SPECTROPHOTOMETRY OF THE OPTICAL EMISSION FROM RCW103⁽¹⁾

Maria Teresa Ruiz Departamento de Astronomia, Universidad de Chile

ABSTRACT

Spectra for five different positions in RCW103 were obtained with the 1.5m and 4m telescopes of CTIO equiped with a SIT Vidicon detector.

From the observed $H\alpha/H\beta$ ratio we found a variation of about 1.5 magnitudes in reddening for different filaments. The minimum value of Av found was 4.4 magnitudes implying a distance of 6.5 kpc.

Temperatures of about 10^5 K and densities of 70 cm⁻³ were found. Nitrogen is overabundant at least by a factor 3.

I INTRODUCTION

The discovery by Tuohy and Garmire (1980) of a compact X-ray source in the center of RCW103 gave special interest to the study of this object. Determination of its distance, age and possible interaction of the compact X-ray source with the gaseous filaments are very important.

Absorption measurements of HI and OH towards RCW103 give a lower limit to the distance of 3.3 kpc (Caswell et al. 1975). A distance of about 8 kpc is found from the Σ -D relation (Caswell et al. 1980). Westerlund (1969) finds a distance of 3.9 kpc assuming that the remnant is part of an OB association having 3 magnitudes of reddening. In 1982 Leibowitz and Danziger using the observed H α /H β ratio for several filaments in RCW103 found a reddening of 4.5 magnitudes implying a distance of 6.6 kpc from the Sun.

II OBSERVATIONS

The spectra obtained with the 4m telescope of CTIO and the 40mm Vidicon tube covered the wavelength region between 5000 Å and

241

J. Danziger and P. Gorenstein (eds.), Supernova Remnants and their X-Ray Emission, 241–243. © 1983 by the IAU.

Figure 1. RCW103

6800 Å with 6 Å of resolution. At the 1.5m telescope the 16 mm Vidicon was used covering the region between 4363 Å to 6800 Å with about 15 Å of resolution and the regions between 3700 Å to 5100 Å and 6200 Å to 7300 Å with a resolution of about 10 Å.

The slit was always kept E-W; its width was 1.8". The length of the observed spectra was 13" for filaments F1, F3 and F4; 23" for F2 and 27" for F5. Figure 1 is a reproduction of RCW103 with the positions of the observed filaments indicated.

III RESULTS

Table 1 gives the line intensities corrected by reddening using a normal reddening law and assuming a theoretical H α /H β ratio of 3. The accuracy of the line strengths are about 15% for lines stronger than H β and 30% for lines 1/2 H β . The values of Av for each filament are indicated in Table 1, the difference between the Av for filament 2 and 5 must be due to internal reddening. The minimum Av found was 4.4 magnitudes indicating a distance of about 6.5 kpc from the Sun and a galactocentric distance of about 4 kpc.

Comparison of the observed line intensities of Table 1 with models by Dopita (1977) and Shull and McKee (1979) indicates that the temperatures in the filaments of RCW103 are of the order of 10^5 K,the

	Line Intensities in RCW103				
Line	F1(Av=5.3)	F2(Av=4.4)	F3(Av=4.5)	F4(Av=5.0)	F5(Av=5.9)
[OII] 3726+3729	951				966
Η _Υ 4340	64				57
(0111) 4363	73				
Ηβ 4861	100	100	100		100
(OIII) 4959	87	38	185	118	136
[OIII] 5007	243	140	320	297	416
[NI] 5200	29		22		59
HeI 5876	7	21			
[01] 6 300	94	71	95	111	73
[OI] 6363	31	31	36	40	23
[NII] 6548	168	138	189	186	158
Ηα 6563	300	300	300	300	300
NII 6584	492	394	534	5 5 5	520
SII 6717	115	181	158	157	136
[SII] 6730	137	197	192	204	176
HeI 7065	17	18			
[ArIII] 7135		45	31		26
Fell] 7155	26	21			15
[Call] 7293	43	39	12		
<u>[011]</u> /320+7330	62	105	112		74

TABLE 1

densities about 70 $\rm cm^{-3}$ and there is an overabundance of N by a factor 3, S and O show smaller overabundance with respect to cosmic.

IV CONCLUSIONS

The observed minimum value of Av=4.4 magnitudes is in agreement with the Av=4.5 magnitudes found by Leibowitz and Danziger (1982) implying a distance to RCW103 of 6.5 kpc, thus the remnant is at a galactocentric distance of about 4 kpc. The observed overabundances could be explained as due to a galactic abundance gradient, although a small N abundance variation between filaments seems to be present.

(1) A more detailed discussion of this work has been sent for publication to the Astronomical Journal.

REFERENCES

Caswell, J.L., Roger, A.S., Murray, J.D., Cole, D.J. and Coke, D.J., 1975, Astron. Astrophys., 45, p.p. 239-258.
Caswell, J.L., Haynes, R.F., Milne, D.K. and Wellington, K.J., 1980, M.N.R.A.S., 190, p.p. 881-889.
Dopita, M.A., 1977, Ap. J. Suppl., 33, p.p. 437-449.
Leibowitz, E.M. and Danziger, I.J., 1982, ESO preprint N°197.
Shull, J.M. and McKee, C.F., 1979, Ap. J., 277, p.p. 131-149.
Tuohy, I. and Garmire, G., 1980, Ap. J. (Letters), 239, p.p. L107-110.