(C) Canadian Mathematical Society 2010

Extensions of Positive Definite Functions on Amenable Groups

M. Bakonyi and D. Timotin

Abstract

Let S be a subset of an amenable group G such that $e \in S$ and $S^{-1}=S$. The main result of this paper states that if the Cayley graph of G with respect to S has a certain combinatorial property, then every positive definite operator-valued function on S can be extended to a positive definite function on G. Several known extension results are obtained as corollaries. New applications are also presented.

1 Introduction

Let G be a group. A function $\Phi: G \rightarrow \mathcal{L}(\mathcal{H})$ is called positive definite if, for every $g_{1}, \ldots, g_{n} \in G$, the operator matrix $\left\{\Phi\left(g_{i}^{-1} g_{j}\right\}_{i, j=1}^{n}\right.$ is positive semidefinite. Let $S \subset G$ be a symmetric set; that is, $e \in S$ and $S^{-1}=S$. A function $\phi: S \rightarrow \mathcal{L}(\mathcal{H})$ is called (partially) positive definite if, for every $g_{1}, \ldots, g_{n} \in G$ such that $g_{i}^{-1} g_{j} \in S$ for all $i, j=1, \ldots, n,\left\{\phi\left(g_{i}^{-1} g_{j}\right\}_{i, j=1}^{n}\right.$ is a positive semidefinite operator matrix. Extensions of positive definite functions on groups have a long history, starting with the Trigonometric Moment Problem of Carathéodory and Fejér and Krein's Extension Theorem. Recently, it has been proved in [1] that every positive definite operatorvalued function on a symmetric interval in an ordered abelian group can be extended to a positive definite function on the whole group. By different techniques, the same extension property was shown to be true in [3] for functions defined on words of length $\leq m$ in the free group with n generators. In this paper, we extend the result to a class of subsets of amenable groups that satisfy a certain combinatorial condition. The result turns out to be more general than the main result in [1], and it is obtained by much simpler means. Our main result was also influenced by [5], where a version of Nehari's Problem was solved for operator functions on totally ordered amenable groups.

Let G be a locally compact group. A right invariant mean m on G is a state on $L^{\infty}(G)$ that satisfies

$$
m(f)=m\left(f_{x}\right)
$$

for all $x \in G$, where $f_{x}(y)=f(y x)$. In case there exists a right invariant mean on G, G is called amenable. We will occasionally write $m^{x}(f(x))$ for $m(f)$. There exist many other equivalent characterizations of amenability [4].

For graph theoretical notions, we refer the reader to [7]. By a graph we mean a pair $G=(V, E)$ in which V is a set called the vertex set and E is a symmetric nonreflexive

[^0]binary relation on V, called the edge set. We consider in general the vertex set to be infinite. A graph is called chordal if every finite simple cycle $\left[v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right]$ in E with $n \geq 4$ contains a chord, i.e., an edge connecting two nonconsecutive vertices of the cycle. Chordal graphs play an important role in the extension theory of positive definite matrices ($[8,10]$).

Let G be a group. If $S \subset G$ is symmetric, we define the Cayley graph of G with respect to S (denoted $\Gamma(G, S)$) as the graph whose vertices are the elements of G, while $\{x, y\}$ is an edge if and only if $x^{-1} y \in S$.

2 The Main Result

The basic result of the paper is the following.
Theorem 2.1 Suppose G is amenable, and $S \subset G$. If $\Gamma(G, S)$ is chordal, then any positive definite function ϕ on S admits a positive definite extension Φ on G.

Proof Consider the partially positive semidefinite kernel $k: G \times G \rightarrow \mathcal{L}(\mathcal{H})$, defined only for pairs (x, y) for which $x^{-1} y \in S$, by the formula

$$
k(x, y)=\phi\left(x^{-1} y\right)
$$

Since the pattern of specified values for this kernel is chordal by assumption, it follows from [10] that k can be extended to a positive semidefinite kernel $K: G \times G \rightarrow \mathcal{L}(\mathcal{H})$. Note that $K(x, y)$ has no reason to depend only on $x^{-1} y$.

