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An improved version of the non-equilibrium theory of non-homogeneous turbulence
of Chen & Vassilicos (J. Fluid Mech., vol. 938, 2022, A7) predicts that an
intermediate range of length scales exists where the interscale turbulence transfer rate,
the two-point interspace turbulence transport rate and the two-point pressure gradient
velocity correlation term in the two-point small-scale turbulent energy equation are all
proportional to the turbulence dissipation rate and independent of length scale. Particle
image velocimetry measurements in a field of view under the turbulence-generating
impellers in a baffled water tank support these predictions and show that the measured
small-scale turbulence is significantly non-homogeneous. The particle image velocimetry
measurements also suggest that the rate with which large scales lose energy to the
small scales in the two-point large-scale turbulent energy equation also appears to be
approximately proportional to the turbulence dissipation rate and independent of length
scale in the same intermediate range and that this rate may not balance the interscale
turbulence transfer rate in the two-point small-scale turbulent energy equation because of
turbulent energy transport caused by the non-homogeneity.

Key words: turbulence theory

1. Introduction

The Kolmogorov 1941 theory of statistically homogeneous turbulence (see Frisch 1995;
Pope 2000) predicts that the interscale transfer rate of turbulent kinetic energy is
approximately balanced by the turbulence dissipation rate across a wide range of
inertial range length scales as the Reynolds number tends to infinity. This prediction of
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scale-by-scale equilibrium (the word equilibrium in this paper is not used in the sense
reserved in statistical physics for stationary states satisfying detailed balance such as
thermal equilibria) holds for statistically stationary forced homogeneous turbulence (see
Frisch 1995) but is also made for decaying homogeneous turbulence on the basis of
a small-scale stationarity hypothesis (see Frisch (1995), Pope (2000) and § 2 of Chen
& Vassilicos (2022)). A widely held view is that the turbulence is always statistically
homogeneous at small enough length scales if the Reynolds number is large enough.
But what if the Reynolds number, even if high, is not high enough for homogeneity to
exist at the smallest scales? And if, in such circumstances, one finds simple scalings and
scale-by-scale balances which appear independent of the details of the non-homogeneity,
would these non-homogeneity laws survive as the Reynolds number is taken to infinity?
Or would they locally tend to Kolmogorov scale-by-scale equilibrium, in which case
Kolmogorov scale-by-scale equilibrium would, in some sense, be an asymptotic case of
these non-homogeneity laws?

In this paper we address statistically stationary non-homogeneous turbulence at
moderate to high Reynolds numbers and we attempt to provide some partial answer to
the first one of these questions: can simple scale-by-scale turbulence energy balances
exist in non-homogeneous turbulence? The questions concerning the limit towards
infinite Reynolds numbers cannot be answered at present and may, perhaps, never be
answered unless one can some day answer them by rigorous mathematical analysis of the
Navier–Stokes equations. The problem with claims made for Reynolds numbers tending
to infinity is that one can always argue that the Reynolds number is not large enough if an
experiment or simulation does not confirm the claims.

We chose to study the turbulent flow under turbulence-generating rotating impellers in
a baffled tank where the baffles break the rotation of the flow. This is a flow where the
turbulence is statistically stationary, where Taylor length-based Reynolds numbers up to
order 103 can be achieved, where different types of impeller can produce significantly
different turbulent flows and where we can use a two-dimensional two-component (2D2C)
particle image velocimetry (PIV) that is highly resolved in space and capable of accessing
estimates of turbulence dissipation rates as well as parts of various interscale and
interspace turbulent transfer/transport rates. Only full three-dimensional three-component
highly resolved PIV measurements can, in principle, access the turbulence dissipation
and these transfer/transport rates in full, but such an approach is currently beyond
our reach over the significant range of length scales needed to establish scale-by-scale
energy balances. The truncated transfer/transport rates obtained by our 2D2C PIV do,
nevertheless, exhibit interesting properties, in particular because they are concordant with
a recent non-equilibrium theory of non-homogeneous turbulence (Chen & Vassilicos
2022) which we also further develop here.

In the following section we present the two-point scale-by-scale equations which
form the basis of this study’s theoretical framework. In § 3, we discuss interscale
turbulent energy transfers and the special case of freely decaying statistically homogeneous
turbulence as a point of reference. Section 4 presents the experimental apparatus and the
2D2C PIV. We use our PIV measurements to assess two-point turbulence production
in § 5 and linear transport terms (e.g. mean advection) in § 6. In § 7 we present
intermediate similarity predictions and PIV measurements of second-order structure
functions of turbulent fluctuating velocities. Section 8 presents theoretical predictions of
non-equilibrium small-scale turbulent energy budgets for non-homogeneous turbulence
and related 2D2C PIV measurements. Finally, § 9 presents measurements and a theoretical
discussion of elements of the large-scale turbulent energy budget, § 10 proposes a
small-scale homogeneity hypothesis and we conclude in § 11.
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2. Theoretical framework based on two-point Navier–Stokes equations

Interscale turbulence transfers for incompressible turbulence can be studied in the presence
of all other co-existing turbulence transfer/transport mechanisms in terms of two-point
equations exactly derived from the incompressible Navier–Stokes equations (see Hill
2001, 2002; Germano 2007) without any hypotheses or assumptions, in particular no
assumptions of homogeneity or periodicity. The incompressible Navier–Stokes equation
is written at two points ζ− = X − r and ζ+ = X + r in physical space (see figure 1),
where X is the centroid and 2r is the two-point separation vector. One defines the
two-point velocity half-difference δu(X , r, t) ≡ (u+ − u−)/2, where u+ ≡ u(ζ+) and
u− ≡ u(ζ−) are the fluid velocities at each of the two points, and the two-point pressure
half-difference δp(X , r, t) ≡ (p+ − p−)/2, where p+ ≡ p(ζ+) and p− ≡ p(ζ−) are the
pressure over density ratios at each of the two points. Incompressibility immediately
imposes ∇X · δu = ∇r · δu = 0 and the Navier–Stokes equation implies (Hill 2001, 2002)

∂δu
∂t

+ (uX · ∇X ) δu + (δu · ∇r) δu = −∇X δp + ν

2
∇X

2δu + ν

2
∇r

2δu, (2.1)

where uX (X , r, t) ≡ (u+ + u−)/2; ∇X and ∇X
2 are the gradient and Laplacian in X

space; ∇r and ∇r
2 are the gradient and Laplacian in r space; and ν is the kinematic

viscosity.
An energy equation is readily obtained by multiplying (2.1) with 2δu:

∂|δu|2
∂t

+ ∇X · (uX |δu|2) + ∇r · (δu|δu|2)

= −2∇X · (δuδp) + ν

2
∇X

2|δu|2 + ν

2
∇r

2|δu|2 − 1
2
ε+ − 1

2
ε−, (2.2)

where ε+ = ν(∂u+
i /∂ζ+

k )(∂u+
i /∂ζ+

k ) and ε− = ν(∂u−
i /∂ζ−

k )(∂u−
i /∂ζ−

k ). With a Reynolds
decomposition δu = δu + δu′, uX = uX + uX

′, δp = δp̄ + δp′ where the overline
signifies an average over time under the assumption of statistical stationarity, this general
two-point energy equation leads to the following pair of two-point energy equations:

(uX · ∇X + δū · ∇r)
1
2
|δū|2 + Pr + Ps

Xr + ∂

∂xj
(δuiu′

Xjδu′
i) + ∂

∂rj
(δuiδu′

jδu′
i)

= −∇X · (δūδp̄) + ν

2
∇X

2 1
2
|δū|2 + ν

2
∇r

2 1
2
|δū|2 − ν

4
∂ ū+

i

∂ζ+
k

∂ ū+
i

∂ζ+
k

− ν

4
∂ ū−

i

∂ζ−
k

∂ ū−
i

∂ζ−
k

,

(2.3)

(uX · ∇X + δū · ∇r)
1
2
|δu′|2 − Pr − Ps

Xr + ∇X ·
(

uX ′ 1
2
|δu′|2

)
+ ∇r ·

(
δu′ 1

2
|δu′|2

)

= −∇X · (δu′δp′) + ν

2
∇X

2 1
2
|δu′|2 + ν

2
∇r

2 1
2
|δu′|2 − ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

,

(2.4)

where Pr = −δu′
jδu′

i
∂δui
∂rj

= −δu′
jδu′

i
1
2 [Σij(X + r) + Σij(X − r)] and Ps

Xr = −u′
Xjδu′

i

(∂δui/∂Xj), with Σij ≡ 1
2 (∂ui/∂Xj + ∂uj/∂Xi), are two-point turbulence production rates.

Indeed, being proportional to mean flow gradient terms and to averages of products
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u(ζ–)

u(ζ+)

ζ+ = X + r

ζ– = X – r
2r

X

Figure 1. Schematic of fluid velocities at points ζ− = X − r and ζ+ = X + r.

of fluctuating velocities, they represent linear turbulence fluctuation processes and they
exchange energy between |δū|2 and |δu′|2 because they appear with opposite signs in
(2.3) and (2.4) as already noted by Alves Portela, Papadakis & Vassilicos (2017).

A complete two-point description also requires the evolution equation for the two-point
velocity half-sum uX (X , r, t). This equation was first obtained by Germano (2007):

∂uX

∂t
+ (uX · ∇X ) uX + (δu · ∇r) uX = −∇X pX + ν

2
∇X

2uX + ν

2
∇r

2uX , (2.5)

where pX ≡ (p+ + p−)/2, and note that uX is incompressible, i.e. ∇X · uX = ∇r · uX =
0. An energy equation, also first derived by Germano (2007), is readily obtained by
multiplying (2.5) with 2uX :

∂|uX |2
∂t

+ ∇X · (uX |uX |2) + ∇r · (δu|uX |2) = −2∇X · (uX pX) + ν

2
∇X

2|uX |2

+ ν

2
∇r

2|uX |2 − 1
2
ε+ − 1

2
ε−. (2.6)

A pair of Reynolds-averaged two-point energy equations follows (using pX = pX + p′
X):

(uX · ∇X + δū · ∇r)
1
2
|uX |2 + PX + Pl

Xr + ∂

∂xj
(uXiu′

Xiu
′
Xj) + ∂

∂rj
(uXiδu′

ju
′
Xi)

= −∇X · (uX pX) + ν

2
∇X

2 1
2
|uX |2 + ν

2
∇r

2 1
2
|uX |2 − ν

4
∂ ū+

i

∂ζ+
k

∂ ū+
i

∂ζ+
k

− ν

4
∂ ū−

i

∂ζ−
k

∂ ū−
i

∂ζ−
k

,

(2.7)

(uX · ∇X + δū · ∇r)
1
2
|uX ′|2 − PX − Pl

Xr + ∇X ·
(

uX ′ 1
2
|uX ′|2

)
+ ∇r ·

(
δu′ 1

2
|uX ′|2

)

= −∇X · (uX ′p′
X) + ν

2
∇X

2 1
2
|uX ′|2 + ν

2
∇r

2 1
2
|uX ′|2 − ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

,

(2.8)

where PX = −u′
Xju

′
Xi

∂uXi
∂Xj

= −u′
Xju

′
Xi

1
2 [Σij(X + r) + Σij(X − r)] and Pl

Xr = −δu′
ju

′
Xi

(∂δui/∂Xj). These two-point turbulence production rates represent linear turbulence
fluctuation processes and an exchange of energy between |uX |2 and |u′

X |2 because they
appear with opposite signs in (2.7) and (2.8).

