
parameters upon the drag penalty, e.g. skewness, or vary ESy or ESx in a systematic manner
(see figure 2). As a result, a meaningful comparison against these past studies and the data
plotted in figure 6(c) cannot be made. On the other hand, a direct comparison can be drawn
against the past data of Busse & Jelly (2020) (filled grey circles, figure 6c), since that work
was performed at the same k+ value as the present study and focused on near-Gaussian
roughness with comparable ESx and ESy combinations.

3.2. Impact of spanwise effective slope upon pressure and viscous drag
To associate physical mechanisms to changes in �U+ (figure 6), the fractional
contributions of pressure and viscous drag to the total drag can be quantified. After some
manipulation, the mean viscous and pressure forces per unit area acting on the surface can
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be written as

〈Fν〉 =
∫∫

S
−μ

[
2

∂ ū1

∂x1

∂h
∂x1

+
(

∂ ū1

∂x2
+ ∂ ū2

∂x1

)
∂h
∂x2

−
(

∂ ū1

∂x3
+ ∂ ū3

∂x1

)]
1

‖∇h‖ dS, (3.1)

〈
Fp
〉 = ∫∫

S

[
(p̄s − p̄0)

∂h
∂x1

]
1

‖∇h‖ dS. (3.2)

In (3.1) and (3.2), p̄0 is an arbitrary gauge pressure, taken here as the mean surface
pressure, i.e. p̄0 ≡ A−1 ∫∫ p̄s(x1, x2) dA, ‖∇h‖ is the magnitude of the surface normal
vector, and dS is the incremental surface area. Further details regarding (3.1) and (3.2)
are provided in Appendix B.

Since the present simulations were carried out under constant pressure gradient
forcing, the mean hydrodynamic force balance can be expressed as 〈Fp〉 + 〈Fν〉 = 1
(where Π = −1). Hence the summed effect of pressure and viscous drag remains
constant, but the relative contributions of 〈Fp〉 and 〈Fν〉 to the total drag force,
〈Ftot〉 ≡ 〈Fp〉 + 〈Fν〉 = 1, are free to vary. In the limit of streamwise homogeneous
roughness (ESx → 0), pressure drag is equal to zero, and the force balance for
the current channel flow configuration reduces to −Π = ∫∫S −μ[(∂ ū1/∂x2)(∂h/∂x2) −
∂ ū1/∂x3](1/‖∇h‖) dS, which shows that changes in spanwise gradient of the height map,
and hence changes in ESy, influence directly the levels of viscous drag. The same force
balance governs the drag-increasing (or drag-reducing) properties of other streamwise
homogeneous surfaces, e.g. flow-aligned riblets (Gatti et al. 2020). Conversely, in the
limit of spanwise homogeneous roughness (ESy → 0), the force balance for the current
channel flow configuration reduces to −Π = ∫∫S −μ[2(∂ ū1/∂x1)(∂h/∂x1) − (∂ ū1/∂x3 +
∂ ū3/∂x1)](1/‖∇h‖) + [(p̄s − p̄0)(∂h/∂x1)](1/‖∇h‖) dS, and is therefore independent of
ESy by definition. For the present surfaces, the relative importance of pressure and viscous
drag sits somewhere between these two limits.

The fractional contribution of spatially averaged pressure drag to the total drag force,
〈Fp〉/〈Ftot〉, is plotted against ESy and ESx in figures 7(a,b), respectively. Overall, the
pressure drag data show the same trends as the corresponding �U+ data plotted in figure 6.
In summary, 〈Fp〉/〈Ftot〉 decreases as ESy increases for each value of ESx investigated
here, and exhibits a heightened sensitivity with respect to ESy as ESx becomes smaller.
Likewise, when 〈Fp〉/〈Ftot〉 is plotted against ESy/ESx (figure 7c), the pressure drag
contribution decreases as ESy/ESx increases, meaning that streamwise-elongated forms
of surface roughness (ESy/ESx > 1) induce less pressure drag than their spanwise-aligned
counterparts (ESy/ESx < 1). Note that the fractional contribution of spatially averaged
viscous drag to the total drag force would show exactly the opposite trends, since 〈Fν〉 ≡
1 − 〈Fp〉 for constant pressure gradient forcing.

The fractional contribution of pressure drag is plotted as a function of �U+
in figure 7(d). The data show that 〈Fp〉/〈Ftot〉 varies by up to a factor of seven
within the observed �U+ range. Specifically, pressure drag accounts for just 10 %
(〈Fp〉/〈Ftot〉 ≈ 0.1) of the total drag on surface 010_070 (red diamond, figure 7d),
compared to 74 % of the total drag (〈Fp〉/〈Ftot〉 ≈ 0.74) on surface 035_010 (blue square,
figure 7d). Whilst the dependence of 〈Fp〉/〈Ftot〉 on ESx is well-documented (Napoli et al.
2008; MacDonald et al. 2016; Chan et al. 2018), the present data show that the fractional
contribution of pressure drag ratio also depends on ESy. However, a strong sensitivity with
respect to ESy is expected only if the total wall drag has an appreciable viscous component.
This is because the impact of spanwise variations in surface elevation, and hence variations
in ESy, upon hydrodynamic drag are transmitted through the viscous term (see (3.1)),
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Figure 7. Fractional contribution of spatially averaged pressure drag to the total drag force, 〈Fp〉/〈Ftot〉, plotted
as a function of: (a) spanwise effective slope ESy; (b) streamwise effective slope ESx; (c) ratio of spanwise and
streamwise effective slopes, ESy/ESx; and (d) the Hama roughness function �U+. Symbol types are given in
table 3.

which becomes increasingly small as the fully rough asymptote is approached. In other
words, limited sensitivity with respect to ESy is to be expected when 〈Fp〉 � 〈Fν〉.

Different criteria have been established in the literature to establish whether flow over
a rough surface is in the fully rough regime. According to Scaggs, Taylor & Coleman
(1988), the onset of the fully rough regime occurs when pressure drag accounts for more
than 70 % of the total drag, i.e. Fp/Ftot > 0.7, meaning that only surface 035_010 in
the present investigation should be considered fully rough (see figure 7). Jiménez (2004)
defined the onset of the fully rough regime at k+

s > 80, which corresponds to a Hama
roughness function �U+

FR = κ−1 log(k+
s ) − 3.5 ≈ 7.5 (assuming κ = 0.4). Again, based

on this criterion, only surface 035_010 should be considered fully rough (see figure 6) –
nevertheless, its viscous drag is non-negligible at 25 %. Past work has also reported
significant viscous effects in flows that exhibit fully rough behaviour. For instance,
MacDonald, Hutchins & Chung (2019) reports that viscous drag still accounts for a
quarter of the total drag in fully rough turbulent channel flow over three-dimensional
egg-carton roughness at friction Reynolds number Reτ = 1680, corresponding to an
equivalent sand-grain roughness k+

s = 300. Likewise, Busse, Thakkar & Sandham (2017)
considered turbulent channel flow over irregular roughness up to friction Reynolds number
Reτ = 720. These authors reported that viscous effects account for approximately 33 % of
the total drag at an equivalent sand-grain roughness k+

s ≈ 150. Nevertheless, the majority
of the present data fall into the transitionally rough regime.