For any $x, y \in G$, the operator matrix

$$
\left(\begin{array}{cc}
\phi(e) & K(x, y) \\
K(x, y)^{*} & \phi(e)
\end{array}\right)
$$

is positive semidefinite, whence it follows that $K(x, y)^{*} K(x, y) \leq \phi(e)^{2}$. In particular, all operators $K(x, y), x, y \in G$, are bounded by a common constant.

Fix then $\xi, \eta \in \mathcal{H}$, and $x \in G$. The function $F_{x ; \xi, \eta}: G \rightarrow \mathbb{C}$, defined by

$$
F_{x ; \xi, \eta}(y)=\langle K(y x, y) \xi, \eta\rangle
$$

is in $L^{\infty}(G)$. Define then $\Phi: G \rightarrow \mathcal{L}(\mathcal{H})$ by $\langle\Phi(x) \xi, \eta\rangle=m\left(F_{x ; \xi, \eta}\right)$.
We claim that Φ is a positive definite function. Indeed, take arbitrary vectors $\xi_{1}, \ldots, \xi_{n} \in \mathcal{H}$. We have

$$
\sum_{i, j=1}^{n}\left\langle\Phi\left(g_{i}^{-1} g_{j}\right) \xi_{i}, \xi_{j}\right\rangle=\sum_{i, j=1}^{n} m\left(F_{g_{i}^{-1} g_{j} ; \xi_{i}, \xi_{j}}\right)=\sum_{i, j=1}^{n} m^{y}\left(\left\langle K\left(y g_{i}^{-1} g_{j}, y\right) \xi_{i}, \xi_{j}\right\rangle\right)
$$

Consider one of the terms in the last sum; the mean m is applied to the function $y \mapsto\left\langle K\left(y g_{i}^{-1} g_{j}, y\right) \xi_{i}, \xi_{j}\right\rangle$. The right invariance of m implies that we may apply the change of variable $z=y g_{i}^{-1}, y=z g_{i}$, and thus

$$
m^{y}\left(\left\langle K\left(y g_{i}^{-1} g_{j}, y\right) \xi_{i}, \xi_{j}\right\rangle\right)=m^{z}\left(\left\langle K\left(z g_{j}, g_{i} z\right) \xi_{i}, \xi_{j}\right\rangle\right)
$$

Therefore

$$
\sum_{i, j=1}^{n}\left\langle\Phi\left(g_{i}^{-1} g_{j}\right) \xi_{i}, \xi_{j}\right\rangle=\sum_{i, j=1}^{n} m\left(\left\langle K\left(z g_{j}, g_{i} z\right) \xi_{i}, \xi_{j}\right\rangle\right)=m\left(\sum_{i, j=1}^{n}\left\langle K\left(z g_{j}, g_{i} z\right) \xi_{i}, \xi_{j}\right\rangle\right) .
$$

But the positivity of K implies that, for each $z \in G$,

$$
\sum_{i, j=1}^{n}\left\langle K\left(z g_{j}, g_{i} z\right) \xi_{i}, \xi_{j}\right\rangle \geq 0
$$

Since m is a positive functional, it follows that Φ is indeed positive definite. On the other hand, for $x \in S$, the function $F_{x ; \xi, \eta}$ is constant, equal to $\langle\phi(x) \xi, \eta\rangle$. Therefore, Φ is indeed the desired extension of ϕ.

Remark 2.2 The chordality of $\Gamma(G, S)$ is equivalent to the fact that for every finite cycle $\left[g_{1}, \ldots, g_{n}, g_{1}\right], n \geq 4$, at least one $\left\{g_{i}, g_{i+2}\right\}$ (with $g_{n+1}=g_{1}$ and $g_{n+2}=g_{2}$) is an edge. Setting $\xi_{k}=g_{k} g_{k+1}^{-1}$, the condition is equivalent to $\xi_{1}, \ldots,, \xi_{n} \in S, \xi_{1} \xi_{2} \cdots \xi_{n}=$ $e, n \geq 4$, implying that there exist $i=1, \ldots, m$ such that $\xi_{i} \xi_{i+1} \in S$ (here $\xi_{n+1}=\xi_{1}$).