Equations (2.3), (2.4) and (2.7), (2.8) offer a powerful and complete set of tools for the
analysis of any turbulent flow and can be used to develop two-point turbulence theory
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and models which do not have to rely on homogeneity. In particular, (2.4) and (2.8)
govern, respectively, the smaller-scale and the larger-scale fluctuating energy contributions
to the total turbulent kinetic energy 1

2 |u′+|2 + 1
2 |u′−|2. All physical processes are clearly

represented: various turbulent production rates are present as already stated (and the
total production rate PX + Pr + Ps

Xr + Pl
Xr transfers energy between 1

2 |ū+|2 + 1
2 |ū−|2 and

1
2 |u′+|2 + 1

2 |u′+|2); interspace turbulent transport and interscale turbulent transfer rates
are represented by conservative terms in X and r spaces, respectively; pressure–velocity
terms are also included as are viscous diffusion rates in both X and r spaces and turbulence
dissipation rates. In the limit r → 0, Pr, Ps

Xr and Pl
Xr tend to 0 and so do all the terms in

(2.3) and (2.4) except the viscous diffusion and dissipation terms which balance by trivial
mathematical identity at r = 0. However, PX tends to the one-point turbulence production
rate in that limit, and (2.7) and (2.8) tend, respectively, to the one-point mean flow energy
and the one-point turbulent kinetic energy equations at X . For more details see Hill (2001,
2002), Germano (2007) and Chen & Vassilicos (2022).

3. Interscale turbulent energy transfers

Besides two-point turbulent production terms, the two-point energy equations of the
previous section involve important interscale and interspace transport terms. Germano
(2007) interpreted his (2.5) and (2.6) in the context of large-eddy simulations. He showed
that the term (δu · ∇r)uX in (2.5) can be interpreted as the gradient of a subgrid stress.
This term gives rise to the term ∇r · (δu|uX |2) in (2.6) which is therefore an energy
transfer rate between large-scale velocities (velocity half-sum) and small-scale velocities
(velocity half-difference). Germano (2007) also derived the kinematic equation

∇r · (δu|uX |2) + ∇r · (δu|δu|2) = 2∇X · (δu(δu · uX )) (3.1)
which relates ∇r · (δu|uX |2) to ∇r · (δu|δu|2) in (2.2), where ∇r · (δu|δu|2) accounts for
nonlinear interscale energy transfer and the turbulence cascade (see e.g. Chen & Vassilicos
2022).

It must be stressed, however, that the term ∇r · (δu|δu|2) in (2.2) does not only
include nonlinear interscale transfer responsible for the turbulence cascade, it also includes
two-point turbulence production and interscale energy transfer by mean flow differences.
Indeed, it gives rise in (2.4) to the two-point turbulence production rate Pr, to the linear
average interscale turbulent energy transfer rate by mean flow differences δū · ∇r|δu′|2
and to the nonlinear average interscale turbulent energy transfer rate ∇r · (δu′|δu′|2)
relating to the turbulence cascade. The other terms in the energy equation (2.4) arise
from the pressure gradient, the viscous terms and the advection of small-scale velocity
δu by the large-scale velocity uX in (2.1). In particular, this advection term gives rise to
Ps

Xr and to the interspace turbulent transport rate of smaller-scale turbulence energy, i.e.
∇X · (uX ′|δu′|2).

Similar observations can be made for the large-scale energy equations (2.6) and (2.8)
where ∇r · (δu|uX |2) in (2.6) gives rise in (2.8) to the two-point production rate Pl

Xr (not
PX), to the linear average turbulent energy transfer rate by mean flow differences δū ·
∇r|u′

X |2 and to the fully nonlinear average turbulent energy transfer rate ∇r · (δu′|u′
X |2).

The other terms in the energy equation (2.8) arise from the pressure gradient, the
viscous terms and the self-advection of large-scale velocity uX in (2.5). In particular, this
self-advection term gives rise to PX (not Pl

Xr) and to the interspace turbulent transport rate
of larger-scale turbulence energy, i.e. ∇X · (uX ′|uX ′|2).
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Returning to the two-point turbulence production terms, Pr and Ps
Xr appear in the

small-scale energy equation (2.4) whereas PX and Pl
Xr appear in the large-scale energy

equation (2.8). All four terms vanish if the mean flow is homogeneous, but Pr represents
turbulence production by mean flow non-homogeneities at small scales whereas PX
represents turbulence production by mean flow non-homogeneities at large scales. It is
worth noting that PX tends to the usual one-point turbulence production rate −u′

ju
′
iΣij

in the limit r → 0 (u′ is the fluctuating turbulent velocity at one point) whereas Pr
tends to zero in that limit. Terms Pl

Xr and Ps
Xr also tend to zero in that limit but they

represent turbulence production by mean flow non-homogeneities that is cross-scale as
they involve correlations between the fluctuating velocity half-differences and fluctuating
velocity half-sums. The hypothesis that large and small scales may be uncorrelated leads
to the suggestion that Pl

Xr and Ps
Xr may be increasingly negligible for decreasing |r|, as

indeed found for Ps
Xr in the intermediate layer of fully developed turbulent channel flow

by Apostolidis, Laval & Vassilicos (2023).
Applying Reynolds averaging to the kinematic identity (3.1) we obtain

∇r · (δu|δu|2) + ∇r · (δu|δu′|2) + ∇r · (δu′|δu′|2) + 2∇r · (δu′(δu′δu))

+ ∇r · (δu|uX |2) + ∇r · (δu|uX ′|2) + ∇r · (δu′|uX ′|2) − 2Pl
Xr

= 2∇X · (δu(δu · uX )) + 2∇X · (δu(δu′ · u′
X ))

+ 2∇X · (δu′(δu′ · u′
X )) + 2∇X · (δu′(δu · u′

X )) − 2Pr, (3.2)

which demonstrates that, in general, the average interscale turbulent energy transfer
rate ∇r · (δu′|δu′|2) reflecting the turbulence cascade does not trivially relate to the
average turbulent energy transfer ∇r · (δu′|uX ′|2) reflecting work by subgrid stresses (see
Germano 2007).

A notable exception is statistically homogeneous turbulence where δu = 0, Pr = 0,
Pl

Xr = 0 and ∇X · (δu′(δu′ · u′
X ) = 0 so that (3.2) reduces to

∇r · δu′|u′
X |2 = −∇r · δu′|δu′|2. (3.3)

If unforced, homogeneous turbulence decays in time. For the past 80 years, grid-generated
turbulence has been an attempt to simulate decaying homogeneous turbulence in a wind
tunnel (see e.g. Tennekes & Lumley 1972; Pope 2000). In its idealised conception,
grid-generated turbulence is such that uX · ∇X |δu′|2 = ū · ∇X |δu′|2 and uX · ∇X |u′

X |2 =
ū · ∇X |u′

X |2 represent turbulence decay following a uniform mean flow (δu = 0, Pr =
PX = Pl

Xr = Ps
Xr = 0) and do not vanish, whereas all other terms in (2.4) and (2.8) which

are divergences with respect to X do vanish. Under such conditions, and by considering
scales |r| large enough to neglect viscous diffusion in r space, fluctuating energy equations
(2.4) and (2.8) become, respectively,

uX · ∇X |δu′|2 + ∇r · (δu′|δu′|2) ≈ −ε′ (3.4)

and
uX · ∇X |u′

X |2 + ∇r · (δu′|u′
X |2) ≈ −ε′, (3.5)

where ε′ is the average turbulence dissipation rate. Kolmogorov’s small-scale stationarity
hypothesis adapted to these equations states that uX · ∇X |δu′|2 is much smaller in
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magnitude than ε′ at small enough scales |r|. With this hypothesis and (3.3) it follows
that

∇r · δu′|δu′|2 ≈ −ε′, (3.6)

∇r · δu′|u′
X |2 ≈ ε′ (3.7)

and
uX · ∇X |u′

X |2 ≈ −2ε′ (3.8)

in an intermediate range of scales large enough to neglect viscous diffusion and
small enough to neglect small-scale non-stationarity. Relation (3.6) is Kolmogorov’s
scale-by-scale equilibrium and relation (3.7) was first derived by Germano (2007).
(Hosokawa (2007) assumed isotropy and derived the equivalent of (3.7) for homogeneous
isotropic turbulence.) Relation (3.8) holds, in fact, for arbitrarily small r and tends to the
one-point turbulent kinetic energy equation ū · ∇X |u′|2 = −2ε′ in the limit r → 0.

Turbulence is rarely homogeneous. Therefore, the natural question to ask is whether
energy transfer balances which may be different from but nevertheless in the same spirit
as (3.6) and (3.7) exist in non-homogeneous turbulence. And if they do, how different are
they and what determines the difference?

Various different classes of non-homogeneity exist. Apostolidis et al. (2023) developed
a scale-by-scale turbulent kinetic energy balance theory for the intermediate layer of
fully developed turbulent channel flow where interspace turbulent transport rate and
two-point pressure–velocity transport are negligible but small-scale production is not.
A theory of scale-by-scale turbulent kinetic energy for non-homogeneous turbulence was
recently proposed by Chen & Vassilicos (2022) whose approach allowed them to treat
(2.4) when small-scale interspace turbulent transport and spatial gradients of two-point
pressure–velocity correlations are not negligible. In the present paper we study the
turbulent flow under rotating blades in a baffled container (mixer) where the baffles break
the rotation in the flow and enhance turbulence. We start by assessing two-point production
because the theory of Chen & Vassilicos (2022) is designed for flow regions where it
makes a negligible or, at the very least, a minor contribution to (2.4). Even in those cases
where Pr and Ps

Xr are negligible, large-scale two-point production is necessarily present at
some scales if one-point production is present in the flow.

In the following section we present our experiment and the PIV used to make the
measurements which we use in subsequent sections to estimate various terms in (2.4) and
(2.8).

4. Experimental measurements

4.1. Description of the mixer and experimental configurations
Experiments are performed with water in the same octagonal shaped, acrylic tank as used
in Steiros et al. (2017a,b). The impeller has a radial four-bladed flat-blade turbine, mounted
on a stainless steel shaft at the tank’s mid-height. The impellers are driven by a stepper
motor (Motion Control Products, UK) in microstepping mode (25 000 steps per rotation),
to ensure smooth movement, which is controlled by a function generator (33600A, Agilent,
USA). The rotation speed and torque signal are measured with a Magtrol torquemeter (TS
106/011). The dimensions of the mixer are presented in figure 2 where DT = H = 45 cm,
C = H/2 and D ≈ DT/2.

Baffles (vertical bars on the sides of the tank) are used to break the rotation of the flow
(figure 3). These baffles are designed based on the prescriptions of Nagata (1975) for close
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(a)

C
D

DT

H

(b)

Figure 2. Mixer dimensions. (a) Side view. (b) Top view. Modified from Steiros et al. (2017b).

Baffles

(a) (b)

Figure 3. Mixer baffles. (a) Mixing tank with baffles. (b) Top view of baffles.

to fully baffled conditions which maximise power consumption and minimise rotation. For
a circular tank, this condition is achieved with four baffles of width around 0.12DT , where
DT is the tank diameter (see DT in figure 2). Therefore, four baffles of mixer tank height
and 58 mm in width are used.

To test the robustness of our results we run experiments with two different types
of blade geometry which stimulate the turbulence differently: rectangular blades of
44 mm × 99 mm size (figure 4a) and fractal-like/multiscale blades (figure 4b) of the
exact same frontal area of 44 × 99 mm2 but much longer perimeter. As shown by the PIV
measurements of Steiros et al. (2017b), the two counter-rotating trailing vortices generated
by the rotating impeller have the same size roughly equal to the blade half-width for the
rectangular blades. Fractal-like blades generate two unequal-sized vortices, but their size
is still close to the blade half-width. This blade difference affects turbulence properties
substantially as the resulting turbulence dissipation rate differs by 30 % to 40 % at equal
rotation speed (see table 3). We use here the two-iteration ‘fractal2’ blade described in
Steiros et al. (2017b) and shown in figure 4(b). Each one of the two types of blade is
tested with two different rotor speeds. We therefore conduct experiments in four different
configurations. In all cases, the water is filled to the top of the sealed container to minimise
the presence of air bubbles in the water.
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(a) (b)

Figure 4. Mixer blades. (a) Rectangular blade. (b) Fractal-like blade.

