CAPTURE OF THE COMET P/BOETHIN BY JUPITER.

BENEST Daniel
Observateire de Nice, France
BIEN Reinhold
Astronemisches Rechen Institut, Heidelberg, Fed. Rep. Germany
RICKMAN Hans
Astrenomiske Observatoriet, Uppsala, Sweden

Abstract

The passible effects of non-gravitationnal forces on the motion of the camet P/Boethin are investigated for various values of the orbital period. A time interval of 2000 years backward and forward is treated. The authars find in all cases that the comet librates temporarily around the $1 / 1$ resonance with Jumiter as a remote jovian satellite during at least two centuries.

1. INTRODUCTION

Camet P/Boethin (1975 I) has been previously shown to librate around the $1 / 1$ resenance with Jupiter during at least a few centuries, and to have a very remote satellite motion around this planet (Benest et al., 1980; see also Benest et al., 1981). More recently, the authors began to study the influence of non-gravitationnal farces upon this behaviour, first using a restrictad four-bady medel (Sun-Jupiter-Saturn-camet; Benest et al., 1982).

We present here the results obtained for a more complete set of conditions with the restricted three-bedy model, integrated with a Runge-Kutta methed with variable step, where we cambine the influence af varying orbital meriod with nan-gravitationnal forces.

2. CALCULATION

In a rotating-pulsating frame centerad on Jupiter, the mation of a remete satellite is compesed of a fast motion along a bean-shaped curve 107
V. V. Markellos and Y. Kozai (eds.), Dynamical Trapping and Evolution in the Solar System, 107-114. © 1983 by D. Reidel Publishing Company.
which librates slowly around the planet (see figure qa). Before capture end after escape, the comet can be still in $1 / 9$ resonance with Jumiter, but the bean-shaped curve either librates around a point approximately symmetric to Jupiter with respect to the Sun (which we call an "antisatellite libration"; see figure 1 b), or circulates continuously around the Sun.

We have computed 25 orbits for the comet over 2000 years beckward and forward. One of these, hereafter referred to as the "central orbit", is based on the elements in Marsden's (1979) catalogue and corrresponds to purely gravitationnal motion. Besides, we have treatad four different gravitationnal arbits varying the orbital period P at the starting epoch (1974 Dec. 19) by $\Delta P= \pm 8$ d and ± 16 d. We have alsa treated 20 nongravitationnal orbits, 4 for each starting period. As for the four-body calculation, we adopted the standard expression for the non-gravitationnal forcs (Marsden ${ }_{2}$, 1974) with the same set of velues for $\mathcal{M}_{2}: \pm 1.5$ and ± 3. 10^{-9} a.t./day ${ }^{2}$.

For each orbit, we have plotted a (semi-major axis of the ortbit of the comet), $1-1$ (cometary mean longitude minus Jupiter's mean longitude) and dCJ (minimum distance between Jupiter and the camet over one period of the comet) versus time (see figure 2, here for the central orbit). On these plots, the libration mations correspand to oscillations of a around the value of a_{J} (Jupiter's semi-major axis) and of $1-1 \mathrm{~J}$ around 0 (satellite) or $\pm 180^{\circ}$ (anti-satellite); during a circulation, a stays always greater or less than aj and $1-1, \mathrm{~J}$ varies monotonously.

Figure 1. Satellite (a) and anti-satellite (b) metion for P/Baethin in a rotating-pulsating frame. Full (resp. dotted) lins: part of the orbit above (resp. below) Jupiter's orbital plane; the perpendicular slashes indicate when the comet is at a maximum distance from this plane; the little open marks indicate when Jupiter is at perihelian or aphelion. The arrow on the left side indicates the direction of motion.

3. RESULTS

All our 25 orbits show temporary satellite librations enclosing the starting date (see Table 1). The minimum duration is about 200 years (for $\Delta P<0$ and $A_{2}<0$), slightly less than one complete libration period; the maximum of stability is obtained when ΔP and A_{2} increase.