Remark 2.3 Let $\Lambda \subset G$ be such that $e \in \Lambda$, and e cannot be written as a product of elements in Λ different from e, and let $S=\Lambda \Lambda^{-1}$. Assume we have that $S=\Lambda \cup \Lambda^{-1}$. Then $\xi_{1} \xi_{2} \cdots \xi_{n}=e$, with $\xi_{1}, \ldots, \xi_{n} \in S$, implies the existence of k such that $\xi_{k} \in \Lambda$ and $\xi_{k+1} \in \Lambda^{-1}$, thus $\xi_{k} \xi_{k+1} \in S$, implying $\Gamma(G, S)$ is chordal.

We conjecture the following reciprocal of Theorem 2.1
Conjecture 2.4 For every $S \subset G$ such that $\Gamma(G, S)$ is not chordal, there exists a positive definite function $\phi: S \rightarrow \mathcal{L}(\mathcal{H})$ that does admit a positive definite extension to G.

The following examples strongly suggest that the above conjecture has a positive answer. Let $G=\mathbb{Z}^{2}$ and let $S=\mathbb{Z}^{2}-\{(1,1),(-1,-1)\}$, the minimal number of points that can be excluded. Then $(0,0),(0,1), 1,1)$, and $(-1,0)$ form a chordless cycle of length 4 in $\Gamma(G, S)$. Define $\phi: S \rightarrow M_{2}(\mathbb{C})$ by

$$
\phi((0,0))=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \phi((1,0))=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad \phi((0,1))=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

and $\phi\left(g^{\prime}\right)=0$, for every $g^{\prime} \in S-\{(0,0),(1,0),(-1,0),(0,1),(0,-1)\}$. Let K be a maximal clique of $\Gamma(G, S)$. We may assume that $(0,0) \in K$, in which case $(1,1) \notin K$. This fact implies that the matrix $\{\phi(x-y)\}_{x, y \in K}$ can be written as a direct sum of copies of $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, so ϕ is positive definite. Assume that ϕ admits a positive definite extension Φ to G. Then, since

$$
\left(\begin{array}{ccc}
\Phi((0,0)) & \Phi((1,0))^{*} & \Phi((1,1))^{*} \\
\Phi((1,0)) & \Phi((0,0)) & \Phi((0,1))^{*} \\
\Phi((1,1)) & \Phi((0,1)) & \Phi((0,0))
\end{array}\right) \geq 0
$$

and

$$
\left(\begin{array}{ccc}
\Phi((0,0)) & \Phi((0,1))^{*} & \Phi((1,1))^{*} \\
\Phi((0,1)) & \Phi((0,0)) & \Phi((1,0))^{*} \\
\Phi((1,1)) & \Phi((1,0)) & \Phi((0,0))
\end{array}\right) \geq 0
$$

it follows that $\Phi((1,1))=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$. Since

$$
\left(\begin{array}{ccc}
\Phi((0,0)) & \Phi((1,1))^{*} & \Phi((2,1)))^{*} \\
\Phi((1,1)) & \Phi((0,0)) & \Phi((1,1))^{*} \\
\Phi((2,1)) & \Phi((1,1)) & \Phi((0,0))
\end{array}\right) \geq 0
$$

the $(2,1)$ entry of $\Phi((2,1))$ equals 1 , contradicting the fact that $\Phi((2,1))=$ $\phi((2,1))=0$. This implies that ϕ does not admit a positive definite extension to \mathbb{Z}^{2}.

Let $\Lambda \subset \mathbb{Z}^{d}$ be a finite set. By the definition introduced in [9], a sequence $\left\{c_{k}\right\}_{k \in \Lambda-\Lambda}$ of complex numbers is called positive definite with respect to Λ if the ma-$\operatorname{trix}\left\{c_{k-l}\right\}_{k, l \in \Lambda}$ is positive definite. This definition is weaker than the one used in this paper, since it requires only a single matrix built on the given data to be positive definite. A finite subset $\Lambda \subset \mathbb{Z}^{d}$ is said to posses the extension property if every sequence $\left\{c_{k}\right\}_{k \in \Lambda-\Lambda}$ admits a positive extension to \mathbb{Z}^{d}. A finite subset $S \subset \mathbb{Z}$ has the extension property if and only if it is an arithmetic progression [6]. Let $R(0, n)=$ $\{0\} \times\{0,1, \ldots, n\}, R(1, n)=\{0,1\} \times\{0,1, \ldots, n\}$, and $S(1, n)=R(1, n)-\{(1, n)\}$. The following is the main result of [2].