0.118 m

0.45 m

C1

C2

x

y
z

Figure 5. Measurement plane location.

4.2. Particle image velocimetry settings
We use 2D2C PIV in the vertical (x, z) plane indicated in figure 5. This figure also shows
the field of view which is aligned with that vertical plane and has its centre offset by only
3 ± 1 mm in the y direction from the centreline.

The PIV set-up is composed of a camera, a laser, a set of lenses and mirrors to shape the
laser beam into a thin light sheet and a Lavision PTU synchronisation unit and a recording
computer with Davis 10 from Lavision.

4.2.1. Camera
The camera used is a Phantom v2640 with full sensor image (2048 px × 1952 px).
A Nikon macro Nikkor 200 mm lens is used with f#8. The extremity of the lens is at
93 mm from the glass. The field of view size is C1 × C2 ≈ 27 mm × 28 mm (see figure 5)
with a magnification factor of 14.1 μm px−1.

The acquisition is done by packets of five time-resolved images. The packet acquisition
frequency is 6 Hz to ensure decorrelation between successive packets. The acquisition
frequency for the five images within each packet varies from 1.25 to 3 kHz depending on
type of blade and rotor speed. This parameter is specifically set for each configuration
to ensure a turbulent fluctuation displacement between two frames of around 5 px
(corresponding to about 1 standard deviation) and maximum 10 px (observed with samples
during the experiments).

4.2.2. Laser, mirrors and lenses
The laser used is a Blizz 30W high speed frequency laser from InnoLas. The laser is
optimised at 40 kHz with 750 μJ pulse−1 at 532 nm wavelength and M2 < 1.3. For the
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F (Hz) Magnification (μm px−1) Window size (mm) Window size/η

Rectangular blades 1 14 0.45 4.1
Rectangular blades 1.5 14 0.45 5.1
Fractal blades 1 14 0.45 3.4
Fractal blades 1.5 14 0.45 4.4

Table 1. The PIV resolution.

experiments it was set to around 500 μJ pulse−1 because of the smaller frequency used.
The laser frequency is set according to the camera time-resolved recording frequency.
The focal lengths of the spherical and the cylindrical lenses are +800 mm and −80 mm,
respectively (beam waist set in the centre of the field of view). The laser sheet height
obtained is around 60 mm and its width is 0.6 mm at the waist (which is close to the
centreline of the mixer) with a Rayleigh length of 400 mm. Therefore, the laser sheet’s
width is constant over the field of view.

4.2.3. Seeding
Mono-disperse polystyrene Spherotech particles of diameter 5.33 μm are used. They
maximise the concentration in the flow and lead to enough particles within each
interrogation window. The background noise is around 30 counts. There are on average
about 10 particles per interrogation window of 32 px × 32 px if a threshold of 50 counts
is used to select most particles. This is consistent with the criteria of Keane & Adrian
(1991). Among these particles, there is on average 6.5 particles higher than 100 counts per
interrogation window.

4.2.4. Processing
The calibration is done with LaVision 058-5 plate. The PIV processing is done
with the Matpiv toolbox modified at LMFL. It is a classical multigrid and multipass
cross-correlation algorithm (Willert & Gharib 1991; Soria 1996). Here four passes are
used, starting with 64 px × 64 px, then 48 px × 48 px and finishing with two 32 px ×
32 px passes. Before the final pass, image deformation is used to improve the results
(Scarano 2001; Lecordier & Trinité 2004). An overlap between interrogation windows
of 62 % is used, leading to vector spacing of about 0.17 mm. The final grid has then 159
points in the horizontal direction and 167 in the vertical one.

4.3. Description of the experimental measurements

4.3.1. The PIV resolution
The PIV resolution of the experiment (i.e. interrogation window size) is presented in
table 1. In terms of the Kolmogorov length η ≡ (ν3/〈ε′〉)1/4, where the angular brackets
signify a space average over the PIV field of view, the resolution is between 3.4η and 5.1η

depending on configuration. For those configurations where the interrogation window size
is higher than 3η the turbulence dissipation rate might be underestimated when denoised
properly (Foucaut et al. 2021). However, this underestimation remains acceptable for
interrogation window size smaller than 5η where less than 30 % of uncertainty (filtering
effect) is expected according to Laizet, Nedić & Vassilicos (2015) and Lavoie et al. (2007).
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Scale-by-scale non-equilibrium with Kolmogorov-like scalings

4.3.2. Statistical convergence
For each configuration, 150 000 velocity fields are recorded in time including 50 000 fully
uncorrelated velocity field samples for convergence. Averaging over time is not sufficient
for convergence and we therefore also apply averaging over space which greatly improves
the convergence. It corresponds to 150 000 × 164 × 78 ≈ 1.9 × 109 points for one-point
statistics, where 164 × 78 is the number of points associated with the vector spacing. For
two-point statistics, some spatial points are not available depending on the separation
vector size and direction. For zero separation vector, 150 000 × 164 × 78 ≈ 1.9 × 109

points are available for convergence, but for the largest separation vector in the rx direction
there are only 150 000 × 164 ≈ 2.4 × 107 points available and in the rz direction only
150 000 × 78 ≈ 1.2 × 107 are available.

The most important results in this paper are reported with error bars quantifying
convergence and computed with a bootstrapping method. The central limit theorem is
applied to averages over subgroups of samples of the quantity of interest. For each quantity,
600 subgroups containing 83 time steps with at least 159 spatial points are used for the
computation of an error bar. This method is robust and provides accurate estimations
without having to define the number of independent points. The resulting error bars
are also representative of the convergence of third-order two-point statistics plotted here
without error bars as the number of points used is the same.

4.3.3. Peak locking
When a particle is too small, its correlation peak position fitting results are biased towards
integer values. Therefore, the displacement between two images is more likely to be an
integer number of pixels. This peak-locking error (as it is called; Raffel et al. 2018) is
systematic (bias error) and is therefore visible on the velocity probability distribution
functions (sine modulation) but does not usually impact mean quantities of turbulent flow
if enough dynamic is used (here high dynamic is selected of about 5 px for one standard
deviation; see Christensen (2004)). Peak locking can be reduced by increasing particle
diffraction spot using camera lens aperture f# number. However, an increased f# number
reduces the brightness of the particles and therefore the number of visible particles. In this
experiment, f#8 is used as a compromise and some peak locking is still visible. The impact
on the results is analysed in § 3 of the supplementary material available at https://doi.
org/10.1017/jfm.2024.220 where we show that energy spectra and averages of two-point
velocity quantities such as the interscale turbulent energy transfer rate are unaffected by
peak locking.

4.3.4. Defining parameters
The defining parameters of the experiment are presented in table 2. The rotation frequency
F is either 1 or 1.5 Hz. The global Reynolds number is Re = 2πFR2/ν, where R = D/2 ≈
11.25 cm is an estimate of the rotor radius. The value of Re is large, higher than 8 × 104,
and the flow is therefore turbulent.

The Rossby number is estimated as Ro = U/2ΩR, where U (following Baroud et al.
2002) is the maximum fluctuating velocity in all our samples, R is as an estimate of the
integral length scale of the turbulence and Ω = 2πF. Our values of Ro range between
10−1 and 1 and are therefore intermediate between those of fast-rotating and non-rotating
turbulence. However, the rotor rotation speed Ω is not representative of flow rotation
because the baffles break the flow rotation as explained in Nagata (1975). Therefore, the
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F (Hz) Re vel r.m.s. (m s−1) Ro Mean torque (N m)

Rectangular blades 1 9.8 × 104 1.0 × 10−1 3.6 × 10−1 5.3 × 10−1

Rectangular blades 1.5 1.3 × 105 1.6 × 10−1 4.0 × 10−1 1.1
Fractal blades 1 8.6 × 104 9.1 × 10−2 3.2 × 10−1 4.1 × 10−1

Fractal blades 1.5 1.2 × 105 1.4 × 10−1 3.4 × 10−1 8.1 × 10−1

Table 2. Main parameters of the experiment: vel r.m.s. (m s−1) stands for
√

〈u′2
x 〉 + 〈u′2

z 〉.

F (Hz) 〈ε′〉 (m2 s−3) η (m) λ (m) Reλ

Rectangular blades 1 3.6 × 10−3 1.1 × 10−4 4.1 × 10−3 5.1 × 102

Rectangular blades 1.5 1.2 × 10−2 8.8 × 10−5 3.7 × 10−3 6.5 × 102

Fractal blades 1 2.4 × 10−3 1.3 × 10−4 4.9 × 10−3 4.8 × 102

Fractal blades 1.5 8.2 × 10−3 1.0 × 10−4 4.1 × 10−3 5.8 × 102

Table 3. Main turbulence parameters. The Kolmogorov length scale is calculated as η ≡ (ν3/〈ε′〉)1/4. The
Taylor length and the Reynolds number Reλ are calculated as in § 1.2 of the supplementary material.

Rossby number is probably severely underestimated and the rotation is not expected to
affect significantly the turbulence behaviour in our experiment.

4.3.5. Basic turbulent flow properties
The main turbulent parameters are presented in table 3. They include the turbulence
dissipation rate 〈ε′〉 averaged over time (overbar) and over space in our field of view
(angle brackets), the resulting Kolmogorov length scale η (computed with 〈ε′〉) and the
Taylor length λ. These parameters are provided as reference and are used in the paper to
non-dimensionalise results.

The Taylor-length-based Reynolds number Reλ (see discussion on its estimation in § 1.2
of the supplementary material) is higher than 480 in all four configurations. All the four
flows that we study are therefore highly turbulent.

In figure 6(b) we plot the mean flow velocity for one of our four configurations but
the plot is representative of all four configurations. The mean flow velocity is oriented
vertically from bottom to top and is not negligible in magnitude. Within our field
of view, it is horizontally uniform and accelerates by about 7 % from bottom to top.
These observations are consistent with the overall mean flow structure identified by Nagata
(1975) and shown in figure 6(a).

4.3.6. Two-dimensional two-component truncations and estimates of three-dimensional
three-component statistics

The various terms in the equations of the previous sections require three-component
velocity fields in three-dimensional space to be calculated. However, our measurements
are performed with 2D2C PIV. We can therefore only calculate 2D2C truncations of
three-dimensional three-component (3D3C) statistics and in a few cases (§§ 5 and 6) we
estimate 2D2C surrogates of 3D3C terms.
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Figure 6. (a) Schematic of mean flow in a mixer with baffles (Nagata 1975). (b) Mean flow measurement
within the measurement plane shown as a green square in (a).