To better understand how varying ESy affects the ratio 〈Fp〉/〈Ftot〉 on Group A
surfaces, the local values of time-averaged pressure drag can be examined. Contour
plots of the time-averaged pressure drag on the four surfaces belonging to Group
A surfaces are shown in figure 8. Whereas large patches of high-pressure drag (red
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Figure 8. Time-averaged pressure drag force −(p̄+ − p̄+
0 )∂h/∂x1 (the integrand of term 〈Fp〉 in (3.2)) for

surfaces (a) 010_010, (b) 010_022, (c) 010_035, and (d) 010_070. Iso-surfaces of time-averaged reverse flow
(ū+

1 = −0.1) are shown as transparent cyan blobs. Data are shown on a (3 × 3)/δ sub-tile, where δ is the mean
channel half-height.

contours) and low-pressure drag (blue contours) are evident on the windward and leeward
faces of surfaces 010_010 and 010_022 (figures 8a,b), the pressure drag distribution on
surfaces 010_035 and 010_070 (figures 8c,d) is comparably weak and sparse. A simple
explanation for this behaviour is that the streamwise component of the surface normals
on streamwise-elongated roughness tend to be small, and as a result, a weaker pressure
drag force is exerted against the wall. The integrated effect of this behaviour explains why
〈Fp〉/〈Ftot〉 decreases as ESy increases (figure 7b) and also why pressure drag decreases
as ESy/ESx increases (figure 7c). Iso-surfaces of time-averaged reverse flow are also
included as transparent cyan blobs in figure 8. The volume of the time-averaged reverse
flow regions decreases as ESy increases, which implies that flow separation downwind
of roughness crests is suppressed for flow-aligned roughness, ultimately reducing the
fractional contribution of spatially averaged pressure drag to the total drag (see figure 7d).

The bulk flow properties for the rough- and smooth-wall cases are summarised in
table 4. Since the friction Reynolds number is equal to 395 for all cases, the rise in the
mean momentum deficit can be inferred from a reduction of the bulk Reynolds number Reb
or the centreline Reynolds number Recl, or an increase in the Hama roughness function
�U+. Recalling that each surface considered here has a common mean peak-to-valley
height and a near-Gaussian height distribution (table 2), the bulk properties listed in
table 4, together with the variation of the Hama roughness function (figure 6) and the
fractional contribution of spatially averaged pressure drag (figure 7), demonstrate that ESy
is an important topographical parameter – particularly for low-ESx surfaces. Next, the
impact of ESy upon first-order velocity statistics will be examined.
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Cf

ID code Reτ Recl Reb U+
cl U+

b
Ucl

Ub
�U+ (×10−3)

〈
Fp
〉

〈Ftot〉
A 010_070 395 7082 5936 17.9 15.0 1.19 2.4 8.85 0.10

010_035 395 6782 5751 17.2 14.6 1.18 3.1 9.43 0.20
010_022 395 6233 5131 15.8 13.0 1.21 4.4 11.85 0.26
010_010 395 5968 5024 15.1 12.7 1.19 4.7 12.36 0.35

B 022_035 395 5862 4977 14.8 12.2 1.22 5.4 13.52 0.43
022_022 395 5684 4633 14.3 11.7 1.22 5.9 14.53 0.53
022_010 395 5186 4234 13.1 10.7 1.22 6.9 17.40 0.61

C 035_035 395 5431 4345 13.8 11.0 1.25 6.6 16.52 0.61
035_022 395 5226 4175 13.2 10.6 1.25 7.0 17.90 0.68
035_010 395 5048 3997 12.8 10.1 1.26 7.5 19.53 0.74

— Smooth 395 8050 6928 20.4 17.5 1.16 — 6.50 —

Table 4. Bulk flow properties, including the friction Reynolds number Reτ , centreline Reynolds number
Recl ≡ Uclδ/ν, bulk Reynolds number Reb ≡ Ubδ/ν, viscous-scaled centreline velocity (U+

cl ), viscous-scaled
bulk velocity U+

b , ratio of centreline and bulk velocities Ucl/Ub; Hama roughness function �U+; skin-friction
coefficient Cf ≡ 2/(U+2

b ); and fractional contribution of spatially averaged pressure drag to total drag,
〈Fp〉/〈Ftot〉.

3.3. Impact of spanwise effective slope on first-order velocity statistics
Double-averaged (DA) streamwise velocity profiles normalised by the mean friction
velocity are plotted against inner-scaled wall-normal position in figure 9, where reference
smooth-wall data at matched flow conditions are included for comparison. Looking from
left to right across figures 9(a–c), it is clear that most of the data exhibit a (nominal)
log-law of the form 〈

ū+
1
〉 = κ−1 log

(
x+

3 + ε
)+ B − �U+, (3.3)

where κ ≈ 0.4 is the von Kármán constant, ε is the virtual origin shift, and B ≈ 5.0 is
the smooth-wall intercept. Note that the virtual origin shift of the DA velocity profile
was chosen to coincide with the mean roughness plane, i.e. ε ≡ 〈h〉 = 0. This choice of
ε is consistent with past studies of turbulent channel flow with irregular rough walls with
comparable values of ESx and ESy (Thakkar et al. 2016; Peeters & Sandham 2019; Portela
et al. 2021), as well as studies of turbulent pipe flow over three-dimensional egg-carton
roughness (Chan et al. 2015, 2018).

In line with the values of �U+ shown in figure 6, the downward shift of the log-law
observed in figure 9 decreases as ESy increases for each value of ESx investigated
here. However, whilst the velocity profiles exhibit a logarithmic dependence over the
wall-normal range 50 � x+

3 � 200, the slope of the log region above some surfaces
appears to differ from the smooth-wall data. In particular, the log region for surfaces
010_010 (red dotted line in figure 9a) and 022_010 (black dotted line in figure 9b) exhibit
a shallower slope than the reference smooth-wall data (grey line), which is consistent with
the non-uniform streamwise velocity difference observed previously in figure 5(a).