Theorem 2.5 A finite $\Lambda \subset \mathbb{Z}^{2}$ has the extension property if and only if Λ is the translation by a vector in \mathbb{Z}^{2} of a set isomorphic to one of the following sets: $R(0, n), R(1, n)$, or $S(1, n), n \geq 0$.

Let $\Lambda=R(1, n)$ when $S=\Lambda-\Lambda=\{-1,0,1\} \times\{-n, \ldots, 0, \ldots, n\}$. By the previous theorem, every scalar positive definite sequence with respect to Λ on S admits a positive definite extension to \mathbb{Z}^{2}. The points $(0,0),(-1, n),(0,2 n)$, and $(1, n)$ form a chordless cycle in $\Gamma\left(\mathbb{Z}^{2}, S\right)$, and for every Hilbert space \mathcal{H} with $\operatorname{dim} \mathcal{H} \geq 2$, there exists a sequence $\left\{C_{k}\right\}_{k \in S}$ of operators on \mathcal{H} that is positive definite (in the stronger sense), but does not admit a positive definite extension to \mathbb{Z}^{2}. The same is true for the sets $S(1, n)$ as well. We will present next the details concerning the different behaviour of scalar and operator sequences for a subset of \mathbb{Z}^{2} not covered by Theorem 2.5

Let $G=\mathbb{Z}^{2}, m, n \in \mathbb{N}, m, n \geq 2$, and let S consist of the points $(k, 0),|k| \leq m$ together with the points $(0, l),|l| \leq n$. Let $\left\{C_{k l}\right\}_{(k, l) \in S}$ be a positive definite sequence of operators. The positive definiteness condition is equivalent to

$$
\left(\begin{array}{cccc}
C_{00} & C_{10}^{*} & \cdots & C_{m 0}^{*} \tag{2.1}\\
C_{10} & C_{00} & \cdots & C_{m-1,0}^{*} \\
\vdots & \ddots & \ddots & \vdots \\
C_{m 0} & C_{m-1,0} & \cdots & C_{00}
\end{array}\right) \geq 0
$$

and

$$
\left(\begin{array}{cccc}
C_{00} & C_{01}^{*} & \cdots & C_{0 n}^{*} \tag{2.2}\\
C_{01} & C_{00} & \cdots & C_{0, n-1}^{*} \\
\vdots & \ddots & \ddots & \vdots \\
C_{0 n} & C_{0, n-1} & \cdots & C_{00}
\end{array}\right) \geq 0
$$

In case $\left\{c_{k l}\right\}_{(k, l) \in S}$ is the sequence defined by $c_{k 0}=e^{i k \alpha}$ and $c_{0 l}=e^{i l \beta}$, the matrices in (2.1) are rank 1 positive definite Toeplitz matrices, and $c_{k l}=e^{i k \alpha} e^{i l \beta},(k, l) \in \mathbb{Z}^{2}$ is a positive definite extension to \mathbb{Z}^{2} of the initial sequence. It is a classical result of Carathéodory and Fejér that every positive definite Toeplitz matrix is a positive linear combination of rank 1 positive definite Toeplitz matrices. This implies that the positive semidefiniteness of the matrices in (2.1) guarantees the existence of a positive definite extension to \mathbb{Z}^{2} of every positive definite sequence $\left\{c_{k l}\right\}_{(k, l) \in S}$ of complex numbers.

Let U_{1} and U_{2} be two noncommuting unitary operators on a Hilbert space \mathcal{H} with $\operatorname{dim} \mathcal{H} \geq 2$. Defining $C_{00}=I, C_{k 0}=U_{1}^{k}$, and $C_{0 l}=U_{2}^{l}$, the matrices in (2.1) and (2.2) are positive semidefinite. Assuming the sequence $\left\{C_{k l}\right\}_{(k, l) \in S}$ admits a positive definite extension to \mathbb{Z}^{2}, the operator C_{11} has to simultaneously verify the conditions

$$
\left(\begin{array}{lll}
C_{00} & C_{01}^{*} & C_{11}^{*} \\
C_{01} & C_{00} & C_{10}^{*} \\
C_{11} & C_{10} & C_{00}
\end{array}\right) \geq 0 \quad \text { and } \quad\left(\begin{array}{lll}
C_{00} & C_{10}^{*} & C_{11}^{*} \\
C_{10} & C_{00} & C_{01}^{*} \\
C_{11} & C_{01} & C_{00}
\end{array}\right) \geq 0 .
$$

