RECOGNIZING THE ALTERNATING GROUPS FROM THEIR PROBABILISTIC ZETA FUNCTION

E. DAMIAN and A. LUCCHINI
Dipartimento di Matematica, Università di Brescia, Via Valotti, 25133 Brescia, Italy
e-mail: damian@ing.unibs.it,lucchini@ing.unibs.it

(Received 1 January, 2004; accepted 4 May, 2004)

Abstract

Let G be a finite group; there exists a uniquely determined Dirichlet polynomial $P_{G}(s)$ such that if $t \in \mathbb{N}$, then $P_{G}(t)$ gives the probability of generating G with t randomly chosen elements. We show that if $P_{G}(s)=P_{\operatorname{Alt}(n)}(s)$, then $G / \operatorname{Frat} G \cong$ $\operatorname{Alt}(n)$.

2000 Mathematics Subject Classification. 20P05, 20D06.

1. Introduction. For any finite group G we may define a complex function

$$
P_{G}(s)=\sum_{H \leq G} \frac{\mu_{G}(H)}{|G: H|^{s}}
$$

Here $\mu_{G}(H)$ is the Möbius function defined on the subgroup lattice of G as $\mu_{G}(G)=1$ and $\mu_{G}(H)=-\sum_{H<K} \mu_{G}(K)$ for any $H<G$. (The multiplicative inverse of $P_{G}(s)$ was called the probabilistic zeta function in [2] and [11].) Note that $P_{G}(s)$ may be rewritten as

$$
P_{G}(s)=\sum_{n \in \mathbb{N}} \frac{a_{n}(G)}{n^{s}}, \quad \text { where } \quad a_{n}(G)=\sum_{|G: H|=n} \mu_{G}(H) .
$$

Hence $P_{G}(s)$ belongs to the ring of Dirichlet polynomials

$$
R:=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}\left|a_{n} \in \mathbb{Z},\left|\left\{n: a_{n} \neq 0\right\}\right|<\infty\right\}\right.
$$

In [7] Hall observed that for any $t \in \mathbb{N}, P_{G}(t)$ is the probability that t randomly chosen elements of G generate the group G.

It is quite natural to investigate what may be recovered about the group G from the complex function $P_{G}(s)$. Let us first observe that $P_{G}(s)=P_{G / \text { Frat } G}(s)$ so that the knowledge of the Dirichlet polynomial $P_{G}(s)$ may give information only about the structure of the factor group $G /$ Frat G. In particular, given two finite groups G_{1} and G_{2} such that $P_{G_{1}}(s)=P_{G_{2}}(s)$, we are interested in comparing $G_{1} /$ Frat G_{1} and $G_{2} /$ Frat G_{2}. As was already noted by Gaschütz [6], we cannot infer that $G_{1} /$ Frat $G_{1} \simeq G_{2} /$ Frat G_{2}. However in the known counterexamples it turns out that G_{1} and G_{2} have the same non Frattini chief factors. Thus it seems that a promising conjecture could be the following: let G_{1} be a finite simple group and G_{2} a finite group such that $P_{G_{1}}(s)=P_{G_{2}}(s)$; then $G_{2} / \operatorname{Frat} G_{2} \simeq G_{1}$. In this paper we prove this conjecture when $G_{1}=\operatorname{Alt}(n)$. The case of alternating groups of prime degree was considered in [4]; moreover it has been proved
that the polynomial $P_{\operatorname{Alt}(n)}(s)$ is irreducible when n is a prime number. It is still an open question whether this result holds for any n.
2. The main theorem. The ring R of Dirichlet polynomials is a factorial domain and an important role in the factorization of $P_{G}(s)$ in R is played by the normal subgroups of G. We recall a result in this direction that has been employed already in [4].

Lemma 1. Let G be a finite group and N a normal subgroup of G. Then $P_{G / N}(s)$ divides $P_{G}(s)$. Moreover, $P_{G / N}(s)=P_{G}(s)$ if and only if $N \leq$ Frat G.

In order to prove our main theorem we need to state as a lemma a result obtained by Berkovich in [1, Theorem 1].

Lemma 2. Let Y be a permutation group of degree n. Assume that n is the minimal index of a proper subgroup of Y. Then Y is a simple group.

Theorem 3. Let G be a finite group. Assume that $P_{G}(s)=P_{\operatorname{Alt}(n)}(s)$ for some $n \geq 5$. Then $G / \operatorname{Frat} G \simeq \operatorname{Alt}(n)$.