A further evaluation of the DA streamwise velocity profiles using the log-law diagnostic
quantity γ = x+

3 d〈ū1〉/dx+
3 (George 2007) is presented in figure 10. Whilst an extensive

log region is not evident in the current data, the diagnostic function shows consistent
behaviour with the outer region of the DA streamwise velocity profiles (see figure 9).
To be specific, the log-law diagnostic function for Group C shows limited sensitivity
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Figure 9. Effect of varying ESy upon the DA inner-scaled streamwise velocity profile 〈u1〉+(x3) for surfaces
in (a) Group A, (b) Group B, and (c) Group C. Line types are defined in table 3. The smooth-wall log-law
κ−1 log x+

3 + B is also included, where κ = 0.4 and B = 5.0.
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Figure 10. Effect of varying ESy upon the log-law diagnostic function γ = x+
3 d〈ū1〉/dx+

3 , for (a) Group A,
(b) Group B, and (c) Group C surfaces. The histogram for each height distribution P(h) is included for reference
in grey. The horizontal black dashed line corresponds to γ = 1/κ , where κ was taken to be 0.4. Line types are
defined in table 3.

with respect to ESy, whereas Group A shows the opposite trend. In addition, whilst the
log-law diagnostic function for Group C resembles the smooth-wall data in the outer
region, appreciable differences emerge above Group A and B surfaces, which become
more pronounced as ESy is reduced. Together, the change in the log-law slope above
surfaces 010_010 (red dotted line in figure 9a) and 022_010 (black dotted line in figure 9b),
and the deviations between the smooth- and rough-wall log-law diagnostic functions in
the outer region (figure 10), hint at the presence of non-equilibrium effects and imply
that the DA velocity profiles for these two particular surfaces may not recover mean flow
outer-layer similarity.

To better illustrate the presence (or absence) of mean flow outer-layer similarity, the DA
velocity profiles (figure 9) were recast into velocity-defect form,

〈u1〉cl − 〈u1〉
uτ

= f
(x3

δ

)
, (3.4)

where f is a universal function assumed independent of the viscous-scaled surface
condition. While outer-layer similarity is typically investigated in the context of
high-Reynolds-number flows and low k/δ using experimental methods (see e.g. Flack,
Schultz & Shapiro 2005), many DNS studies at more moderate Reynolds numbers and
comparatively high k/δ ratios have also observed a high degree of outer-layer similarity
(Chan et al. 2015; Thakkar et al. 2016; Forooghi et al. 2018b; Jelly & Busse 2019b).
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Figure 11. Effect of varying ESy upon DA streamwise velocity defect profile 〈u1,cl〉+ − 〈u1〉+(x3) for (a)
Group A, (b) Group B, and (c) Group C surfaces. The histogram for each height distribution P(h) is included
for reference in grey. Line types are defined in table 3.

However, k/δ and Reτ are not the only length scale ratios that determine the degree
of outer-layer similarity. Specifically, there is a growing body of literature showing that
diminished levels of outer-layer similarity emerge when the in-plane spanwise roughness
length scale approaches δ – including experimental investigations where low k/δ and
high Reτ could be achieved; e.g. see work by Nugroho, Hutchins & Monty (2013),
Wangsawijaya et al. (2020) and Nugroho et al. (2021). Such scenarios are possible
for particular low-ESy surfaces considered in the present study, e.g. surface 010_010
whose in-plane spanwise roughness length scale is almost twice as large as the channel
half-height, i.e. λy/δ ≈ 2, as shown in figure 4).

DA velocity defect profiles are plotted against outer-scaled wall-normal position in
figure 11, where reference smooth-wall data at matched flow conditions are included for
comparison. Looking from left to right across figures 11(a–c), it is clear that Group C
(blue lines, figure 11c) data show excellent levels of outer-layer similarity, and that varying
ESy has little to no effect on the flow in the outer region (see inset of figure 11(c) for a
close-up view). Group C data are therefore in strong support of Townsend’s outer-layer
similarity hypothesis (Townsend 1976), which states that the roughness merely increases
the surface stress, without causing structural changes in the outer region. In contrast, Group
A data (red lines, figure 11a) show progressively poor levels of mean flow outer-layer
similarity as ESy is reduced. In particular, the velocity-defect profile for surface 010_010
(red dotted line, figure 11a) begins to coincide with the smooth-wall data only above
wall-normal heights greater than x3/δ � 0.8 – implying that roughness effects penetrate
deep into the outer layer, and mean flow distortion occurs on a scale commensurate with
the channel half-height δ. Diminished levels of mean flow outer-layer similarity have also
been reported in recent studies above multi-scale cuboid elements (Medjnoun et al. 2021)
and above irregular roughness with ESx = ESy ≈ 0.08 (Nugroho et al. 2021). In both of
these studies, reduced levels of outer-layer similarity were attributed to the emergence of
large-scale roughness-induced motions on the cross-stream plane.

Contours of streamwise dispersive velocity ũ1(x) ≡ ū1(x) − 〈u1〉(x3) are compared on
the cross-stream plane for surfaces 010_010 and 010_070 in figures 12(a) and 12(b),
respectively. Whereas the spanwise variation in the streamwise dispersive velocity is
confined to wall-normal heights less than x3/δ � 0.1 above the latter surface, the former,
lower-ESy surface shows a markedly different behaviour. In particular, the spanwise
variation in streamwise dispersive stress above surface 010_010 extends up to (and beyond)
the channel half-height (x3/δ = 1), which implies that the portion of time-averaged
flow with spatial inhomogeneity induced by the roughness elements (i.e. the roughness
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Figure 12. Effect of increasing ESy upon cross-stream distribution of streamwise dispersive velocity ũ1(x) ≡
ū1(x) − 〈u1〉(x3) for (a) surface 010_010 at x1/δ = 0.23, and (b) surface 010_070 at x1/δ = 4.78. The mean
spanwise wavelength λ̄y is represented by the width of the horizontal double-headed arrow. The horizontal
dashed line shows the approximate wall-normal extent of the dispersive stresses x3 = 0.5λ̄y proposed by Chan
et al. (2018).

sublayer) fills the entire channel. Past work by Chan et al. (2018) suggests that dispersive
stresses (see (2.7)) extend up to height x3 = 0.5λ̄y in the wall-normal direction. This
limit is shown as the horizontal dashed line in figure 12, and predicts approximately the
wall-normal extent of streamwise dispersive velocity above both surfaces 010_010 and
010_070.