For our data, the above conditions are equivalent to $C_{11}=U_{2} U_{1}$, respectively $C_{11}=$ $U_{2} U_{1}$, which is false, since U_{1} and U_{2} do not commute. Thus $\left\{C_{k l}\right\}_{(k, l) \in S}$ does not admit any positive definite extension to \mathbb{Z}^{2}.

Proposition 2.6 Let $0 \in S=-S$ be a finite subset of \mathbb{Z}^{2} such that $\Gamma\left(\mathbb{Z}^{2}, S\right)$ is chordal and S spans \mathbb{Z}^{2}. Then S is infinite.

Proof Suppose $S \subset \mathbb{Z}^{2}$ is finite and $\Gamma\left(\mathbb{Z}^{2}, S\right)$ is chordal. There are a finite number of directions among the elements of S; suppose the elements of maximum length in each of these directions, together with their inverses, are enumerated $s_{1}, s_{2}, \ldots, s_{2 n}$ in the order of their arguments.

For a positive integer N, consider the cycle $\left[x_{0}, x_{2}, \ldots, x_{2 n N-1}, x_{0}\right]$ in $\Gamma\left(\mathbb{Z}^{2}, S\right)$, defined as follows: $x_{0}=0, x_{k}-x_{k-1}=s_{j}$ if $(j-1) N<k \leq j N$. We claim that, if N sufficiently large, this is a cycle with no chords.

Indeed, suppose $\left\{x_{k}, x_{l}\right\}$ is an edge with $l-k \geq 2$. The points $x_{0}, \ldots, x_{2 n N-1}$ form a polygon P with $2 n$ sides A_{j} parallel to s_{j} respectively, each side containing N points x_{k}. We have the following possibilities:

- If x_{k} and x_{l} are on the same side A_{j} of P, then $x_{l}-x_{k}=(l-k) s_{j}$ would be an element of S colinear with s_{j}, but longer, which is not possible.
- If $x_{k} \in A_{j}, x_{l} \in A_{j+1}$, then the argument of $x_{l}-x_{k}$ would be strictly between the arguments of s_{j} and s_{j+1} : again a contradiction.
- Finally, we may chose N sufficiently large such that, if x_{k} and x_{l} are on nonconsecutive sides of P, then $x_{l}-x_{k}$ has length larger than any element of S.

So the cycle obtained has no chords, contrary to the chordality assumption in the hypothesis. Thus S must be infinite.

Remark 2.7 If Conjecture 2.4 is true, then Lemma 2.6 would imply that for every finite $S \subset \mathbb{Z}^{2}$ such that $0 \in S=-S$ and S spans \mathbb{Z}^{2}, there exists a positive definite function on S that does not admit a positive definite extension to \mathbb{Z}^{2}.

3 Applications

3.1 Ordered Groups and Related Questions

Suppose G is a (left or right) totally ordered group. Take $a \in G, a \geq e$, and define $\Lambda=[e, a)$, and $S=\left(a^{-1}, a\right)$. Then e cannot be written as a product of elements in Λ and $S=\Lambda \Lambda^{-1}=\Lambda \cup \Lambda^{-1}$. Then, by Remark 2.3, the graph $\Gamma(G, S)$ is chordal. Thus, in an amenable totally ordered group, any positive definite function defined on a symmetric interval can be extended to the whole group.

The same argument yields the following more general result.
Proposition 3.1 Suppose G is amenable, while G^{\prime} is a totally ordered group, with unit e^{\prime}. Let $g: G \rightarrow G^{\prime}$ be a group morphism. Take $a^{\prime} \in G^{\prime}, a^{\prime} \geq e^{\prime}$, and $S=$ $g^{-1}\left(\left(a^{\prime-1}, a^{\prime}\right)\right)$. Then any positive definite operator function on S can be extended to a positive definite function on the whole group.