Proof. In [4] we showed that if n is a prime number, then $P_{\operatorname{Alt}(n)}(s)$ is irreducible and $G / \operatorname{Frat} G \simeq \operatorname{Alt}(n)$. Hence we shall assume that n is not a prime number. Note that n is the minimal index of a subgroup of $\operatorname{Alt}(n)$. Thus $a_{n}(G)=a_{n}(\operatorname{Alt}(n)) \neq 0$ and if $a_{k}(G)=a_{k}(\operatorname{Alt}(n)) \neq 0$, then $k \geq n$. It follows that n is the minimal index of a subgroup of G; hence if $|G: H|=n$, then H is a maximal subgroup, $\mu_{G}(H)=-1$ and $-a_{n}(G)$ is the number of these subgroups. Set $Y=G / \operatorname{Core}_{G}(H)$, where $H \leq G$ is a subgroup of index n.

Note that Y is a primitive permutation group of degree n that satisfies the hypothesis of Lemma 2; hence Y is a simple group. Moreover Y cannot be an abelian simple group, as in this case n is a prime number.

Thus Y is a nonabelian simple group with the following properties:
(P1) n is the minimal index of a proper subgroup of Y;
(P2) $P_{Y}(s)$ divides $P_{\text {Alt }(n)}(s)$.
The target now is to show that $Y \simeq \operatorname{Alt}(n)$. In fact this implies that $P_{G / \operatorname{Core}_{G}(H)}(s)=$ $P_{\text {Alt }(n)}(s)=P_{G}(s)$. Hence, by Lemma 1, we get $\operatorname{Core}_{G}(H)=\operatorname{Frat} G$ and $G / \operatorname{Frat} G \simeq$ Alt (n).

We start by observing that there are only two simple groups with maximal subgroups of index 6, namely $\operatorname{Alt}(6)$ and $\operatorname{Alt}(5)$; by using (P1) we obtain that for $n=6, Y \simeq \operatorname{Alt}(6)$. Moreover, for $n=8$ we get that $\operatorname{Alt}(8)$ and $\operatorname{PSL}(2,7)$ are the simple groups with maximal subgroups of index 8 ; since $\operatorname{PSL}(2,7)$ has maximal subgroups of index 7, we get that $Y \simeq \operatorname{Alt}(8)$.

Thus we shall consider $n \geq 9$ and n not a prime number.
Let us first note that by using (P 1$)$ we get that $-a_{n}(Y)$ is the number of subgroups of index n in G containing $\operatorname{Core}_{G}(H)$. Hence $0<-a_{n}(Y) \leq-a_{n}(G)$. As a consequence, we get $-n=a_{n}(\operatorname{Alt}(n))=a_{n}(G) \leq a_{n}(Y)<0$. Furthermore, since Y is a nonabelian simple group, any subgroup of (minimal) index n in Y is self-normalizing. Hence n divides $a_{n}(Y)$ and $a_{n}(Y)=a_{n}(G)=-n$. It follows that
(P3) Y has a unique equivalence class of transitive representations of degree n.
The subgroups of small index in $\operatorname{Alt}(n)$ are known. See Theorem 5.2A of [5]. Namely, if $n \geq 9, r<n / 2$ and $1<|\operatorname{Alt}(n): K|<\binom{n}{r}$, then we have three possible cases:
(1) $\operatorname{Alt}(n)_{(\Delta)} \leq K \leq \operatorname{Alt}(n)_{\{\Delta\}}$ with $\Delta \subseteq\{1, \ldots, n\}$ and $|\Delta|<r$;
(2) n is even, $n=2 m$, and $|\operatorname{Alt}(n): K|=\frac{1}{2}\binom{n}{m}$;
(3) $(n, r, K,|\operatorname{Alt}(n): K|)=(9,4, \mathrm{P} \Gamma \mathrm{L}(2,8), 120)$.

Let p be the minimal prime number which divides n. If $1<|\operatorname{Alt}(n): K|<\binom{n}{p}$, then K is contained in a stabilizer of a k-set, with $1 \leq k<p$. Indeed if $n>9$ is even, then $p=2$ and $\binom{n}{2}<\frac{1}{2}\binom{n}{n / 2}$. Hence case (2) does not occur; moreover since $\binom{9}{3}<120$ case (3) does not occur either. Furthermore if K is contained in a stabilizer of a k-set, with $1 \leq k<p$, then n divides $|\operatorname{Alt}(n): K|$ whereas n does not divide $\binom{n}{p}$. Hence the subgroups of index $\binom{n}{p}$ (in particular the stabilizers of p-sets) are maximal subgroups of $\operatorname{Alt}(n)$. Hence we get that $a_{\left({ }_{p}^{n}\right)}(\operatorname{Alt}(n))<0$. Furthermore n divides k whenever $a_{k}(\operatorname{Alt}(n)) \neq 0$ and $1<k<\binom{n}{p}$. As a consequence, since Y is a quotient of G, it follows that if $K<Y$ is a subgroup of index $m>1$ not divisible by n, then there exists $h>1$ dividing m such that $0 \neq a_{h}(G)=a_{h}(\operatorname{Alt}(n))$; hence $m \geq h \geq\binom{ n}{p}$. We have the result (P4).
(P4) If $K<Y$ has index $m>1$ not divisible by n, then $m \geq\binom{ n}{p}, p$ being the minimal prime number dividing n.