Considering the impact that reducing ESy has upon the thickness of the roughness
sublayer (figure 12), the diminished level of outer-layer similarity above surface 010_010
is arguably caused by inadequate scale separation between λ̄y and δ. More specifically,
whilst the blockage ratio for surface 010_010 is k/δ = 1/6 (where k is taken to be the
mean peak-to-valley height Sz,5×5), which is the same k/δ value used in past studies
where good levels of outer-layer similarity were observed (Thakkar et al. 2016; Jelly &
Busse 2018; Portela et al. 2021), the ratio between λ̄y and δ is approximately twelve
times greater (λ̄y/δ ≈ 2, red square, upper right quadrant of figure 4). On the other
hand, the ratio between λ̄y and δ is an order of magnitude smaller for surface 010_070
(λ̄y/δ ≈ 0.2, red diamond, lower right quadrant of figure 4), which shows negligible
spanwise variation in streamwise dispersive velocity in the outer region (figure 12b)
and excellent levels of outer-layer similarity (red dash-dot line, figure 9a). Considering
also that the in-plane streamwise mean wavelengths on surfaces 010_010 and 010_070
both exceed the outer length scale, i.e. λ̄x/δ > 1 (see figure 4), the diminished levels of
outer-layer similarity above the former surface occur as a direct result of insufficient scale
separation between λ̄y and δ, as opposed to between λ̄x and δ or between k and δ. This
is consistent with recent work by Nugroho et al. (2021), who noted that the wall-normal
extent of roughness-induced flow patterns becomes large relative to δ where the in-plane
roughness length scale approaches the local boundary-layer thickness, ultimately limiting
the overall levels of outer-layer similarity. However, that work focused on an isotropic
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irregular roughness with ESx = ESy ≈ 0.08 and the impact of varying λ̄y, and hence ESy
could not be delineated from its streamwise counterpart.

To further characterise roughness-induced motions on the cross-plane (figure 12),
secondary flow patterns were educed from the time-averaged velocity field ūi(x) using
a technique similar to that employed by Adrian, Christensen & Liu (2000) to identify
instantaneous vortical structures on the streamwise-radial plane of turbulent pipe flow
using planar particle image velocimetry data. The signed swirling strength, defined here as
Λ̄ci ≡ λci(ω̄1/|ω̄1|), was computed by evaluating the imaginary component of the complex
conjugate eigenvalue λci of the two-dimensional time-averaged velocity gradient tensor,
which can written as

d ij,2D (x2, x3) =

⎡
⎢⎢⎣

∂ ū2

∂x2

∂ ū2

∂x3

∂ ū3

∂x2

∂ ū3

∂x3

⎤
⎥⎥⎦ (3.5)

on successive cross-stream planes. Note that (ω̄1/|ω̄1|) is the sign of the time-averaged
streamwise vorticity ω̄1(x) = ∂ ū2/∂x3 − ∂ ū3/∂x2. Hence Λci /= 0 indicates the presence
of local (steady) vortical motion, with Λci > 0 and Λci < 0 corresponding to clockwise
and counter-clockwise rotation, respectively.

Iso-surfaces of time-averaged signed swirling strength Λ̄ci(x) for the four surfaces in
Group A are shown in figure 13, where the value of ESy increases from top to bottom.
Data are visualised above a (4 × 4)/δ sub-tile, where red iso-surfaces indicates clockwise
rotation, and blue iso-surfaces indicates the opposite. Looking at figures 13(a–d), it is
clear that the spatial characteristics of the time-averaged secondary flows are strongly
affected by ESy. For instance, the secondary flow patterns corresponding to surface
010_070 (figure 13a) strongly resemble the streamwise homogeneous counter-rotating
vortex pairs that form above strip-type roughness (Yang & Anderson 2018) and are
confined to wall-normal heights less than x3/δ � 0.1 in a manner similar to the cross-plane
distribution of streamwise dispersive velocity (figure 12b). On the other hand, the
secondary flow patterns above surface 010_010 (figure 13d) appear relatively incoherent
in both the streamwise and spanwise directions, and extend far from the wall into the
outer region of the flow, which, again, is consistent with the cross-plane distribution of
streamwise dispersive velocity (figure 12a).

Overall, the observations drawn from figure 13 are consistent with recent studies
regarding the formation of turbulent secondary flows over streamwise-aligned surfaces
composed of spanwise alternating smooth and rough strips in channels (Yang & Anderson
2018), boundary layers (Wangsawijaya et al. 2020) and Taylor–Couette flows (Bakhuis
et al. 2020). For this particular type of roughness, the (time-averaged) secondary flow
behaviour is determined by the ratio of the spanwise wavelength λ̄y = 2S, where S is the
width of the strips, and the local boundary layer thickness δ, and falls into one of three
categories, e.g. see Chung, Monty & Hutchins (2018). (i) For λ̄y/δ  0.5 (or S/δ  1), the
secondary flow is confined to the near-wall region and the flow is spanwise homogeneous
above wall-normal heights greater than x3/λ̄y ≈ 2 (or x3/S ≈ 1), which is reminiscent of
the cross-plane distribution of streamwise dispersive velocity above surface 010_070 (see
figure 12b) and the corresponding iso-surfaces of signed swirling strength (see figure 13a).
(ii) For λ̄y/δ � 2 (or S/δ � 1), the secondary flow is space-filling, characterised by
δ-scale motions separated by regions of spanwise homogeneous flow. (iii) For λ̄y/δ ≈ 2 (or
S/δ ≈ 1), the secondary flow is also space-filling, but the δ-scale motions occupy the entire
cross-plane, which is reminiscent of the cross-plane distribution of streamwise dispersive
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Figure 13. Effect of increasing ESy upon iso-surfaces of the time-averaged signed swirl strength Λ̄ci = 0.005
(red) and Λ̄ci = −0.005 (blue), for surfaces (a) 010_070, (b) 010_035, (c) 010_022, and (d) 010_010. Data are
shown on a (4 × 4)/δ sub-tile, where δ is the mean channel half-height.

velocity above surface 010_010 (see figure 12a) and the corresponding iso-surfaces of
signed swirling strength (see figure 13d). Considering (i)–(iii), the present data suggest
that the ratio λ̄y/δ plays an analogous role in determining secondary flow behaviour above
the irregular three-dimensional roughness under investigation here.