5. Two-point turbulence production rates

We start our data analysis with an assessment of two-point turbulence production
rates. We define our coordinate system such that components i = 1, i = 2 and i =
3 correspond to the x, y and z directions, respectively, and therefore (r1, r2, r3) =
(rx, ry, rz) and (X1, X2, X3) = (Xx, Xy, Xz). The sums defining Pr = −δu′

jδu′
i(∂δui/∂rj),

Ps
Xr = −u′

Xjδu′
i(∂δui/∂Xj), PX = −u′

Xju
′
Xi(∂uXi/∂Xj) and Pl

Xr = −δu′
ju

′
Xi(∂δui/∂Xj) are

sums of nine terms of which our 2D2C PIV has access to four. Our data therefore allow
only truncations to be calculated directly and we start with the truncation of Pr:

P̃r = −δu′
xδu′

x
∂δux

∂rx
− δu′

xδu′
z
∂δuz

∂rx
− δu′

zδu′
x
∂δux

∂rz
− δu′

zδu′
z
∂δuz

∂rz
(5.1)

with

δu′
yδu′

y
∂δuy

∂ry
+ δu′

xδu′
y
∂δuy

∂rx
+ δu′

xδu′
y
∂δux

∂ry
+ δu′

zδu′
y
∂δuy

∂rz
+ δu′

zδu′
y
∂δuz

∂ry
(5.2)

being the difference between P̃r and Pr. We know from our measurements and from
Nagata (1975) that the mean flow is vertical in our field of view which is small and very
close to the centreline of the tank. Hence, we can readily neglect all the terms making
the difference between P̃r and Pr except δu′

zδu′
y(∂δuz/∂ry). Making the assumption that

δu′
zδu′

y(∂δuz/∂ry) ≈ δu′
zδu′

x(∂δuz/∂rx) we form the following surrogate estimate of Pr:

˜̃Pr = −δu′
xδu′

x
∂δux

∂rx
− 2δu′

xδu′
z
∂δuz

∂rx
− δu′

zδu′
x
∂δux

∂rz
− δu′

zδu′
z
∂δuz

∂rz
. (5.3)

Similarly, we have the following truncations and surrogate estimates for the other three
two-point turbulence production rates:

P̃s
Xr = −u′

Xxδu′
x
∂δux

∂Xx
− u′

Xxδu′
z
∂δuz

∂Xx
− u′

Xzδu′
x
∂δux

∂Xz
− u′

Xzδu′
z
∂δuz

∂Xz
(5.4)
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and

˜̃Ps
Xr = −u′

Xxδu′
x
∂δux

∂Xx
− 2u′

Xxδu′
z
∂δuz

∂Xx
− u′

Xzδu′
x
∂δux

∂Xz
− u′

Xzδu′
z
∂δuz

∂Xz
; (5.5)

P̃X = −u′
Xxu′

Xx
∂uXx

∂Xx
− u′

Xxu′
Xz

∂uXz

∂Xx
− u′

Xzu
′
Xx

∂uXx

∂Xz
− u′

Xzu
′
Xz

∂uXz

∂Xz
(5.6)

and

˜̃PX = −u′
Xxu′

Xx
∂uXx

∂Xx
− 2u′

Xxu′
Xz

∂uXz

∂Xx
− u′

Xzu
′
Xx

∂uXx

∂Xz
− u′

Xzu
′
Xz

∂uXz

∂Xz
; (5.7)

P̃l
Xr = −δu′

xu′
Xx

∂δux

∂Xx
− δu′

xu′
Xz

∂δuz

∂Xx
− δu′

zu
′
Xx

∂δux

∂Xz
− δu′

zu
′
Xz

∂δuz

∂Xz
(5.8)

and ˜̃
Pl

Xr = −δu′
xu′

Xx
∂δux

∂Xx
− 2δu′

xu′
Xz

∂δuz

∂Xx
− δu′

zu
′
Xx

∂δux

∂Xz
− δu′

zu
′
Xz

∂δuz

∂Xz
. (5.9)

The results are presented in § 2 of the supplementary material and our data support
the hypothesis already expressed at the end of the fourth paragraph of § 3 that, for the
turbulent flows considered here and for scales small enough compared to the large scales
of the flow, two-point production Ps

Xr may be neglected in the small-scale energy equation
(2.4). However, Pr, while smaller than all other terms, may not be convincingly negligible
in that equation. In the intermediate layer of fully developed turbulent channel flow, Pr
was also found by Apostolidis et al. (2023) not to be negligible at scales comparable to
and larger than the Taylor length, but the ratio of Pr to turbulence dissipation rate was
significantly higher than in the present flow. The supplementary material also includes
results for PX and Pl

Xr in its § 2, suggesting that Pl
Xr may but PX may not be negligible in

the large-scale energy equation (2.8).

6. Small-scale linear transport terms

In the theory used in the present paper, we neglect two-point production in the small-scale
energy equation (2.4) but not in the large-scale energy equation (2.8). We return to this
approximation at the start of § 8.4. We now focus on (2.4) and ask whether we can justify
simplifying it further by neglecting the linear transport rate (uX · ∇X + δū · ∇r)

1
2 |δu′|2.

The results are presented in § 2 of the supplementary material where we find grounds to
neglect some but not all of the terms in (uX · ∇X + δū · ∇r)

1
2 |δu′|2 from the small-scale

energy equation (2.4) at small enough scales. Note, however, that the conclusions of
the following two sections can be obtained (see Chen & Vassilicos 2022) both with
and without this term in (2.4) (with the only potential exception of the last sentence of
§ 8.4 which may need to be qualified). For ease of presentation we therefore consider the
following simplified form of this equation for the turbulent flow region studied here:

∇X · (uX ′|δu′|2) + ∇r · (δu′|δu′|2) + 2∇X · (δu′δp′)

≈ ν

2
(∇X

2 + ∇r
2)|δu′|2 − 1

2

(
ε′+ + ε′−

)
, (6.1)

where ε′+ and ε′− are ε′ at ζ+ and ζ−, respectively.
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It is worth pointing out that a careful look at the results in § 2 of the supplementary
material suggests that the approximation (6.1) does not necessarily hold for large enough
values of rx and/or rz. Apostolidis et al. (2023) found, in a very different non-homogeneous
turbulent flow (namely the intermediate region of fully developed turbulent channel flow),
that (6.1) is not a representative approximation at scales comparable with and larger than
λ whereas we do assume it to be a good approximation at such scales (if they are not too
large) in the flow region of the non-homogeneous turbulent flows considered here.

7. Second-order structure functions

We now adopt the approach of Chen & Vassilicos (2022) which is based on inner and
outer similarity. In effect, we assume that regions of space exist in the flow where the
nonlinear and non-local dynamics of the small-scale turbulence are similar at different
places within the region. We therefore start with a hypothesis of inner and outer similarity
for the second-order structure function |δu′|2, namely

|δu′|2 = V2
O2(X )fO2

(
r
lO

)
(7.1)

for |r| � lI and

|δu′|2 = V2
I2(X )fI2

(
r
lI

)
(7.2)

for |r| 	 lO, where the inner length scale lI depends on viscosity and is much smaller than
the outer length scale lO which does not depend on viscosity, i.e. lI = lI(X ) 	 lO = lO(X )

for large enough Reynolds number. The outer length scale can be thought of as an integral
length of the order of the blade size R = D/2 and is assumed to be smaller than the extent
of the similarity region where (7.1) and (7.2) hold. Statistical homogeneity is a special case
of our inner and outer similarity hypotheses where VO2, VI2, lO and lI are independent of
X . In the following section we apply the approach of Chen & Vassilicos (2022) to the
small-scale energy balance (6.1).

It is natural to expect the outer characteristic velocity VO2 to be independent of viscosity
but the inner characteristic velocity VI2 to depend on it. The ratios VI2/VO2 and lI/lO
must therefore be functions of a local Reynolds number ReO = VO2lO/ν and we write
VI2/VO2 = g2(ReO, X ), lI/lO = gl(ReO, X ), these two functions having to tend to zero as
ReO tends to infinity. This is the only assumption we make about these two ratios VI2/VO2
and lI/lO. In § 8.2 we obtain their ReO dependence from the small-scale turbulent energy
budget, i.e. from the Navier–Stokes equation.

The inner and outer similarity forms overlap in the range lI 	 |r| 	 lO, hence

fO2

(
r
lO

)
= g2

2(ReO, X )fI2

(
r
lO

g−1
l

)
(7.3)

in this intermediate range. Given that the left-hand side of this equation does not depend
on ReO, the derivative with respect to ReO of the right-hand side cancels and we obtain

gl
dg2

2
dReO

fI2(ρ) = g2
2

dgl

dReO
ρj

∂

∂ρj
fI2(ρ), (7.4)

where there is an implicit sum over j = 1, 2, 3 and ρ = (ρ1, ρ2, ρ3) = r/lI . It follows that
ρj(∂/∂ρj)fI2(ρ) is proportional to fI2(ρ). To solve for fI2 we adopt spherical coordinates
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(ρ, θ, φ) for ρ, where θ varies from 0 to π and vanishes if ρ is aligned with the y axis
and where φ varies from 0 to 2π and is equal to 0 or π/2 if ρ is aligned with the x or
the z axis, respectively. The proportionality between ρj(∂/∂ρj)fI2(ρ) and fI2(ρ) becomes
nfI2(ρ, θ, φ) = ρ(∂/∂ρ)fI2(ρ, θ, φ) in terms of a dimensionless proportionality constant
n and the solution to this equation is

fI2 = ρnF(θ, φ), (7.5)

where F is an unknown function of angles θ and φ. Note that (7.5) holds in the intermediate
range lI 	 |r| 	 lO. Returning to (7.3), we get

g2
2(ReO, X )g−n

l (ReO, X ) = A1, (7.6)

where the dimensionless coefficient A1 is independent of ReO and X .
At this stage we follow Chen & Vassilicos (2022) and use their hypothesis of

inner–outer equivalence for dissipation according to which there is an inner and an
outer way to estimate the turbulence dissipation rate: ε′ ∼ V3

O2/lO ∼ V3
I2/lI , where the

proportionality coefficients are independent of ReO but can depend on X . We actually
derive this hypothesis in § 8.3 and our derivation shows clearly that it has nothing to do
with Kolmogorov’s scale-by-scale equilibrium. At this stage, it provides the additional
constraint g3

2(ReO)g−1
l (ReO) = A2, where the coefficient A2 is independent of ReO.

Combined with this additional constraint, (7.6) yields n = 2/3 (and A3 = A3/2, which
means that A2 is also independent of X ) and therefore

|δu′|2 = C(ε′r)2/3F(θ, φ) (7.7)

in the intermediate range lI 	 r = |r| 	 lO. Note that, reflecting the dimensionless
coefficients in ε′ ∼ V3

O2/lO ∼ V3
I2/lI , the dimensional coefficient C can vary in space but

is independent of Reynolds number. The dependence of these dimensional coefficients,
and C in particular, on spatial position is an obvious difference from Kolmogorov’s
prediction for the second-order structure function which is limited to locally homogeneous
turbulence. This difference highlights the underlying difference in the way that our
result (7.7) was obtained compared with Kolmogorov’s derivation of his corresponding
prediction which resembles (7.7) in the scaling (ε′r)2/3 but is otherwise different (see
Frisch (1995), Pope (2000) and § 2 of Chen & Vassilicos (2022)).

We can refine our hypothesis of similarity by replacing it with a hypothesis of isotropic
similarity which is a hypothesis of similarity for each component of δu′, namely

(δu′
j)

2 = V2
O2(X )fO2,j

(
r
lO

)
(7.8)

for |r| � lI and

(δu′
j)

2 = V2
I2(X )fI2,j

(
r
lI

)
(7.9)

for |r| 	 lO for every j = 1, 2, 3. This is not an assumption of isotropy because neither the
functions fO2,j nor the functions fI2,j are necessarily the same for different j = 1, 2, 3. The
argument leading to (7.7) can be repeated for every j = 1, 2, 3 yielding

(δu′
j)

2 = Cj(ε′r)2/3Fj(θ, φ) (7.10)

in the intermediate range lI 	 r = |r| 	 lO. The dimensionless coefficient Cj may vary
with j and with X and the dimensionless function Fj, which is independent of X and
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of r ≡ |r|, may also vary with j. The determination of the inner length scale lI requires
the small-scale energy balance (6.1). This is done in § 8. We complete the present
section by confronting prediction (7.10) with our PIV data. This prediction is similar to
Kolmogorov’s prediction for second-order structure functions but it was derived without
the homogeneity assumption required by Kolmogorov’s theory and without Kolmogorov’s
scale-by-scale equilibrium which forms the physical basis of Kolmogorov’s dimensional
analysis.