The above proposition has the following consequence that represents the main result of [1]. The proof derived here is much simpler.

Corollary 3.2 Let G_{1} be a totally ordered abelian group, $a \in G_{1}, a>0$, and let G_{2} be an abelian group. Then any positive definite operator function on $(-a, a) \times G_{2}$ can be extended to a positive definite function on $G_{1} \times G_{2}$.

Several well-known results, such as the Classical Trigonometric Moment Problem and Krein's Extension Theorem, are particular cases of Corollary3.2 Another simple application of Corollary 3.2 is the following. Take $\alpha, \beta \in \mathbb{R}$, and define $g: \mathbb{Z}^{2} \rightarrow \mathbb{R}$ by $g(m, n)=\alpha m+\beta n$. Thus, all positive definite functions defined on the strip $|\alpha m+\beta n|<a$ can be extended to a positive definite function on \mathbb{Z}^{2}.

A more interesting example for Proposition 3.1 is given by the Heisenberg group H over the integers. This is the group of matrices of the form

$$
X_{m, n, p}=\left(\begin{array}{ccc}
1 & m & p \\
0 & 1 & n \\
0 & 0 & 1
\end{array}\right)
$$

for $m, n, p \in \mathbb{Z}$. It is an amenable group, and for any $\alpha, \beta \in \mathbb{R}$, we can consider the morphism $g: H \rightarrow \mathbb{R}$, given by $g\left(X_{m, n, p}\right)=\alpha m+\beta n$. Thus any positive definite function defined on the set $\left\{X_{m, n, p}:|\alpha m+\beta n|<a\right\}$ can be extended to a positive definite function on H.

3.2 Trees and Cayley Graphs

For this application, we need some supplementary preliminaries. If $\Gamma=(V, E)$ is a graph, the distance $d(v, w)$ between two vertices is defined as

$$
d(v, w)=\min \left\{n: \exists v=v_{0}, v_{1}, \ldots, v_{n}=w, \text { such that }\left\{v_{i}, v_{i+1}\right\} \in E(\Gamma)\right\}
$$

We define the graph $\hat{\Gamma}_{n}$ that has the same vertices as Γ, while $\{v, w\}$ is an edge of $\hat{\Gamma}_{n}$ if and only if $d(v, w) \leq n$.

A graph without any simple cycle is called a tree. If x and y are two distinct vertices of a tree, then $P(x, y)$ denotes the unique simple path joining x and y.

Lemma 3.3 If Γ is a tree, then $\hat{\Gamma}_{n}$ is chordal for any $n \geq 1$.
Proof Take a minimal cycle C of length >3 in $\hat{\Gamma}_{n}$. Suppose $x, y \in C$ maximize the distance between any two points of C. If $d(x, y) \leq n$, then C is a clique, which is a contradiction. Thus x and y are not adjacent in $\hat{\Gamma}_{n}$. Suppose v, w are the two vertices of $\hat{\Gamma}_{n}$ adjacent to x in the cycle C. Now $P(x, v)$ has to pass through a vertex that is on $P(x, y)$, since otherwise the union of these two paths would be the minimal path connecting y and v, and it would have length strictly larger than $d(x, y)$. Denote by v_{0} the element of $P(x, v) \cap P(x, y)$ that has the largest distance to x. Since

$$
d(y, v)=d\left(y, v_{0}\right)+d\left(v_{0}, v\right) \leq d(y, x)=d\left(y, v_{0}\right)+d\left(v_{0}, x\right)
$$

it follows that $d\left(v_{0}, v\right) \leq d\left(v_{0}, x\right)$.
Similarly, if w_{0} is the element of $P(x, w) \cap P(x, y)$ that has the largest distance to x, it follows that $d\left(w_{0}, w\right) \leq d\left(w_{0}, x\right)$.

Suppose now that $d\left(v_{0}, x\right) \leq d\left(w_{0}, x\right)$. Then

$$
\begin{aligned}
d(v, w) & =d\left(v, v_{0}\right)+d\left(v_{0}, w_{0}\right)+d\left(w_{0}, w\right) \\
& \leq d\left(x, v_{0}\right)+d\left(v_{0}, w_{0}\right)+d\left(w_{0}, w\right)=d(x, w) \leq n
\end{aligned}
$$

since w is adjacent to x. Then $(v, w) \in E$, and C is not minimal: a contradiction. Thus $\hat{\Gamma}_{n}$ is chordal.