3.4. Impact of spanwise effective slope on second-order velocity statistics
To further understand how ESy affects the wall-normal extent of roughness-induced
flow patterns, dispersive stresses were computed and examined. Dispersive stresses
represent momentum flux in the near-roughness region due to spatial heterogeneity in
the time-averaged flow, and arise as a direct result of time-then-space averaging (Pokrajac,
McEwan & Nikora 2008) (see (2.7)). Profiles of the dispersive normal stresses normalised
by the square of the mean friction velocity are plotted against outer-scaled wall-normal
position in figure 14. Whist the dynamical significance of ‘form-induced’ stress in the
near-wall region is well-documented (Moltchanov, Bohbot-Raviv & Shavit 2011; Ma et al.
2021), it is often assumed to vanish in the outer layer (Meyers, Ganapathisubramani & Cal
2019). Looking from left to right across figure 14, it is clear that whilst the magnitude of
the spanwise dispersive stress D22 is effectively zero in the outer region for all surfaces
considered here (figures 14d–f ), the remaining streamwise D11 and wall-normal D33
stresses do not necessarily follow the same trend. In particular, the latter component
shows persistent levels well into the outer region for surface 010_010 (red dotted line
in figure 14a), surface 010_022 (red dashed line in figure 14a), and, to a slightly lesser
extent, surface 022_010 (black dotted line in figure 14b). These are the same three low-ESy
surfaces that exhibit a non-uniform streamwise velocity difference in the outer region
(figure 5), non-universal coefficients in their respective log laws (figure 9), and diminished
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Figure 14. Effect of varying ESy upon dispersive normal stresses Dii(x3). Streamwise dispersive stresses
D11(x3) for (a) Group A, (b) Group B, and (c) Group C surfaces. Spanwise dispersive stresses D22(x3) for
(d) Group A, (e) Group B, and ( f ) Group C surfaces. Wall-normal dispersive stresses D33(x3) for (g) Group A,
(h) Group B, and (i) Group C surfaces. The histogram for each height distribution P(h) is included for reference
in grey. Line types are defined in table 3.

levels of outer-layer similarity (figure 11), which again underlines the growing significance
of ESy as ESx becomes smaller. In addition, the wall-normal persistence of dispersive
stresses observed in figure 14 challenges the classical picture of an outer layer that is
dominated by Reynolds stresses (Castro 2007) and therefore motivates an analysis of
second-order turbulence statistics.

Profiles of spatially averaged streamwise Reynolds stress 〈R11〉 normalised by the square
of the mean friction velocity are plotted against outer-scaled wall-normal position for
Groups A, B and C in figure 15. Looking from left to right across figures 15(a–c), it
is clear that the best collapse between the smooth- and rough-wall data is observed for
Group C (blue lines). These data are therefore in strong support of Townsend’s outer-layer
similarity hypothesis (Townsend 1976), which states that the turbulent stresses, normalised
by the square of the mean friction velocity, are universal outside the roughness sublayer,
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Figure 15. Effect of varying ESy upon spatially averaged streamwise Reynolds stresses 〈R11〉(x3) for (a) Group
A, (b) Group B, and (c) Group C surfaces. Effect of varying ESy upon the sum of spatially averaged streamwise
Reynolds stress and streamwise dispersive stress, 〈R11〉(x3) + D11(x3), for (d) Group A, (e) Group B, and ( f )
Group C surfaces. The histogram for each height distribution P(h) is included for reference in grey. Line types
are defined in table 3.

which can be written as
〈Rij〉
u2
τ

= gij

(x3

δ

)
, (3.6)

where gij is a universal function hypothesised to be independent of the viscous-scaled
surface condition. On the other hand, the streamwise Reynolds stress profile above surface
010_010 (dotted red line, figure 15a) and surface 010_022 (dotted black line, figure 15b)
shows the worst overall collapse with the smooth-wall data, which is consistent with the
behaviour of the log-law diagnostic functions (see figure 10) and velocity defect profiles
(see figure 11). As was mentioned previously, one explanation for this behaviour is that
as λ̄y approaches δ, the roughness sublayer thickens, ultimately perturbing streamwise
velocity fluctuations from their ‘equilibrium’ state. Past work has also reported diminished
levels of outer-layer similarity on Reynolds stresses above roughness with long wavelength
features in the spanwise direction – the limiting case being two-dimensional spanwise
bars with λ̄y/δ → ∞. For instance, Volino, Schultz & Flack (2011) reported a breakdown
of outer-layer similarity for Reynolds stresses in turbulent boundary-layer flow over
two-dimensional bar roughness, but not for three-dimensional cube roughness, despite the
latter being a factor three times larger than the smallest bars in terms of k. Although the
roughnesses considered by Volino et al. (2011) have a fundamentally different character
compared to the irregular, three-dimensional roughness under consideration in the present
study – e.g. the former have fixed separation points whereas the latter does not –
there is qualitative similarity in the sense that when ESy becomes low (and spanwise
features become large), the roughness sublayers thicken, which, ultimately, may lead to
a breakdown of outer-layer similarity.
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Figure 16. Effect of varying ESy upon spatially averaged Reynolds shear stress 〈R13〉(x3) for (a) Group A,
(b) Group B, and (c) Group C surfaces. Effect of varying ESy upon the sum of spatially averaged Reynolds
shear stress and dispersive shear stress, 〈R13〉(x3) + D13(x3), for (d) Group A, (e) Group B, and ( f ) Group
C surfaces. The histogram for each height distribution P(h) is included for reference in grey. Line types are
defined in table 3.

Profiles of the sum of the spatially averaged Reynolds stress and streamwise dispersive
stress, 〈R11〉 + D11, for Groups A, B and C are shown in figures 15(d–f ). Comparing these
data against their Reynolds stress counterparts in (a–c), it is clear that observed levels
of outer-layer similarity above Group C surfaces remain unaffected by the addition of
streamwise dispersive stress, since D11 decays to a negligible value in the outer region (see
figure 14c). This observation is consistent with the results of Forooghi et al. (2018b) and
Busse & Jelly (2020), which show that D11 becomes negligible relative to 〈R11〉 in the outer
layer. In contrast, since D11 remains non-negligible above surface 010_010 (red dotted line,
figure 14a) and surface 022_010 (black dotted line, figure 14b) well into the outer layer,
the profiles of 〈R11〉 + D11 shift upwards, relative to the Reynolds stress profiles plotted in
figure 15(a), and fail to collapse on the smooth-wall data at all wall-normal positions (red
dotted line, figure 14d).