7.1. Second-order structure function measurements

We compute the normalised structure functions 〈(δu′
j)

2/ε′2/3〉 for j = 1 (velocity
fluctuations along the x axis) and j = 3 (velocity fluctuations along the z axis) by averaging
over time, i.e. over our 150 000 samples (which correspond to 50 000 uncorrelated
samples), and also averaging over X , i.e. over the planar space of our field of view. The
additional averaging over space is necessary for convergence of our statistics (see in § 4 in
the supplementary material). The normalised structure functions (δu′

j)
2/ε′2/3

are therefore
calculated by averaging over available points in the field of view in 150 000 velocity field
samples in this field of view. For two-point statistics, there are between 1.2 × 107 and
1.9 × 109 points available for convergence, depending on two-point separation vector,
using both space and time averaging as explained in § 4.3.2.

Given that (7.10) implies 〈(δu′
j)

2/ε′2/3〉 = 〈Cj〉r2/3Fj(θ, φ), we plot in figure 7 the

compensated structure functions 〈(δu′
x)

2/ε′2/3〉r−2/3 ( j = 1) versus rx/D (figure 7a) and

versus rz/D (figure 7b) and 〈(δu′
z)

2/ε′2/3〉r−2/3 ( j = 3) versus rx/D (figure 7c) and versus
rz/D (figure 7d). This is the intermediate-range data collapse suggested by (7.10) for all
four configurations considered here. The dependence on rx represents the dependence on
r for θ = π/2 and φ = 0 whereas the dependence on rz represents the dependence on
r for θ = π/2 and φ = π/2. The average turbulence dissipation rate 〈ε′〉 varying by a
factor larger than 4 across our four different configurations (see table 3), figure 7 suggests
that the collapse of the compensated structure functions in figure 7 is satisfactory. The
exponent of the power-law dependence of these structure functions on rx and rz (in an
expected intermediate range of scales much smaller than R = D/2) appears close to but
not exactly 2/3 and seems to vary a little around 2/3 from plot to plot in figure 7. The
theory presented above and yielding (7.7) and (7.10) may be a leading-order theory with
different higher-order corrections for different j components. Such corrections are beyond
the scope of the present paper, but noting from the plots in figure 7 that there may be
opposite corrections to the 2/3 scaling, we now consider the rx and rz dependencies of the
normalised structure function 〈(δu′2

x + δu′2
z )/ε′2/3〉. Equation (7.10) implies

〈(δu′2
x + δu′2

z )/ε′2/3〉 = r2/3[〈C1〉F1(θ, φ) + 〈C3〉F3(θ, φ)]. (7.11)

This compensated normalised structure function is presented in figure 8 as a function
of rx/D (i.e. r/D for θ = π/2 and φ = 0) in one plot and of rz/D (i.e. r/D for θ = π/2
and φ = π/2) in the other. Once again, the resulting collapse of the structure functions for
the four different configurations is acceptable given the wide variation of 〈ε′〉 from one
configuration to the other. To look at the power-law scaling more finely, we estimate the

logarithmic slopes of S ≡ 〈(δu′2
x + δu′2

z )/ε′2/3〉 versus both rx and rz, i.e. d log S/d log rx
and d log S/d log rz, which we plot versus rx and rz, respectively, in figures 9(a) and 9(b).
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′2/ε′ 2/3〉rx
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′2/ε′ 2/3〉rz
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〈δux
′2/ε′ 2/3〉rx
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′2/ε′ 2/3〉rz
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Rect. blades with baffles F = 1 Hz
Rect. blades with baffles F = 1.5 Hz
Fract. blades with baffles F = 1 Hz
Fract. blades with baffles F = 1.5 Hz

Figure 7. Compensated structure functions. (a) Compensated δu′2
x in rx direction. (b) Compensated δu′2

x in rz

direction. (c) Compensated δu′2
z in rx direction. (d) Compensated δu′2

z in rz direction.

A well-defined plateau appears in both directions for rx, rz 	 R = D/2 which confirms
the power-law behaviour of S. The value of the plateau is the power-law exponent and
it is slightly different in the two directions: it lies between 2/3 ≈ 0.66 and 0.7 in the rx
direction, which is very close to the theory’s prediction, but between 0.5 and 0.6 in the rz
direction, which is further away from it.

We must leave it for future study to determine whether the deviation from n = 2/3
that we observe in the vertical rz direction is a finite-Reynolds-number effect or whether
it results from deviations from outer and/or inner isotropic similarity of second-order
structure functions. The good agreement with n = 2/3 in the rx direction is nevertheless
encouraging and so, in the following section, we use n = 2/3 in conjunction with an
analysis of the small-scale energy budget to predict the relations between lI and lO
and between VI2 and VO2. Perhaps more importantly, though, this analysis also leads to
predictions concerning nonlinear interscale and interspace turbulent energy transfer rates
which do not critically depend on the value of the exponent n and which we also subject
to experimental checks.
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Figure 8. Compensated structure function (δu′2
x + δu′2

z ). (a) The rx direction. (b) The rz direction.

(a) (b)

0

rz/Drx/D
0.02 0.04 0.06 0.08 0.10 0.120.010 0.02 0.03 0.04 0.05 0.06

0.5

1.0
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0.5

1.0

1.5
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Rect. blades with baffles F = 1 Hz
Rect. blades with baffles F = 1.5 Hz
Fract. blades with baffles F = 1 Hz
Fract. blades with baffles F = 1.5 Hz

r2/3

d log S
d log rx

d log S
d log rz

Figure 9. Logarithmic slope of S ≡ 〈(δu′2
x + δu′2

z )/ε′2/3〉. (a) The rx direction. (b) The rz direction.

8. Small-scale turbulent energy budgets

Following Chen & Vassilicos (2022) who assume that regions exist in the flow where the
nonlinear and non-local dynamics of the small scale turbulence are similar at different
places within the region, we now introduce, for such a region, inner and outer similarity
form for every term on the left-hand side of (6.1).
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Outer similarity for |r| � lI :

∇X · (uX ′|δu′|2) = V3
OX(X )

lO
fOX

(
r
lO

)
, (8.1)

∇r · (δu′|δu′|2) = V3
O3(X )

lO
fO3

(
r
lO

)
, (8.2)

2∇X · (δu′δp′) =
V3

Op(X )

lO
fOp

(
r
lO

)
. (8.3)

Inner similarity for |r| 	 lO:

∇X · (uX ′|δu′|2) = V3
IX(X )

lI
fIX

(
r
lI

)
, (8.4)

∇r · (δu′|δu′|2) = V3
I3(X )

lI
fI3

(
r
lI

)
, (8.5)

2∇X · (δu′δp′) =
V3

Ip(X )

lI
fIp

(
r
lI

)
. (8.6)

The characteristic velocities VOX , VO3, VOp, VIX , VI3, VIp depend explicitly on X but are
independent of r and fOX , fO3, fOp, fIX , fI3, fIp are dimensionless functions which do not
depend explicitly on X within the similarity region. Statistical homogeneity is the special
case where fOX = fOp = fIX = fIp = 0 and the characteristic velocities are independent
of X .

As in the previous section, we expect the outer characteristic velocities to be independent
of viscosity but the inner characteristic velocities to depend on it. The ratios of outer to
inner characteristic velocities are therefore functions of local Reynolds number ReO, i.e.
VIX/VOX = gX(ReO, X ), VI3/VO3 = g3(ReO, X ), VIp/VOp = gp(ReO, X ), these functions
approaching zero as ReO tends to infinity.

Following the approach we took in § 7, we can replace the hypothesis of similarity by a
hypothesis of isotropic similarity for terms on the left-hand side of (6.1). For the two terms
not involving pressure fluctuations, this refined hypothesis states that

∂

∂ri
u′

Xi(δu′
j)

2 and
∂

∂ri
δu′

i(δu′
j)

2 (8.7a,b)

(without summation over i and without summation over j) have an inner and an outer
similarity form for every i, j = 1, 2, 3. Only i, j = 1, 3 are accessible to our 2D2C PIV
measurements and we therefore decompose the interscale transfer rate in two subterms,
both of which have an inner and an outer similarity form:

∂

∂rx
[δu′

x(δu′2
x + δu′2

z )] + ∂

∂rz
[δu′

z(δu′2
x + δu′2

z )] ≡ ˜∇r · (δu′|δu′|2) (8.8)

which is accessible to our 2D2C PIV and

∂

∂rx
[δu′

x(δu′2
y )] + ∂

∂rz
[δu′

z(δu′2
y )] + ∂

∂ry
[δu′

y(δu′2
x + δu′2

y + δu′2
z )] (8.9)
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which is not. For example,

˜∇r · (δu′|δu′|2) = V3
O3(X )

lO
FO3

(
r
lO

)
(8.10)

for |r| � lI and

˜∇r · (δu′|δu′|2) = V3
I3(X )

lI
FI3

(
r
lI

)
(8.11)

for |r| 	 lO. The function FO3 is not the same as the function fO3 and the function FI3 is
not the same as the function fI3.

We do the same for the interspace transfer rate ∇X · (uX ′|δu′|2) which we also
decompose in two subterms, both of which have an inner and an outer similarity form.
For the subterm which is accessible to our 2D2C PIV, for example

∂

∂Xx
[u′

Xx(δu′2
x + δu′2

z )] + ∂

∂Xz
[u′

Xz(δu′2
x + δu′2

z )] ≡ ˜∇X · (uX ′|δu′|2), (8.12)

we therefore write
˜∇X · (uX ′|δu′|2) = V3

OX(X )

lO
FOX

(
r
lO

)
(8.13)

for |r| � lI and

˜∇X · (uX ′|δu′|2) = V3
IX(X )

lI
FIX

(
r
lI

)
(8.14)

for |r| 	 lO. Again, the function FOX is not the same as the function fOX and the function
FIX is not the same as the function fIX .

8.1. Outer balance
Using the outer similarity forms (8.1), (8.2) and (8.3), Chen & Vassilicos (2022) have
shown that the outer form of the small-scale energy balance (6.1) for |r| � lI tends to

V3
OX

V3
O2

fOX(r/lO) + V3
O3

V3
O2

fO3(r/lO) +
V3

Op

V3
O2

fOp(r/lO) = −Cε (8.15)

as ReO → ∞, where the dissipation coefficient Cε is defined on the basis of the turbulence
dissipation scaling ε′ ∼ V3

O2/lO. This scaling follows from the hypothesis (often referred
to as zeroth law of turbulence) that the turbulence dissipation rate is independent of the
fluid’s viscosity at large enough Reynolds number, hence ε′ = CεV3

O2/lO, where Cε is
independent of Reynolds number but can depend on X and boundary/forcing conditions.
It follows from (8.15) that

VOX ∼ VO3 ∼ VOp ∼ C1/3
ε VO2 (8.16)

which means that all three velocities VOX , VO3 and VOp are the same function of X as
C1/3

ε VO2. The independence of Cε on r which is required to go from (8.15) to (8.16) is valid
without any restriction on spatial gradients of turbulent dissipation: the only requirement is
that the second-order spatial derivative of turbulent dissipation should be small compared
with ε′/l2O.