It is worth mentioning that Γ chordal does not necessarily imply $\hat{\Gamma}_{n}$ chordal. For instance, the graph Γ in Figure 1 is chordal, but $\hat{\Gamma}_{2}$ is not, since it has $\left[v_{1}, v_{3}, v_{5}, v_{7}\right]$ as a 4 -minimal cycle.

Suppose now that the group G is finitely generated by a set A with $A=A^{-1}$. The length of an element $x \in G$ is defined by

$$
l(x)=\min \left\{n: x=b_{1} \cdots b_{n}, b_{i} \in A\right\}
$$

it is equal to the distance between x and e in the Cayley graph $\Gamma(G, A)$. If $\Gamma(G, A)$ is a tree, then Lemma 3.3 and Theorem 2.1 yield the following result.

Proposition 3.4 Suppose that G is amenable and $\Gamma(G, A)$ is a tree. If $S=\{x \in \gamma$: $l(x) \leq n\}$, then any positive definite function on S can be extended to the whole of G.

Figure 1

The proposition applies to the free product $G=\mathbb{Z}_{2} \star \mathbb{Z}_{2}$. It is easily seen that, if A is formed by the two generators, then $\Gamma(G, A)$ is order isomorphic to \mathbb{Z}, and is thus a tree. So any positive definite function defined on words of length smaller than or equal to n extends to the whole group.

Unfortunately, there seem not to be many amenable graphs whose Cayley graph with respect to some set of generators is a tree. Note first the following simple lemma.

Lemma 3.5 Suppose G is a group, $A \subset G$ is a set of generators, and $\Gamma(G, A)$ is a tree.
(i) For every $x \in G$, there is a unique way of writing $x=a_{1} \cdots a_{n}$, with $a_{i} \in A$, and $a_{i} a_{i+1} \neq e$; moreover, $l(x)=n$. (We call $a_{1}, a_{2}, \ldots, a_{n}$ the letters of x.)
(ii) Take $x \in G$, with a_{x} the first letter of x. If $y \in G$, and the last letter of y is not a_{x}^{-1}, then $l(y x)=l(x)+l(y)$.

We can then obtain the following proposition.
Proposition 3.6 Suppose that G is a discrete amenable group, and $A \subset G$ is a subset of generators, such that $\Gamma(G, A)$ is a tree. Then either $G=\mathbb{Z}$, or $G=\mathbb{Z}_{2} \star \mathbb{Z}_{2}$.

Proof Note first that G cannot be finite, since then we may take an element $a \in A$ with finite order p, and construct the cycle $\left[e, a, a^{2}, \ldots, a^{p-1}\right]$ in $\Gamma(G, A)$, which has no chords.

One of the alternate definitions of an amenable group is the Følner condition, which, in the case of discrete groups, can be stated as follows: given any finite set $F \subset G$ and any $\epsilon>0$, there exists a finite subset $K \subset G$, such that

$$
\frac{\operatorname{card}(K \triangle F K)}{\operatorname{card} K}<\epsilon
$$

($K \triangle F K$ is the symmetric difference). Using a translation, if necessary, we may assume $e \in K$. Denote also $S_{n}=\{x \in G: l(x)=n\}$.

Suppose that $x \in G$; Lemma 3.5 implies that there is at most one element $a \in$ A with the property that $l(a x) \neq l(x)+1$ (otherwise there would exist a cycle in
$\Gamma(G, A))$. Therefore, if $x \in S_{n}$, there is at most one $a \in A$ such that $a x \notin S_{n+1}$. Moreover, if $x, y \in S_{n}, x \neq y, a, b \in A$ with $a x, b y \in S_{n+1}$, then $a x \neq b y$ (otherwise we obtain again a cycle in $\Gamma(G, A)$).