Profiles of spatially averaged Reynolds shear stress 〈R13〉, normalised by the square
of the mean friction velocity, are plotted against wall-normal position for Groups A, B
and C in figure 16, where smooth-wall data at matched flow conditions are included
for comparison. Again, looking from left-to-right across figures 16(a–c), it is clear that
the best collapse between the smooth- and rough-wall data is observed for Group C
(blue lines), and the worst overall collapse is observed above surface 010_010 (dotted red
line, figure 16a), which is in line with the behaviour of the corresponding streamwise
Reynolds stress profile (red dotted line, figure 15a). One explanation for this behaviour
is that the contribution of dispersive shear stress 〈D13〉 to the total shear stress becomes
increasingly large as ESy decreases. Assuming that the viscous shear stress is negligible
for heights greater than x3/hmax > 1, the total shear stress varies linearly as 1 − x3/δ ≈
−(〈R13〉 + 〈D13〉) above the roughness crests, which means that any increase in dispersive
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shear stress must be met by a decrease in Reynolds shear stress (and vice versa). The
sum of Reynolds and dispersive shear stress, (〈R13〉 + 〈D13〉), normalised by the square
of the mean friction velocity, is plotted against outer-scaled wall-normal position in
figures 16(d–f ). The data exhibit an almost perfect linear variation between the highest
roughness crest (x3/hmax = 1) and the channel half-height (x3/δ = 1), which, in addition
to verifying that viscous stresses are indeed negligible in the outer region, also confirms
that the present simulations have achieved satisfactory levels of statistical convergence;
e.g. see Vinuesa et al. (2016) for details. Differences between the total shear stress
(figures 16d–f ) and spatially averaged Reynolds shear stress profiles (figures 16a–c) above
the roughness crests therefore arise as a direct result of non-negligible dispersive shear
stress, which increases above low-ESx surfaces as ESy is reduced.

To associate particular length scales to the levels of spatially averaged Reynolds
shear stress (figure 16), the co-spectra of instantaneous u′

1u′
3 fluctuations can

be examined. This allows analysis of the energetic contributions from different
wavelengths, e.g. in the streamwise direction, 〈R13〉(x3) = ∫∞0 Φ13(λ1, x3) d log(λ1),
where Φ13(λ1, x3) = κ1 φ13(λ1, x3) is the premultiplied co-spectrum of u′

1 and u′
3, and κ1

is the streamwise wavenumber. Whilst the behaviour and scaling of Reynolds shear stress
co-spectra in smooth-walled turbulent channel flow are well-documented (Del Alamo et al.
2004; Lee & Moser 2015), data are less common above irregular rough walls. Here, the
spectral decomposition of Reynolds shear stress is compared for surfaces 010_010 and
010_035, and the reference smooth-wall data, with the aim of identifying the range of
scales that exhibit the most (or least) sensitivity with respect to ESy.

Contours of streamwise premultiplied Reynolds shear stress co-spectra normalised by
the square of the mean friction velocity are plotted against inner-scaled wall-normal
position for surfaces 010_035 and 010_010 in figures 17(a,b), respectively. Looking first
at figure 17(a), it is clear that the co-spectra for surface 010_035 (blue lines) collapse on
top of the smooth-wall data (grey lines) above wall-normal heights greater than x+

3 � 100.
In addition, the peak energy in the streamwise premultiplied co-spectra occurs just above
the roughness crests and is concentrated at wavelengths approximately equal to the mean
streamwise roughness wavelength (λ̄x/δ ≈ 1, horizontal black line, figure 17a). Previous
analyses of streamwise premultiplied energy spectra of streamwise velocity fluctuations in
turbulent pipe flow above isotropic egg-carton roughness have shown similar behaviour
at comparable flow conditions (Chan et al. 2018). Whilst the peak energy in the surface
010_010 co-spectra (red lines, figure 17b) also occurs just above the roughness crests and
is concentrated at wavelengths approximately equal to the mean streamwise roughness
wavelength, the data show a clear disagreement with the smooth-wall data above
wall-normal heights greater than x+

3 � 100 and for streamwise wavelengths greater than
λ+x � 500. This observation implies that the turbulence structure above surface 010_010
has undergone a broadband spectral change. To quantify these changes, the smooth-wall
Reynolds shear stress co-spectrum was subtracted from its rough-wall counterpart using
the formula �Φ13(λ1, x3) ≡ κ1[φ13,r(λ1, x3) − φ13,s(λ1, x3)], where subscripts r and s
denote rough- and smooth-wall data, respectively.

The difference between the smooth-wall and surface 010_035 Reynolds shear stress
co-spectra is shown in figure 17(c), where solid and dotted lines denote an energy
surplus (�φ13 > 0) and an energy defect (�φ13 < 0), respectively. As expected, negligible
energetic differences (�φ13 ≈ 0) are observed across all streamwise wavelengths above
wall-normal heights greater than x+

3 � 100, since the smooth- and rough-wall co-spectra
collapse in the same region (see figure 17a). Negligible energetic differences are also
observed where the roughness-induced secondary motions become small, i.e. above
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Figure 17. Comparison of streamwise premultiplied Reynolds shear stress co-spectra between the reference
smooth wall (grey line) and (a) surface 010_035 (blue line), and (b) surface 010_010 (red line). The
vertical black lines on the lower and upper horizontal axis denote the height of the highest roughness crest
(x3/hmax = 1) and the wall-normal extent of the dispersive stresses x3 = 0.5λ̄y proposed by Chan et al. (2018),
respectively. The horizontal black line denotes the mean streamwise roughness wavelength (λ̄x/δ = 1). Vertical
and horizontal black dashed lines denote the wall-normal height of the channel half-height (x3/δ = 1) and the
streamwise length of the computational domain (L1/δ), respectively. Contour lines in (a,b) are shown on the
levels {0.05, 0.13, 0.21, 0.29}. The differences between the smooth-wall co-spectra and rough-wall co-spectra
for (c) surface 010_035 and (d) surface 010_010 are also shown, where dotted and solid lines denote an energetic
deficit (�φ13 < 0) and surplus (�φ13 > 0), respectively. Positive and negative contour lines in (c,d) are shown
on the levels {0.025, 0.043, 0.062, 0.080} and −{0.025, 0.050, 0.075, 0.100}, respectively.

wall-normal heights greater than x3/λ̄y > 0.5, as proposed by Chan et al. (2018) (see
figure 12b). In contrast, an energy defect is evident in the vicinity of the highest roughness
crests (x3/hmax = 1) for streamwise wavelengths greater than λ+x � 250, with the strongest
defect concentrated at wavelengths approximately equal to the mean streamwise roughness
wavelength (λ̄x/δ ≈ 1). The net effect of these energy-deficient scales explains why the
peak value of the spatially averaged Reynolds shear stress profile is suppressed above
surface 010_035 (dotted blue line, figure 16c), relative to the smooth-wall value (grey
line, figure 16c), and is consistent with the notion that surface roughness disrupts the
near-wall turbulence cycle (Schultz & Flack 2007; Squire et al. 2016). In the vicinity of the
mean roughness height, an energy surplus is evident for streamwise wavelengths greater
than λ+x � 180, which explains why the levels of spatially averaged Reynolds shear stress
around x+