984 A35-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.220


P. Beaumard, P. Bragança, C. Cuvier, K. Steiros and J.C. Vassilicos

8.2. Inner balance
Using the inner similarity forms (8.4), (8.5) and (8.6), Chen & Vassilicos (2022) have
shown that the inner form of the small-scale energy balance (6.1) for |r| 	 lO tends to

g3
Xg−1

l fIX(r/lI) + g3
3g−1

l fI3(r/lI) + g3
pg−1

l fIp(r/lI) = −1 + C−1
ε Re−1

O g2
2g−2

l ∇2
r/lI fI2(r/lI)

(8.17)

as ReO → ∞, where ∇2
r/lI is the Laplacian with respect to r/lI and where Re−1

O g2
2g−2

l
is independent of Reynolds number. They obtained this result without considering the
possibility of explicit dependencies of the functions gX , g3, gp, gl on X but it can be
checked that their result remains intact if such dependencies are taken into account.
Writing

g2
2(ReO, X )g−2

l (ReO, X ) = A3(X )ReO (8.18)

in terms of a dimensionless coefficient A3 which can depend on X (but not on r and
viscosity), we note that (8.17) is viable only if g3

Xg−1
l , g3

3g−1
l , g3

pg−1
l and A3/Cε are all

independent of X . Incidentally, the explicit X dependence of the functions g2 and gl
and the constraint A3/Cε = const. independent of X cancel the need for the theoretical
readjustments in the Appendix of Chen & Vassilicos (2022).

With (7.6) and the exponent n = 2/3 obtained theoretically in § 7, (8.18) implies gl ∼
Re−3/4

O , therefore

lI ∼ lORe−3/4
O , (8.19)

where the coefficient of proportionality can, in principle, be a function of X . Using (8.18)
once again leads to

VI2 ∼ VO2Re−1/4
O , (8.20)

where the coefficient of proportionality is also, in principle, a function of X . One notes
the resemblance of lI and VI2 with the Kolmogorov length and velocity scales. In fact,
they depend on viscosity in exactly the same way that the corresponding Kolmogorov
scales depend on viscosity (see Chen & Vassilicos (2022) for more on this comparison).
However, these forms of lI and VI2 have been obtained from n = 2/3 and the inner form
of the small-scale energy budget (i.e. effectively from our similarity assumptions and
the Navier–Stokes equation) in an explicitely non-homogeneous context with hypotheses
which, unlike those of Kolmogorov (see Frisch (1995), Pope (2000) and § 2 of Chen &
Vassilicos (2022)), are adapted to non-homogeneous non-equilibrium turbulence. Note, in
passing, that the sole purpose for which the value 2/3 of the exponent n is used in this
paper is to derive (8.19) and (8.20), nothing else, and that (8.19) and (8.20) are not used to
derive anything in the paper either.

8.3. Intermediate scalings

The turbulence dissipation scaling ε′ = CεV3
O2/lO and (8.16) imply

ε′ ∼ V3
O3/lO ∼ V3

OX/lO ∼ V3
Op/lO, (8.21)

where the proportionality coefficients are independent of X (and of course also
independent of ReO). One expects the nonlinear terms to be part of the small-scale energy
balance (8.17) which means that g3

Xg−1
l , g3

3g−1
l and g3

pg−1
l should be independent of ReO
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in the limit ReO → ∞ and so we write, in this limit, g3
Xg−1

l = BX , g3
3g−1

l = B3 and
g3

pg−1
l = Bp, where the dimensionless constants BX , B3, Bp are independent of X , r and

ReO. With (8.21), the implication is

ε′ ∼ V3
I3/lI ∼ V3

IX/lI ∼ V3
Ip/lI, (8.22)

where, once again, the proportionality coefficients are independent of X and ReO. The
inner–outer equivalence hypothesis (8.22) of Chen & Vassilicos (2022) for turbulence
dissipation is derived here from a more intuitively natural hypothesis. Hence, in
the intermediate range lI 	 |r| 	 lO where (8.1) matches (8.4), (8.2) matches (8.5)
and (8.3) matches (8.6), we get fOX(r/lO) = BXfIX(r/lI), fO3(r/lO) = B3fI3(r/lI) and
fOp(r/lO) = BpfIp(r/lI). These functions are therefore asymptotic constants in the
intermediate range lI 	 |r| 	 lO as ReO → ∞, and, therefore,

∇X · (uX ′|δu′|2) ∼ ε′, (8.23)

∇r · (δu′|δu′|2) ∼ ε′ (8.24)

and
2∇X · (δu′δp′) ∼ ε′ (8.25)

in that range.
The dimensionless coefficients of proportionality in (8.23), (8.24) and (8.25) are

independent of r, independent of Reynolds number and independent of X in the similarity
region of the flow considered. They add up to −1 asymptotically as ReO → ∞. These
equations reflect a situation where the cascade is not impermeable in the sense that
turbulence energy is lost/transferred to neighbouring physical space at any scale where
it is also cascaded. Equally, these equations reflect a situation where turbulence energy
is being cascaded and thereby dissipated while it spreads in physical space, thereby
preventing spatial homogenisation (as shown by Alexakis 2023) at all scales where
this happens. In fact recent investigations reveal that interscale and interspace transfer
rates are coupled and/or correlated in various cases of non-homogeneity: see figure 2 in
Zhou & Vassilicos (2020) and their related discussion concerning energy transfers at the
turbulent–non-turbulent interface; see figure 15 in Larssen & Vassilicos (2023) and their
related discussion concerning local fluctuating inhomogeneities in periodic turbulence.
(The paper by Larssen & Vassilicos (2023) and the papers by Alves Portela et al. (2017) and
Alves Portela, Papadakis & Vassilicos (2020) also report intimate links between interscale
transfer and pressure–velocity correlations.)

The same procedure applied to (8.10) and (8.11) on the one hand and to (8.13) and (8.14)
on the other yields

˜∇X · (uX ′|δu′|2) ∼ ε′ (8.26)

and
˜∇r · (δu′|δu′|2) ∼ ε′ (8.27)

in the intermediate range lI 	 |r| 	 lO as ReO → ∞. The dimensionless coefficients of
proportionality in these two relations are also independent of r, Reynolds number and X .

Note that our analysis does not reveal the signs of the various constants of
proportionality in the five proportionality relations above. These signs are important, in
particular for the interscale transfer rate as its sign can discriminate between transfer
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Figure 10. Truncation estimates of the measured energy terms in (2.4) normalised by the dissipation 〈ε′〉 for

one configuration (fractal blades at 1 Hz). Blue: ˜〈∇r · (δu′|δu′|2)〉; red: ˜〈∇X · (uX ′|δu′|2)〉; green: 2P̃r + 2P̃s
Xr;

yellow: ˜〈δū · ∇r |δu′|2〉; purple: ˜〈uX · ∇X |δu′|2〉. (a) The rx direction. (b) The rz direction.

from small to large scales (forward cascade) or from large to small scales (inverse
cascade). The last two proportionalities are the ones which are accessible to our 2D2C
PIV measurements. For them, our measurements can establish whether the proportionality
constants are well defined and, if they are, whether they are negative or positive.

Before moving to our energy transfer measurements, we note that the hypothesis of
inner–outer equivalence for turbulence dissipation introduced by Chen & Vassilicos (2022)
and used in § 7 can now be seen to be a consequence of Reynolds-number independence
of turbulence dissipation, outer and inner similarities and the natural assumption VI3 =
CI(X )VI2, where the dimensionless coefficient CI(X ) is independent of ReO and r. Using
ε′ = Cε(X )V3

O2/lO and the first proportionality in (8.22) (which follows from inner and
outer similarities and the Navier–Stokes two-point energy balance), one then obtains the
inner–outer equivalence in the form Cε(X )V3

O2/lO ∼ C3
I (X )V3

I2/lI with a proportionality
coefficient that is independent of X and ReO. (It also follows that Cε(X )/C3

I (X ) is
independent of X .)

8.4. Energy transfer rate measurements
The quantities obtained from our 2D2C PIV and presented in this subsection require
high spatial resolution, in particular for the estimation of the turbulence dissipation rate,
and a high number of samples for convergence of third-order statistics. Averaging over
time is not enough for such convergence (see § 4 of the supplementary material). We
therefore calculate spatial averages of all (already time-averaged) truncated terms in (2.4).
In figure 10 we plot a representative example of these terms for the fractal blade F = 1 Hz
configuration. Even though the two-point turbulence production rate is not negligible, the
theory’s predictions concerning the constancy in rx and rz of the normalised interspace
and interscale energy transfer rates seem to hold. Some of the small-scale linear transport
terms are not negligible either but this has no bearing on the theory which leads to the
same conclusions if taken explicitly into account (see Chen & Vassilicos 2022).
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Figure 11. Interscale transfer rate estimate. (a) The rx direction. (b) The rz direction.

We now look in more detail at the spatial averages of both sides of proportionalities
(8.26) and (8.27) given that they are the consequences of our theory that can be
tested by our 2D2C PIV. In figures 11 and 12 we plot the normalised interscale

transfer rate term ˜∇r · 〈δu′|δu′|2〉/〈ε′〉 and the normalised interspace transfer rate term
˜∇X · 〈uX ′|δu′|2〉/〈ε′〉 (we recall that the angle brackets represent averages over X in the

plane of our field of view). Our theory predicts that an intermediate range of scales exists
where these two normalised terms are about constant, this constant being the same for
different Reynolds numbers. The spread of Taylor-length-based Reynolds numbers across
our four experimental configurations is from 480 to 650, and the average turbulence
dissipation rate varies by a factor of 4 across these configurations. The Taylor length λ
depends on the turbulence dissipation rate and in §§ 1.1 and 1.2 of the supplementary
material we explain how we calculate both of them and how we denoise the PIV data
for this purpose. The value of the average turbulence dissipation rate is probably slightly
underestimated and this uncertainty is not taken into account in the error bars shown in
figures 11 and 12. The spatial resolutions for all four configurations are given in table 1.

The normalised energy transfer terms are plotted versus rx/λ in figures 11(a) and
12(a) and versus rz/λ in figures 11(b) and 12(b). We normalise the components rx and
rz of the vector r by λ because of the important role that λ has been shown to play
in the separation length scale dependence of the interscale transfer rate in decaying
homogeneous turbulence (Obligado & Vassilicos 2019; Meldi & Vassilicos 2021) and
in fully developed turbulent channel flow (Apostolidis et al. 2023). We find (figure 11)
that the interscale transfer rate is negative for all observed scales in both directions rx
and rz and all four configurations. This suggests a nonlinear interscale turbulent energy
transfer that is predominantly from large to small scales, i.e. that the turbulence cascade
is forward on average. The 2D2C PIV measurements also appear to support our theory’s
prediction that a range of scales exists where the interscale transfer rate is proportional to
the turbulence dissipation rate and independent of two-point separation length. Indeed, for

the four configurations, ˜∇r · 〈δu′|δu′|2〉/〈ε′〉 appears to collapse within error bars around
a constant value between 0.35 and 0.45 in the range λ/2 ≤ rx ≤ 2λ and around a constant

984 A35-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.220


P. Beaumard, P. Bragança, C. Cuvier, K. Steiros and J.C. Vassilicos

–0.2

0

0.2

0.4

0.6

0.8

–0.2

0

0.2

0.4

0.6

0.8

rz/λ

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

rx/λ

0 1 2 3 4 5 6 7

Rect. blades with baffles F = 1 Hz
Rect. blades with baffles F = 1.5 Hz
Fract. blades with baffles F = 1 Hz
Fract. blades with baffles F = 1.5 Hz

(a) (b)

〈 +
∂(u′

Xx (δu′
x
2 + δu′

z
2))

∂Xx

∂(u′
Xz (δu′

x
2 + δu′

z
2))

∂Xz
〉/〈ε′〉 〈 +

∂(u′
Xx (δu′

x
2 + δu′

z
2))

∂Xx

∂(u′
Xz (δu′

x
2 + δu′

z
2))

∂Xz
〉/〈ε′〉

Figure 12. Interspace transport rate estimate. (a) The rx direction. (b) The rz direction.

value between 0.4 and 0.5 in the range λ/2 ≤ rz ≤ 5λ. Beyond these values of rx and rz
statistical convergence visibly weakens. The Taylor length takes values between 3.7 and
4.9 mm across our four configurations and the field of view of our PIV is 27 mm × 28 mm,
hence we cannot access values of rx/λ and rz/λ larger than those in the plots of figures 11
and 12 (to avoid symmetry problems, we only used the right half of our field of view in
the x direction).