It follows then that, if A has at least 3 elements, then, for any finite set $E \subset S_{n}$, $A E \cap S_{n+1}$ has at least twice more elements than E. Therefore

$$
\begin{equation*}
\operatorname{card} K=\sum_{n} \operatorname{card}\left(K \cap S_{n}\right) \leq 2 \sum_{n} \operatorname{card}\left(A K \cap S_{n+1}\right) \leq 2 \operatorname{card}(A K) \tag{3.1}
\end{equation*}
$$

Thus $\operatorname{card}(K \triangle A K) \geq \operatorname{card} K$, and the Følner condition cannot be satisfied.
Therefore A has at most two elements. If it has only one element, then, being infinite, it is \mathbb{Z}.

Suppose it has two elements. If $a^{2} \neq e$ and $x \in G$, then, applying Lemma 3.5again, we have that $l\left(a^{\prime} x\right) \neq l(x)+2$ for at most one element a^{\prime} in the set $A^{\prime}=\left\{a^{2}, a b, b a\right\}$, and for $x, y \in S_{n}, x \neq y, a^{\prime}, b^{\prime} \in A^{\prime}$ with $a^{\prime} x, b^{\prime} y \in S_{n+2}$, we have $a^{\prime} x \neq b^{\prime} y$. Therefore, for any finite set $E \subset S_{n}, A E \cap S_{n+2}$ has at least twice more elements than E, and we obtain (3.1) with S_{n+1} replaced by S_{n+2}. Thus, again $\operatorname{card}(K \triangle A K) \geq \operatorname{card} K$, and the Følner condition cannot be satisfied.

Since a similar argument applies in case $b^{2} \neq e$, the only remaining possibility is $a^{2}=b^{2}=e$. Now if either $a b$ or $b a$ would have finite order, this would produce a cycle in $\Gamma(G, A)$. Thus, they are both of infinite order, and it follows easily that G is isomorphic to $\mathbb{Z}_{2} \star \mathbb{Z}_{2}$.

References

[1] M. Bakonyi, The extension of positive definite operator-valued functions defined on a symmetric interval of an ordered group. Proc. Amer. Math. Soc. 130(2002), no. 5, 1401-1406. doi:10.1090/S0002-9939-01-06288-8
[2] M. Bakonyi and G. Nævdal, The finite subsets of \mathbb{Z}^{2} having the extension property. J. London Math. Soc. 62(2000), no. 3, 904-916. doi:10.1112/S0024610700001496
[3] M. Bakonyi and D. Timotin, Extensions of positive definite functions on free groups. J. Funct. Anal. 246(2007), no. 1, 31-49. doi:10.1016/j.jfa.2007.01.015
[4] J. Dixmier, C*-algebras. North-Holland Mathematical Library, 15, North Holland, Amsterdam-New York, 1977.
[5] R. Exel, Hankel matrices over right ordered amenable groups. Canad. Math. Bull. 33(1990), no. 4, 404-415.
[6] J.-P. Gabardo, Trigonometric moment problems for arbitrary finite subsets of \mathbf{Z}^{n}. Trans. Amer. Math. Soc., 350(1998), no. 11, 4473-4498. doi:10.1090/S0002-9947-98-02091-1
[7] M. C. Golumbic, Algorithmic graph theory and perfect graphs. Academic Press, New York, 1980.
[8] R. Grone, C. R. Johnson, E. M. de Sá, and H. Wolkowicz, Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58(1984), 109-125. doi:10.1016/0024-3795(84)90207-6
[9] W. Rudin, The extension problem for positive-definite functions. Illinois J. Math. 7(1963), 532-539.
[10] D. Timotin, Completions of matrices and the commutant lifting theorem. J. Funct. Anal. 104(1992), no. 2, 291-298. doi:10.1016/0022-1236(92)90002-Z

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, U.S.A
e-mail: mbakonyi@gsu.edu
Institute of Mathematics of the Romanian Academy, Bucharest, Romania
e-mail: Dan.Timotin@imar.ro

[^0]: Received by the editors January 14, 2008.
 Published electronically August 3, 2010.
 This work was partially supported by NSF Grant 12-21-11220-N65 and by Grant 2-Cex06-11-34/2006 of the Romanian Government. A visit of the first author to Bucharest was supported by SOFTWIN.

 AMS subject classification: 43A35, 47A57, 20 E 05.