We show that Y is a 2 -transitive nonabelian simple group. Assume that this is not the case. Let Γ be the set of p-subsets of $\{1, \ldots, n\}$, where p is the minimal prime number dividing n. Note that the action of Y on Γ is not transitive; that is to say Y is not p-homogeneous. Indeed, by a theorem due to Livingstone and Wagner (1965) and Kantor (1972), (see [5, Theorem 9.4B]), a p-homogeneous nonabelian simple group is 2-transitive. As a consequence, there exists an orbit of Y on Γ, say Ψ, with $1<|\Psi|<\binom{n}{p}$ not divisible by n, but this is in contradiction to (P4).

In order to show that $Y \simeq \operatorname{Alt}(n)$ we shall proceed with a case-by-case analysis of the 2-transitive nonabelian simple groups of degree $n \geq 9$ with a unique equivalence class of representations of degree n, where n is not a prime number. Assume that $Y \nsucceq \operatorname{Alt}(n)$; then Y is in the following list. See [5, Section 7.7] as a reference.

n	Condition	Y	No. of actions
$\frac{q^{d}-1}{q-1}$	$d=2$	$\operatorname{PSL}(d, q)$	2 if $d>2$
$2^{2 d-1}+2^{d-1}$	$(d, q) \neq(2,2),(2,3)$		1 otherwise
$2^{2 d-1}-2^{d-1}$	$d \geq 3$	$\operatorname{Sp}(2 d, 2)$	1
$q^{3}+1$	$q \geq 3$	$\operatorname{Sp}(2 d, 2)$	1
$q^{2}+1$	$q=2^{2 d+1}>2$	$\operatorname{PSU}(3, q)$	1
$q^{3}+1$	$q=3^{2 d+1}>3$	$\operatorname{Sz}(q)$	1
11		$\mathrm{R}(q)$	1
11		$\operatorname{PSL}(2,11)$	2
12		M_{11}	1
12		M_{11}	1
15		M_{12}	2
22		$\operatorname{Alt}(7)$	2
23		M_{22}	1
24		M_{23}	1
176		M_{24}	1
276		HS_{2}	2

Recall that Y is a 2-transitive non abelian simple group of degree n, where $n \geq 9$ is not a prime number and it is the minimal degree of a 2 -transitive action of Y. Moreover Y has a unique equivalence class of representations of degree n. As a consequence we may drop from the list the following set of groups: $\{\operatorname{PSL}(2,11)$, M_{11} (both actions), M_{12}, $\left.\operatorname{Alt}(7), \mathrm{M}_{23}, \mathrm{HS}\right\}$. We shall show that the remaining groups in this list, except for \mathbf{M}_{24}, have a subgroup of index m not divisible by n such that $m<\binom{n}{2} \leq\binom{ n}{p}$, where p is the minimal prime number dividing n. Then we may use (P4) in order to exclude the possibility that Y is one of these.

Indeed, $\operatorname{PSL}(2, q)$ has a subgroup of index $m=(n-1)(n-2) / 2$. See Satz 8.4 of [8, p. 192]. $\operatorname{Sz}(q)$ has a subgroup of index $m=\frac{1}{4}(q-r+1)$, where $r^{2}=2 q$. (See [12].) $R(q)$ has a subgroup of index $m=q^{2}\left(q^{2}-q+1\right)$. (See [9].) \mathbf{M}_{22} has a maximal subgroup of index $m=77$ and Co_{3} has a maximal subgroup of index $m=11178$. (See [3].) Moreover, the minimal degree of a 2-transitive representation of $\operatorname{Sp}(2 d, 2)$ is $n=2^{d-1}\left(2^{d}-1\right)$. The other 2-transitive representation of $\operatorname{Sp}(2 d, 2)$ gives a subgroup of index $m=2^{d-1}\left(2^{d}+1\right)$. Finally $\operatorname{PSU}(3, q)=\operatorname{PGU}(3, q) \cap \operatorname{PSL}\left(3, q^{2}\right)$ and so $\operatorname{PSU}(3, q)$ has an action on Ω, the set of points of the projective space $\mathrm{PG}_{2}\left(q^{2}\right)$, of degree $t=q^{4}+q^{2}+1$ and this action is fixed-point-free. Since $n=1+q^{3}$ does not divide t, it follows that Ω has an orbit of size $1<k \leq t$ not divisible by n; hence $m=k$.