3 ≈ 0 for surface 010_035 (dotted blue line, figure 16c) exceed smooth-wall levels
(grey line, figure 16c).
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The difference between the smooth-wall and surface 010_010 co-spectra is shown in
figure 17(d). In contrast to the surface 010_035 data (figure 17c), the data above surface
010_010 reveal an energy defect that penetrates deep into the outer region for streamwise
wavelengths of the order of the mean streamwise roughness wavelength, i.e. λ̄x/δ ≈ 1.0
(red dotted lines). The net effect of these energy-deficient scales explains why the Reynolds
shear stress profile for surface 010_010 fails to collapse onto the smooth-wall data in the
outer region (dotted red line, figure 16a) and why such poor levels of outer-layer similarity
are observed. Further, the wall-normal extent of the energy defect above surface 010_010
is consistent with the height of the roughness sublayer inferred from the cross-stream
distribution of streamwise dispersive velocity (figure 12a), as well as the dimensions of
roughness-induced secondary motions identified using signed swirl strength (figure 13d).

Contours of spanwise premultiplied Reynolds shear stress co-spectra normalised by
the square of the mean friction velocity are plotted against inner-scaled wall-normal
position for surfaces 010_035 and 010_010 in figures 18(a,b), respectively. Overall, the
spanwise co-spectra show similar trends to their streamwise counterparts (figures 17a,b).
In particular, the spanwise co-spectra above surface 010_035 (figure 17c) show good levels
of agreement with the smooth-wall data in the outer region, whereas the surface 010_010
data show obvious disagreement over a range of scales (figure 17d). The differences
between the smooth-wall spanwise co-spectra and the data for surfaces 010_035 and
010_010 are shown in figures 18(c) and 18(d), respectively. Again, whilst negligible
energetic differences are observed for wall normal heights greater than x+

3 � 100 above
surface 010_035 (figure 18c), an energy defect extends deep into the outer region above
surface 010_010 (figure 18d), which indicates that the turbulence structure, even far from
the wall, is profoundly altered above the latter, lower-ESy surface. As a result, whereas
diminished levels of outer-layer similarity are observed above surface 010_010, the surface
010_035 co-spectra retain outer-layer similarity on a scale-by-scale basis.

4. Conclusions

Fully developed turbulent channel flow over irregular, three-dimensional rough walls
with systematically varied values of spanwise effective slope (ESy) was studied using
direct numerical simulations (DNS) at friction Reynolds number 395, corresponding to
viscous-scaled roughness height k+ ≈ 65.8 (where k is the mean peak-to-valley height).
A set of ten near-Gaussian roughness topographies with specified values of ESy, three
separate values of streamwise effective slope ESx, and common mean peak-to-valley
height, were synthesised using a surface generation algorithm (figure 3). The instantaneous
DNS data were reduced using the double-averaged (DA) methodology, and the sensitivity
of DA statistics with respect to ESy for each value of ESx was studied for a fixed
value of k+ in the context of the Hama roughness function (figures 5 and 6), the
fractional contribution of spatially averaged pressure drag to total drag (figures 7 and 8),
mean velocity profiles (figures 9 and 11), dispersive streamwise velocity (figure 12),
roughness-induced secondary motions (figure 13), dispersive normal stresses (figure 14),
spatially averaged Reynolds shear stress (figure 16) and Reynolds shear stress co-spectra
(figures 17 and 18). The contributions of this work are discussed below.

The key finding of this work is that ESy emerges as a key topographical parameter as
its streamwise counterpart ESx becomes small. One interpretation of this behaviour is that
ESy becomes more important as the ‘waviness’ regime is approached, which, according
to Schultz & Flack (2009), occurs for surfaces with ESx � 0.35. In this regime, viscous
drag can become non-negligible and the flow is considered to be transitionally rough.
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Figure 18. Comparison of spanwise premultiplied Reynolds shear stress co-spectra between the reference
smooth wall (grey line) and (a) surface 010_035 (blue line), and (b) surface 010_010 (red, line). The
vertical black lines on the lower and upper horizontal axis denote the height of the highest roughness crest
(x3/hmax = 1) and the wall-normal extent of the dispersive stresses x3 = 0.5λ̄y proposed by Chan et al. (2018),
respectively. The horizontal black line denotes the mean streamwise roughness wavelength (λ̄x/δ = 1). Vertical
and horizontal black dashed lines denote the wall-normal height of the channel half-height (x3/δ = 1) and the
spanwise width of the computational domain (L2/δ), respectively. Contour lines in (a,b) are shown on the levels
{0.05, 0.20, 0.35, 0.50}. The differences between the smooth-wall co-spectra and rough-wall co-spectra for (c)
surface 010_035 and (d) surface 010_010 are also shown, where dotted and solid lines denote an energetic
deficit (�φ13 < 0) and surplus (�φ13 > 0), respectively. Positive and negative contour lines in (c,d) are shown
on the levels {0.050, 0.075, 0.100, 0.125} and −{0.050, 0.083, 0.117, 0.150}, respectively.

For instance, Napoli et al. (2008) report that viscous and pressure drag are
approximately equal on two-dimensional irregular sine wave roughness with ESx = 0.15 at
viscous-scaled mean absolute roughness height k+ ≈ 14. MacDonald et al. (2016) report
that viscous drag dominates pressure drag on isotropic three-dimensional egg-carton
roughness with ESx � 0.35 at viscous-scaled sinusoidal semi-amplitude k+ = 10. Under
these conditions, spanwise variations in surface elevation, ∂h/∂x2, and hence variations in
Sy, can affect directly the global force balance through the viscous term (3.1). However,
it is worth noting that low-ESx surfaces that fall within the wavy regime can also exhibit
fully rough behaviour, where viscous drag is overwhelmed by pressure drag (Fp � Fν).
For instance, Nugroho et al. (2021) report fully rough behaviour for their ‘rough 2.5×’
orange-peel surface (ESx = ESx ≈ 0.08), where the Hama roughness function varies as
�U+

FR(k+
s ) = κ−1 log Ck+ + A − 8.5 (where C = ks/k ≈ 2.45, and k is the mean absolute

height). Under these flow conditions, it is possible that the Hama roughness function will
exhibit limited sensitivity with respect to variations in ESy, since its effect can no longer
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be transmitted through the viscous term. However, the effect of varying ESy under fully
rough conditions was not investigated by Nugroho et al. (2021) since their work considered
isotropic roughness (ESy/ESx = 1). Most of the data in the present study fall within the
transitionally rough regime, and as a result, an appreciable sensitivity with respect to ESy
was retained – particularly for low-ESx surfaces that have the highest proportion of viscous
drag. Past work by Thakkar et al. (2016) and Jouybari et al. (2021) has also identified ESy
as an important topographical parameter at comparable flow conditions. The present study
complements this past work by providing a detailed account of the physical mechanisms
that determine the sensitivity of �U+ with respect to systematic variations in ESy for a
fixed value of k+.