Table 1. Periods of jovian satellite motion for cornet P/Boethin, when ΔP and A_{2} vary. Underline: periads enclosing the starting date (1974 Dec. 19); ${ }^{2}$ parenthesis indicate the duration of these periods.

$\begin{aligned} & A_{2} \Delta P^{P}(d) \\ & \left(\times 10^{-9}\right. \\ & \text { a.u. } \left./ d^{2}\right) \end{aligned}$	-16	-8	0	8	16
3.	596-2434	$\langle 0-\rangle 4000$	1343->4000	$\langle 0-\rangle 4000$	$\leq 0-\rangle 4000$
	3640-3806				
	(1100)	(>4000)	(>2700)	(>4000)	(>4000)
1.5	1569-2434	1104->4000	1233->4000	<0-3866	785-3117
	(900)	(>2900)	(>2800)	(>3800)	(2300)
0.	107-465	466-2350	348-3381	1018->4000	<0-3192
	$\begin{aligned} & 831-1281 \\ & 1569-2375 \\ & \hline \end{aligned}$	3679-382		(>3000)	(>3200)
	$\text { (} 1400 \text {) }$	(1900)			
-1.5	1367-2446	1317-2446	<0-2597	823-3747	<0-3106
	(1100)	(1100)	(>2600)	(2900)	(>3100)
-3.	1379-3217	<0-2422	<0-2540	620-3521	382-3093
		(>2400)	(<2800)	(2900)	(2700)

Table 2. Periods of $1 / 1$ resonance with Jupiter for comet P/Boethin. Seme notations as for Table 1.

Moreover, before and after this satellite libration, the comet stays in $1 / 1$ resonance over a longer interval, at least 900 years (see Table 2); during this time, there can be one or several satellite and amti-satellite librations with sometimes intervals of circulation. Generally, the transition between these three types of mation correspond to clase encounters with Jupiter, as da the definitive departures from the $1 / 1$ resanance.

As examples, figures 3 a and b show two orbits with a very short interval of $1 / 9$ regsonance $\left(\Delta P=-16, A_{2}=-1.510^{-9}\right)$ and a very long one $\left(\Delta P=16, \quad A_{2}=310^{-9}\right)$.

4. CONCLUSION

We have here confirmed the main result of the previous calculation. We must naw determine the interval of time during which the three-body madel is sufficient, that is to compare these results with same calculations by four- and nine-body models. In fact, we have as yet compared

 interval of $1 / 4$ resonance with Jumiter. Same notations as for figure 2.
Figure 3b. Elements $\mathrm{a}, \mathrm{l}^{1-1}$, and D_{C}, for $\mathrm{P} / \mathrm{Boethin}$ when $\Delta \mathrm{P}=16$ and $A_{2}=310^{-9}$, showing a very long interval of $1 / 1$ resonance with Jupiter. Same notations as for Figure 2.
the results for three- and four-body models for the 9 orbits where ΔP and A_{2} are varied separately, and we have faund that a moderately clase encounter with Saturn in 1836-37 (Benest et al., 1982) causes an appreciable divergence between the orbits before this date; however, for the future, the two madels seem in good agreement during a longer interval of time.

Finally, we must wait for the next perihelion passage of the comet in 1986 to establish the real value of ΔP and for yet another perihelion passage (\sim 1997) to determine the value of A_{2}.

REFERENCES

Benest, D., Bien, R., Rickman, H.: 1980, Astron. Astrophys. 84, pm.L91-L42. Benest, D., Bien, R., Rickman, H.: 1981, Astr. Ges. Mitt. 52, pp.27-28. Benest, D., Bien, R., Rickman, H.: 4982, in "Sun and Planetary System", eds. W.Fricke and G.Teleki, Reidel pp.397-400.
Marsden, B.G.: 1974, Ann. Rev. Astran. Astrophys. 12, pp.1-21. Marsden, B.G.: 4979, "Catalogue of Cometary Orbits", third edition, I.A.U. Central Bureau for Astronemical Telegrams, Cambridge (Mass.).