Whilst the negative sign of the average interscale transfer rate and its proportionality
with the average turbulence dissipation rate over a range of scales are similar to
Kolmogorov’s prediction for the average interscale transfer rate in high-Reynolds-number
statistically homogeneous stationary turbulence (Frisch (1995), Pope (2000) and § 2 of
Chen & Vassilicos (2022)), the constant of proportionality is not −1 as in Kolmogorov
equilibrium but significantly smaller in magnitude. This difference may of course be

accounted for by the difference between ˜∇r · 〈δu′|δu′|2〉/〈ε′〉 and ∇r · (〈δu′|δu′|2〉)/〈ε′〉
and/or the Reynolds number not being large enough in the case that this constant
of proportionality has finite-Reynolds-number corrections. However, the results in
figures 12(a) and 12(b) make it clear that the turbulence studied here is significantly

non-homogeneous at the scales where ˜∇r · 〈δu′|δu′|2〉/〈ε′〉 is about constant. Indeed, these

figures show that the normalised interspace transfer rate term ˜∇X · 〈uX ′|δu′|2〉/〈ε′〉 is
very significantly non-zero and in fact positive over all accessible length scales in both
directions rx and rz for all four configurations. These consistent positive values mean that
there is an average turbulent flux which takes small-scale turbulent kinetic energy out of
the field of view at all accessible length scales.

For all four configurations, ˜∇X · 〈uX ′|δu′|2〉/〈ε′〉 appear to collapse within error bars
around a constant value between about 0.05 and 0.15 in the range λ/2 ≤ rx ≤ 2λ and
around a similar constant value in the range λ/2 ≤ rz ≤ 5λ (see figure 12a,b). We stress
once again that larger two-point separation scales are not accessible to our PIV and
statistical convergence weakens at the larger values of rx and rz that we can access.
Nevertheless, the results in figures 12(a) and 12(b) do not invalidate and may even arguably
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offer some support to our theory’s prediction (8.26) for the interspace turbulence transfer
rate.

To summarise, the parts of the interscale and of the interspace average turbulent transfer
rates that we can access appear to be independent of two-point separation scale and are
proportional to the average turbulence dissipation rate over a more or less overlapping
range of scales. The average turbulence dissipation rate and the Taylor length scale collapse
the two-point separation scale dependence of the accessible parts of the energy transfer
rates for all four configurations tried here.

The average interscale transfer rate is negative, suggesting forward cascade, and the
average interspace transfer rate is positive, suggesting outward turbulent transport of
small-scale turbulence. This outward spatial turbulent flux is overwhelmingly in the x
direction. The non-homogeneity that it represents is present even at the smallest scales
of the turbulence, in particular scales between λ/2 and 5λ. It is therefore not possible
to apply the Kolmogorov equilibrium theory to the small scales of the present turbulent
flows. However, our non-equilibrium theory of non-homogeneous small-scale turbulence
is able to account for some of our observations.

One can also analyse subterms of the parts of the average interscale transfer rate and
interspace transport rate that we measure. These results are presented in Appendix A where
we report that they are constant over the range of scales where their sum is constant.

The magnitude of the accessible average interscale transfer rate is roughly four times
larger than the magnitude of the accessible average interspace transfer rate. Considering
our measurements, our theory (in particular (8.25)) and the small-scale energy balance
(6.1) averaged over the field of view of our PIV, it is highly likely that the pressure–velocity
term in that balance plays a dominant role at scales |r| larger than λ/2.

9. Large-scale turbulent energy budget

We do not apply the previous section’s theoretical approach to the large-scale turbulent
energy budget, (2.8), given that the two-point turbulence production rate PX tends to the
one-point turbulence production rate in the limit r → 0 and given the PIV evidence of
§ 5 suggesting that it is significantly non-zero at the smallest scales and does not collapse
with the average turbulence dissipation rate. Indeed, the results for PX presented in the
supplementary material show that 〈˜̃PX〉/〈ε′〉 differs substantially for the regular and the
fractal-like blades.

Furthermore, the spatio-temporal average of the part of the interspace turbulent
transport rate of large-scale turbulence energy that is accessible to our 2D2C PIV, i.e.

∂

∂Xx
〈[u′

Xx(u
′2
Xx + u′2

Xz)]〉/〈ε′〉 + ∂

∂Xz
〈[u′

Xz(u
′2
Xx + u′2

Xz)]〉 ≡ ˜〈∇X · (uX ′|uX ′|2)〉, (9.1)

does not collapse with the average turbulence dissipation rate 〈ε′〉. This is clear in figure 13

which also shows that the normalised spatio-temporal average ˜〈∇X · (uX ′|uX ′|2)〉/〈ε′〉
may depend linearly on rz for rz ≥ λ/2 and may be constant or linear with rx for rx ≥ λ/2
depending on the type of blade. This is very different behaviour from that of the average
interspace turbulent transport rate of small-scale energy in figure 12.

Another important difference is the non-vanishing value when r → 0 of the average
interspace turbulent transport rate of large-scale energy (see figure 13). Indeed, when r →
0, this term converges to the space–time averaged one-point turbulent energy transport
rate 〈∇ · u′|u′|2〉. This one-point turbulence transport rate reflects the non-homogeneity

984 A35-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.220


P. Beaumard, P. Bragança, C. Cuvier, K. Steiros and J.C. Vassilicos

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

rx/λ rz/λ

0 1 2 3 4 5 6 7

Rect. blades with baffles F = 1 Hz
Rect. blades with baffles F = 1.5 Hz
Fract. blades with baffles F = 1 Hz
Fract. blades with baffles F = 1.5 Hz

(a) (b)

+
∂(u′

Xx (uX
′2
x
 + uX

′2
z))

∂Xx

∂(u′
Xz (uX

′2
x
  + uX

′2
z))

∂Xz
〈 〉/〈ε′〉 +

∂(u′
Xx (uX

′2
x
 + uX

′2
z))

∂Xx

∂(u′
Xz (uX

′2
x
  + uX

′2
z))

∂Xz
〈 〉/〈ε′〉

Figure 13. Interspace transfer estimate of uX
2. (a) The rx direction. (b) The rz direction.

of each particular configuration and there is no reason to expect it to collapse when
normalised by dissipation. There is therefore no reason either to expect such a collapse
for the average two-point interspace turbulent transport rate of large-scale energy at
the smallest two-point separations. Consistently, the measurements suggest that such a
collapse is in fact absent at all two-point separations tested (figure 13).

The indications are, therefore, that the large-scale turbulent energy budget (2.8) is very
different from the small-scale turbulent energy budget and that a theory of the type
developed in the previous section for the small-scale turbulent energy budget cannot be
developed for the large-scale turbulent energy budget. Nevertheless, there is a kinematic
relation between the rate with which large scales gain or lose turbulent energy to the small
scales via nonlinear turbulence interactions and the rate with which small scales gain or
lose turbulent energy via such interactions. This is (3.2). Neglecting mean flow velocity
differences and two-point turbulence production rates Pr and Pl

Xr, as appears to be possible
in our PIV’s field of view for small two-point separation lengths, (3.2) becomes

∇r · (δu′|δu′|2) + ∇r · (δu′|uX ′|2) = 2∇X · (δu′(δu′ · u′
X )), (9.2)

where ∇r · (δu′|uX ′|2) represents the rate with which large scales lose or gain turbulent
energy to or from the small scales and ∇r · (δu′|δu′|2) represents the rate with which
small scales gain or lose turbulent energy by the nonlinear turbulence interactions (see
also the complementary description of these transfer rates under (3.2)). In general, and in
the present flow in particular, the passage of turbulent energy from large to small scales
(or vice versa) is not necessarily ‘impermeable’ as energy can leak out of this cascade
process because of non-homogeneities, in the present case by the spatial gradient term on
the right-hand side of (9.2).

In figure 14 we plot the spatio-temporal average of the part of ∇r · (δu′|uX ′|2) that is
accessible to our 2D2C PIV, namely

∂

∂rx
〈[δu′

x(u
′2
Xx + u′2

Xz)]〉 + ∂

∂rz
〈[δu′

z(u
′2
Xx + u′2

Xz)]〉 ≡ ˜〈∇r · (δu′|uX ′|2)〉. (9.3)
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Figure 14. Interscale transfer estimate of uX
2. (a) The rx direction. (b) The rz direction.

We plot it normalised by 〈ε′〉 versus both rx/λ and rz/λ and we note that it collapses well
for the four different configurations. Furthermore, it appears to have a constant value across
the same ranges λ/2 ≤ rx ≤ 2λ and λ/2 ≤ rz ≤ 5λ where the part of the spatio-temporal
average of ∇r · (δu′|δu′|2) that is accessible to our PIV has an approximately collapsed
constant value (figure 11). This suggests a strong link between these two turbulent energy
transfer rates.

The positive constant value of ˜〈∇r · (δu′|uX ′|2)〉/〈ε′〉 (see figure 14) is slightly lower

than the magnitude of the negative constant value of ˜∇r · 〈δu′|δu′|2〉/〈ε′〉 (see figure 11).
If this experimental observation reflects a similar difference between ∇r · (δu′|uX ′|2) and
∇r · (δu′|δu′|2) then the interpretation will have to be that large scales lose energy to
small scales but that the small scales receive more of the energy lost by the large ones
because some energy is transported from elsewhere in physical space without changing
scale. In the kinematic equation (9.2), this energy leak away from the interscale turbulent
energy transfer process is accounted for by 2∇X · (δu′(δu′ · u′

X )) which can be non-zero
in non-homogeneous turbulence (or, more generally, by all the other terms present in (3.2)
if they cannot be neglected).