A secondary finding of this work is that particular low-ESy surfaces investigated here can
cause a breakdown of outer-layer similarity in both mean flow and turbulence statistics (for
a fixed value of k+). Diminished levels of outer-layer similarity became most pronounced
for the lowest value of ESx and ESy investigated here (ESx = ESy = 0.1). This behaviour
was attributed to insufficient scale separation between the outer length scale δ and the
in-plane spanwise roughness wavelength λ̄y. To be specific, as λ̄y approaches δ, spanwise
variations in time-averaged streamwise velocity were observed to extend up to (and
beyond) the channel half-height δ. Similar observations have been made in the context of
two-dimensional strip roughness (Yang & Anderson 2018), multi-scale cuboid roughness
(Medjnoun et al. 2021) and three-dimensional egg-carton roughness (Chan et al. 2018)
when λ̄y becomes an appreciable proportion of the boundary layer thickness. Here, the
mean-squared effect of these δ-scale motions led to non-negligible levels of dispersive
stress in the outer region, which, as noted by Jelly & Busse (2018), play a direct role in
determining the the local value of �U+ above the roughness crests. An examination of
Reynolds shear stress co-spectra also revealed diminished levels of outer-layer similarity
above low-ESy surfaces, implying that the turbulence structure, even far from the wall, is
affected across a wide range of energy-containing scales. Overall, these observations add
to the growing body of literature that the thickness of the roughness sublayer is a direct
function of the spanwise in-plane roughness wavelength (Chan et al. 2018; Medjnoun et al.
2021) and that as this length scale becomes an appreciable fraction of the outer length
scale, non-equilibrium behaviours emerge in both mean and turbulence statistics.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.823.
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Appendix A. Numerical details of the surface synthesis procedure

Irregular surface roughness with specified statistical properties was generated using the
multi-scale anisotropic rough surface (MARS) algorithm (Jelly & Busse 2018, 2019a).
Doubly periodic height maps hij were synthesised by taking linear combinations of
Gaussian random number matrices using a weighted moving average (MA) process, which
can be expressed as

hij =
n1∑

k=1

n2∑
l=1

αkl ηrs,

⎧⎪⎪⎨
⎪⎪⎩

i = 1, 2, . . . , N1,

j = 1, 2, . . . , N2,
r = [i + k − 1 (mod N1)] + 1,

s = [j + l − 1 (mod N2)
]+ 1,

(A1)

where ηij is an N1 × N2 matrix of uncorrelated Gaussian random numbers, the αkl are an
n1 × n2 set of coefficients, and mod denotes the modulo operator.

In (A1), the MA coefficients αkl were determined by solving the system of nonlinear
equations

Rpq =
n1−p∑
k=1

n2−q∑
l=1

αkl αk+p,l+q,

{
p = 0, 1, . . . , n1 − 1,

q = 0, 1, . . . , n2 − 1,
(A2)

using an iterative Newton-based method outlined in past work by Patir (1978), where Rpq
is the discrete autocorrelation function (ACF).

Each height map was generated with a specified exponential ACF

R(�x1, �x2) = exp

⎛
⎝−2.3

√(
�x1

�x∗
1

)2

+
(

�x2

�x∗
2

)2
⎞
⎠ , (A3)

where �x1, �x2 denote the spatial separations in the streamwise and spanwise directions,
respectively, and �x∗

1, �x∗
2 denote the spatial separations at which the streamwise and

spanwise ACF profiles reduce to 10 % of their values at the origin.
To generate each surface shown in figure 3, the values of �x1 and �x2 were varied

systematically to generate a set of MA coefficients that yielded the desired combination of
ESx and ESy.

Appendix B. Derivation of global hydrodynamic force balance

Following Peet & Sagaut (2009), the streamwise component of the local, time-averaged
hydrodynamic force per unit area that acts on a surface can be expressed as

F1(x) = −
[
μ

(
∂ ū1

∂xj
+ ∂ ūj

∂x1

)
n̂j − p̄sn̂1

]
, (B1)

where n̂j = ∇h/‖∇h‖ is the unit normal vector of the height map, and p̄s is the local
surface pressure.
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Impact of spanwise effective slope on near-wall turbulence

After integrating (B1) with respect to the incremental surface area dS, the mean viscous
force per unit area acting on the surface can be written as

〈Fν〉 =
∫∫

S
−μ

[
2

∂ ū1

∂x1

∂h
∂x1

+
(

∂ ū1

∂x2
+ ∂ ū2

∂x1

)
∂h
∂x2

−
(

∂ ū1

∂x3
+ ∂ ū3

∂x1

)]
1

‖∇h‖ dS, (B2)

and the mean pressure force per unit area acting on the surface can be written as

〈
Fp
〉 = ∫∫

S

[
(p̄s − p̄0)

∂h
∂x1

]
1

‖∇h‖ dS, (B3)

where ps has been referenced relative to an arbitrary gauge pressure, taken here as the
mean surface pressure, i.e. p̄0 ≡ A−1 ∫∫ p̄s(x1, x2) dA.

For streamwise homogeneous surface roughness with ∂h/∂x1 = 0 and a streamwise
homogeneous time-averaged velocity field ∂ ūi/∂x1 = 0, the hydrodynamic force balance
reduces to

〈F1〉 =
∫∫

S
−μ

[
∂ ū1

∂x2

∂h
∂x2

− ∂ ū1

∂x3

]
1

‖∇h‖ dS. (B4)

For spanwise homogeneous surface roughness with ∂h/∂x2 = 0 and a spanwise
homogeneous time-averaged velocity field ∂ ūi/∂x2 = 0, the hydrodynamic force balance
reduces to

〈F1〉 =
∫∫

S

(
−μ

[
2

∂ ū1

∂x1

∂h
∂x1

−
(

∂ ū1

∂x3
+ ∂ ū3

∂x1

)]
1

‖∇h‖ +
[
(p̄s − p̄0)

∂h
∂x1

]
1

‖∇h‖
)

dS.

(B5)
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