In order to prove that $Y \not \not \mathrm{M}_{24}$ we shall show that $P_{\mathrm{M}_{24}}(s)$ does not divide $P_{\mathrm{Alt}(24)}(s)$. Then we may conclude by using (P2). Assume that $P_{\mathrm{M}_{24}}(s)$ divides $P_{\text {Alt(24) }}(s)$. Let us define for any prime number p an endomorphism α_{p} in the ring of Dirichlet polynomials R as follows:

$$
\alpha_{p}\left(\sum_{n} \frac{a_{n}}{n^{s}}\right)=\sum_{n} \frac{b_{n}}{n^{s}}, \text { where } b_{n}= \begin{cases}0 & \text { if } p \text { divides } n, \\ a_{n} & \text { otherwise }\end{cases}
$$

Since α_{p} is an endomorphism, for any prime number p we get that $\alpha_{p}\left(P_{\mathrm{M}_{24}}(s)\right)$ divides $\alpha_{p}\left(P_{\text {Alt(24) }}(s)\right)$; we shall reach a contradiction by showing that this is not the case.

Let us first note that there exist two Dirichlet polynomials $P_{1}(s), P_{2}(s) \in R$ with $\alpha_{19}\left(P_{1}(s)\right)=P_{1}(s)$ and $\alpha_{19}\left(P_{2}(s)\right)=P_{2}(s)$ such that

$$
P_{\mathrm{Alt}(24)}(s)=P_{1}(s)+\frac{1}{19^{s}} P_{2}(s) .
$$

Furthermore, since 19 does not divide the order of M_{24}, then $\alpha_{19}\left(P_{\mathrm{M}_{24}}(s)\right)=P_{\mathrm{M}_{24}}(s)$ and it divides $\alpha_{19}\left(P_{\operatorname{Alt}(24)}(s)\right)=P_{1}(s)$. Moreover $\alpha_{2}\left(P_{\mathrm{M}_{24}}(s)\right)$ divides $\alpha_{2}\left(P_{1}(s)\right)$. Note that contributions to $\alpha_{2}\left(P_{1}(s)\right)$ are given by subgroups of Alt (24) that contain both a Sylow 2-subgroup and a Sylow 19-subgroup. We claim that Alt(24) does not have proper subgroups containing both a Sylow 2 -subgroup and a Sylow 19-subgroup. Indeed let K be such a group. Let $P \leq K$ be a Sylow 2 -subgroup of Alt(24); then it contains $x=x_{1} x_{2} \in \operatorname{Alt}(24)$, where x_{1} and x_{2} are two disjoint cycles of length 8 and 16 respectively. Moreover K contains a cycle of length 19 . Thus K is a primitive subgroup of $\operatorname{Alt}(24)$ and, by Theorem 3.3E in [5] we get that $K=\operatorname{Alt}(24)$. We conclude that $\alpha_{2}\left(P_{1}(s)\right)=1$. Hence $\alpha_{2}\left(P_{\mathrm{M}_{24}}(s)\right)=1$. This contradicts the fact that M_{24} contains a maximal subgroup of odd index.

REFERENCES

1. Yakov Berkovich, The degree and index of a finite group, J. Algebra 214 (1999), 740-761.
2. Nigel Boston, A probabilistic generalization of the Riemann zeta function, in Analytic number theory, Vol. 1 (Allerton Park, IL, 1995) Progr. Math. No. 138 (Birhhauser, 1996), 155-162.
3. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups (Oxford University Press, 1985).
4. Erika Damian, Andrea Lucchini and Fiorenza Morini, Some properties of the probabilistic zeta function of finite simple groups, Pacific J. Math., 251 (2004), 3-14.
5. John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in Mathematics, Vol. 163 (Springer-Verlag, 1996).
6. Wolfgang Gaschütz, Die Eulersche Funktion endlicher auflösbarer Gruppen, Illinois J. Math. 3 (1959), 469-476.
7. Philip Hall, The eulerian functions of a group, Quart. J. Math. Oxford 7 (1936), 134-151.
8. B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134 (Springer-Verlag, 1967).
9. Peter B. Kleidman, The maximal subgroups of the Chevalley groups $G_{2}(q)$ with q odd, the Ree groups ${ }^{2} G_{2}(q)$, and their automorphism groups, J. Algebra 117 (1988), 30-71.
10. Martin W. Liebeck, Cheryl E. Praeger and Jan Saxl, On the O'Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. Ser. A 44 (1988), no. 3, 389-396.
11. Avinoam Mann, Positively finitely generated groups, Forum Math. 8 (1996), no. 4, 429-459.
12. Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105-145.