The experimental results presented in figure 14 may be reflecting a proportionality

∇r · 〈δu′|uX
′|2〉 ∼ 〈ε′〉 (9.4)

which cannot be confirmed or invalidated with our 2D2C PIV. This proportionality
concerns interscale energy transfer within the large-scale turbulent energy budget and is
additional to the proportionalities (8.23), (8.24), (8.25) obtained in the previous section
on the basis of the small-scale turbulent energy budget. The previous section’s theory
does not give the proportionality coefficients of these relations. In the following section
we present a hypothesis which has the power, if and when valid, to determine some such
proportionality coefficients.
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10. A local small-scale homogeneity hypothesis

We consider statistically stationary non-homogeneous turbulence by comparison with
the case of statistically homogeneous non-stationary turbulence which we addressed in
§ 3 (equations (3.3) to (3.8)). Statistical stationarity is meant in the Lagrangian sense
of following the mean flow, i.e. uX · ∇X

1
2 |δu′|2 = 0 = uX · ∇X

1
2 |u′

X |2. This is indeed
the case in the present flows because the mean flow velocity is vertical (i.e. in the z
direction) and the turbulence varies mainly in the horizontal direction. With this statistical
stationarity and by considering scales |r| large enough to neglect viscous diffusion,
fluctuating energy equations (2.4) and (2.8) become, respectively,

δū · ∇r
1
2
|δu′|2 − Pr − Ps

Xr + ∇X ·
(

uX ′ 1
2
|δu′|2 + δu′δp′

)

≈ −∇r ·
(

δu′ 1
2
|δu′|2

)
− ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

(10.1)

and

δū · ∇r
1
2
|u′

X |2 − PX − Pl
Xr + ∇X ·

(
uX ′ 1

2
|uX ′|2 + uX ′p′

X

)

≈ −∇r · (δu′ 1
2
|uX ′|2) − ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

. (10.2)

We formulate a hypothesis of local homogeneity as a parallel to Kolmogorov’s small-scale
stationarity hypothesis (see § 3). Whereas most terms on the left-hand side of (10.2)
do not tend to 0 as r tends to 0, the left-hand side of (10.1) does tend to 0 in that
limit. The local small-scale homogeneity hypothesis that we make is the hypothesis that
in the limit of increasing Reynolds number, the magnitude of δū · ∇r

1
2 |δu′|2 − Pr −

Ps
Xr + ∇X · (uX ′ 1

2 |δu′|2 + δu′δp′) is increasingly smaller than the local time-averaged
turbulence dissipation rate at small enough scales |r|. With this hypothesis, and with the
approximation

ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

+ ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

≈ ε′ (10.3)

which is acceptable at small enough |r|, the small-scale turbulent energy balance (10.1)
simplifies to

∇r · (δu′|δu′|2) ≈ −ε′ (10.4)

in an intermediate range of scales large enough to neglect viscous diffusion but
small enough to neglect small-scale non-homogeneity. This balance incorporates the
proportionality (8.24) but also sets the proportionality constant to −1. The similarity
hypotheses required to obtain (8.24) are weaker than the local small-scale homogeneity
hypothesis introduced here. A priori, they can be valid even if and when the local
small-scale homogeneity hypothesis is not. When δū, Pr and Ps

Xr are negligible at small
enough |r|, as appears to be the case in the flow regions considered here, the local
small-scale homogeneity hypothesis implies that the magnitude of ∇X · (uX ′ 1

2 |δu′|2 +
δu′δp′) is increasingly small compared with ε′ with increasing Reynolds number for small
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enough values of |r|. It may be that, as the Reynolds number tends to infinity, (8.24) tends
to (10.4) thereby recovering Kolmogorov’s scale-by-scale equilibrium for homogeneous
turbulence at small enough scales and implying that this Kolmogorov equilibrium is a
very particular case of (8.24). However, it is not clear how such a statement could be
established at the current time and in the foreseeable future.

We now use the kinematic relation (9.2), but we could also use its more general form
(3.2) if we did not want to neglect δū, Pr and Pl

Xr from the outset. From (9.2) and (10.4) it
follows that

∇r · δu′|u′
X |2 ≈ ε′ + 2∇X · (δu′(δu′ · u′

X )) (10.5)

which is the analogue for stationary non-homogeneous turbulence of the Germano–
Hosokawa relation (3.7) for homogeneous non-stationary (in fact freely decaying)
turbulence.

Finally, the analogue of (3.8) for stationary non-homogeneous turbulence is obtained
from (10.5) and (10.2) and it is

−PX − Pl
Xr + ∇X ·

(
uX ′ 1

2 |uX ′|2 + uX ′p′
X + δu′(δu′ · u′

X )
)

≈ −ε′. (10.6)

Like (10.4), equations (10.5) and (10.6) hold in an intermediate range of scales
large enough to neglect viscous diffusion and small enough to neglect small-scale
non-homogeneity. Note that (10.6) identifies a statistic characterising non-homogeneity
which is proportional to ε′ with proportionality coefficient −1. This statistic is not
captured by the non-equilibrium theory of non-homogeneous turbulence of § 8. In this
case, the hypothesis of local small-scale homogeneity makes a prediction concerning
turbulence non-homogeneity which is not accessible to the theory of § 8.

11. Conclusion

We have studied a turbulent flow region under rotating blades in a baffled container where
the baffles break the rotation in the flow. The evidence from our 2D2C PIV supports
the view that, within our PIV’s field of view, two-point production makes a relatively
small contribution to the small-scale energy equation (2.4) over a range of small two-point
separation lengths. We assume the nonlinear and non-local dynamics of the small-scale
turbulence to be effectively the same at different places. We have therefore made the
similarity hypothesis that every term in the non-homogeneous but statistically stationary
scale-by-scale (two-point) small-scale energy balance (6.1) has the same dependence on
two-point separation at different positions X if rescaled by X -local velocity and length
scales. Following the theory of Chen & Vassilicos (2022) we have introduced such
similarity hypotheses for both inner and outer scales and have considered intermediate
matchings (see § 8). We have also improved the theory (i) by deriving the inner–outer
equivalence hypothesis of Chen & Vassilicos (2022) for turbulence dissipation from a
more intuitively natural hypothesis (see the last paragraph of § 8.3) and (ii) by taking
explicit account of non-homogeneity in the inner to outer velocity ratios, thereby extending
the theory’s applicability range and removing the need for the theoretical adjustments in
the Appendix of Chen & Vassilicos (2022) (see § 8 and in particular § 8.2).

This non-equilibrium theory of non-homogeneous small-scale turbulence predicts that
an intermediate range of length scales exists where the interscale turbulence transfer rate,
the two-point interspace turbulence transport rate and the two-point pressure gradient
velocity correlation term in (6.1) are all proportional to the turbulence dissipation rate.
Given the limitations of 2D2C PIV, we have been able to measure only parts (truncations)
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of the interscale turbulence transfer rate and the two-point interspace turbulence transport
rate in (6.1). This has forced us to introduce inner and outer hypotheses of isotropic
similarity applicable to the truncations accessible to our measurements. With these
hypotheses (which should not be confused with hypotheses of isotropy) the theory leads
to the same predictions for the 2D2C PIV-truncated interscale turbulence transfer rate
and two-point interspace turbulence transport rate in (6.1). Our 2D2C PIV measurements
suggest that these truncations may indeed be independent of two-point separation scale
and be proportional to the average turbulence dissipation rate over a more or less
overlapping range of scales as predicted by the theory. The PIV-truncated two-point
interspace turbulence transport rate is significantly non-zero, thereby reflecting both the
presence of small-scale non-homogeneity and the absence of Kolmogorov scale-by-scale
equilibrium. Its proportionality with the turbulence dissipation rate is evidence that
small-scale non-homogeneity and non-equilibrium do actually obey general rules.

The PIV-truncated average interscale transfer rate of small-scale turbulent energy is
negative, suggesting forward cascade if the corresponding full (non-truncated) average
interscale transfer rate has the same sign, and the PIV-truncated average interspace
turbulent transfer rate of small-scale turbulence energy is positive, suggesting outward
turbulent transport of small-scale turbulence if the corresponding full (non-truncated)
average interspace turbulent transfer rate is also positive.

We have also applied hypotheses of inner and outer similarity as well as inner and outer
isotropic similarity to second-order structure functions of turbulent fluctuating velocities.
Inner–outer intermediate matching has led to the prediction of power-law dependencies on
turbulence dissipation rate and two-point separation length with power-law exponent n =
2/3. The 2D2C PIV has provided support for this Kolmogorov-like value of the exponent
in the rx direction but not in the rz direction where the PIV suggests an exponent n between
0.5 and 0.6. Future studies should investigate whether rotation, even if effectively faint
within our field of view because of the rotation-breaking effect of the baffles, may require
similarity forms in terms of more than one outer length scale lO and more than one inner
length scale lI , depending on direction. The value of the exponent n impacts only the
Reynolds-number dependencies of lI/lO and VI/VO and has no direct impact on the other
predictions of the theory. The exponent n = 2/3 implies the Kolmogorov-like scalings
(8.19) and (8.20).

The large-scale turbulent energy budget (2.8) is very different from the small-scale
turbulent energy budget (2.4) in terms of both production and interspace turbulence
transport which are both non-zero in the limit of zero two-point separation lengths when
the turbulence is inhomogeneous. We have therefore not applied to (2.8) the similarity
approach that we applied to (2.4). However, we have taken advantage of the kinematic
relation which exists between the rate with which large scales gain or lose turbulent energy
to the small scales via nonlinear turbulence interactions (present in (2.8)) and the rate
with which small scales gain or lose turbulent energy via such interactions (present in
(2.4)). The PIV-truncated part of the rate with which large scales gain or lose turbulent
energy to the small scales has turned out to be approximately independent of two-point
separation scale and proportional to the average turbulence dissipation rate over the same
range of scales where the PIV-truncated interscale transfer rate in (2.4)) exhibits the
same behaviour. However, these two transfer rates do not balance, which suggests that
the transfer of turbulent energy from large to small scales (or vice versa) may not be
‘impermeable’ in the sense that energy may be leaking out of this cascade process because
of non-homogeneities, in the present case by the spatial gradient term on the right-hand
side of (9.2).
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Our non-equilibrium theory of non-homogeneous turbulence does not give the
proportionality coefficients in (8.23), (8.24) and (8.25). We have therefore introduced a
local small-scale homogeneity hypothesis in § 10 as a space analogue of Kolmogorov’s
small-scale stationarity hypothesis but do not have criteria, at this stage, for the validity
of this small-scale homogeneity hypothesis. If and when this new hypothesis may hold
(perhaps in the limit of infinite Reynolds numbers?) the coefficient of proportionality in
(8.24) will be −1.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.220.
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Appendix A. Individual contributions of interspace and interscale energy transfer
rate

In § 8.4, the truncated estimates of the interscale transfer rate

∂

∂rx
〈[δu′

x(δu′2
x + δu′2

z )]〉/〈ε′〉 + ∂

∂rz
〈[δu′

z(δu′2
x + δu′2

z )]〉/〈ε′〉 (A1)

are found to exhibit a significant range of scales where they are approximately constant
with rx and rz and to also collapse acceptably well for the different experimental
configurations. One can also analyse subterms of the part of the average interscale transfer
rate that we measure. In figure 15, we plot

∂

∂rx
〈[δu′

x(δu′2
x + δu′2

z )]〉/〈ε′〉 and
∂

∂rz
〈[δu′

z(δu′2
x + δu′2

z )]〉/〈ε′〉 (A2a,b)

separately and see that they are both constant over the range of scales where their sum is
constant and that they both contribute significantly to that sum but that the latter is also
significantly larger in magnitude than the former.

The same analysis is done for the truncated estimates of the interspace transfer rate
which is also found in § 8.4 to collapse for different experimental configurations and to be
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Figure 15. Interscale transfer rate. (a) Interscale transfer rate ∂/rx contribution in rx direction. (b) Interscale
transfer rate ∂/rz contribution estimate in rx direction. (c) Interscale transfer rate ∂/rx contribution estimate in
rz direction. (d) Interscale transfer rate ∂/rz contribution estimate in rz direction.

approximately constant over a significant range of scales rx and rz. In figure 16, we plot

∂

∂Xx
〈[u′

Xx(δu′2
x + δu′2

z )]〉/〈ε′〉 and
∂

∂Xz
〈[u′

Xz(δu′2
x + δu′2

z )]〉/〈ε′〉 (A3a,b)

separately and we report an acceptable collapse for different experimental configurations
and an approximate constancy in rx and rz over the range of scales where their sum is
constant. We note, however, a decreasing dependence on rx of

∂

∂Xx
〈[u′

Xx(δu′2
x + δu′2

z )]〉/〈ε′〉 (A4)

for the rectangular blade F = 1 Hz configuration. This outlier might be associated with
statistical convergence uncertainty and/or deviations from the theory’s predictions in this
particular configuration which combines lower Reynolds number with slower mixing
because of larger large-scale coherent structures.
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Figure 16. Interspace transport rate. (a) Interspace transport rate ∂/Xx contribution in rx direction.
(b) Interspace transport rate ∂/Xz contribution estimate in rx direction. (c) Interspace transport rate ∂/Xx
contribution estimate in rz direction. (d) Interspace transport rate ∂/Xz contribution estimate in rz direction.
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