Klyachko Models for General Linear Groups of Rank 5 over a p-Adic Field

Chufeng Nien

Abstract. This paper shows the existence and uniqueness of Klyachko models for irreducible unitary representations of $\mathrm{GL}_{5}(\mathcal{F})$, where \mathcal{F} is a p-adic field. It is an extension of the work of Heumos and Rallis on $\mathrm{GL}_{4}(\mathcal{F})$.

1 Introduction

In 1984, A. A. Klyachko [Kl] initiated the investigation of a class of models for GL(n) over a finite field, which we refer to as Klyachko models (also known as Whittakersymplectic models). These models consist of a series of representations $\mathcal{M}_{n, k}, 0 \leq$ $k \leq\left[\frac{n}{2}\right]$ with the following properties.

1. Existence of models: every irreducible representation of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ is a subrepresentation of $\mathcal{M}_{n, k}$ for some k .
2. Uniqueness of models: for each irreducible representation, the multiplicity in $\mathcal{M}_{n, k}$ is at most one.
3. Disjointness of models: $\mathcal{M}_{n, i}$ and $\mathcal{M}_{n, j}$ are disjoint for $i \neq j$, that is, no irreducible representation can be embedded in both $\mathcal{M}_{n, i}$ and $\mathcal{M}_{n, j}$, for $i \neq j$.
These models generalize the usual Whittaker models by adding a symplectic component to the inducing subgroup. When $k=0, \mathcal{M}_{n, 0}$ is the famous Whittaker model, a representation induced from a generic character on the unipotent radical of standard Borel subgroups of GL_{n}. When n is even and $k=\frac{n}{2}, \mathcal{M}_{n, \frac{n}{2}}$ is induced from the trivial character of Sp_{n} and is called a symplectic model. The other "mixed" models $\mathcal{M}_{n, k}, 0<k<\left[\frac{n}{2}\right]$ are induced from characters of subgroups with smaller unipotent and symplectic components.

Klyachko's work was followed by that of Michael J. Heumos and Stephen Rallis [HR] who in 1990 considered the realization of these models on GL_{n} over p-adic fields. At first, as in the finite fields case, disjointness and uniqueness of these models are expected for all irreducible representations, but soon after they found an irreducible non-unitary representation of $\mathrm{GL}_{3}(\mathcal{F})$ which does not have any such models. Then they restricted the discussion to irreducible unitary representations, and proved the uniqueness of the symplectic models and the disjointness for unitary representations of the different models. Moreover, for $n \leq 4$ they proved that any unitary irreducible representation admits a unique Klyachko model. Following their work,

[^0]a unique model for each irreducible unitary representation of $\mathrm{GL}_{5}(\mathcal{F})$ is explicitly classified in Theorem 5.7.
O. Offen and E. Sayag [OS] showed that a certain family of irreducible unitary representations of $\mathrm{GL}_{2 n}$ has symplectic models by embedding a local problem into a global setting. Recently, they further proved that every irreducible unitary representation of GL_{n} admits a \mathcal{M}_{k} model for a unique $0 \leq k \leq\left[\frac{n}{2}\right]$.

2 Notation and Terminology

For notation and terminology, we follow [HR, BZ1, BZ2]. Throughout, \mathcal{F} denotes a p-adic field, and G_{n} denotes $\mathrm{GL}(n, \mathcal{F})$.

The standard (upper triangular) parabolic subgroups of G_{n} are parameterized by ordered partitions $\left(n_{1}, \ldots, n_{k}\right)$ of $n=n_{1}+\cdots+n_{k}$. Let $\mathrm{P}_{n_{1}, \ldots, n_{k}}$ denote the associated parabolic subgroups and $N_{n_{1}, \ldots, n_{k}}$ denote its unipotent radical. \mathcal{J}_{n} denotes the $2 n \times 2 n$ matrix $\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$ and the associated symplectic form $\mathcal{J}(x, y)={ }^{t} x \mathcal{J}_{n} y$ is denoted by \mathcal{J}. The symplectic groups $\mathrm{Sp}_{2 n}$ are the set of elements preserving the form \mathcal{J} in $\mathrm{G}_{2 n}$. Let U_{n} denote the group of upper triangular unipotent matrices in G_{n}. With $\mathrm{U}_{n-2 k}$ embedded in the upper left and $\mathrm{Sp}_{2 k}$ in the lower right, let $\mathrm{M}_{k}=\left(\mathrm{U}_{n-2 k} \times \mathrm{Sp}_{2 k}\right) \mathrm{N}_{k}$, where $\mathrm{N}_{k}=N_{n-2 k, 2 k}$.

We denote by ν the homomorphism $g \mapsto|\operatorname{det} g|$ and by δ_{P} the modular function of the group P. A character (one-dimensional representation) of G_{n} is of the form $g \mapsto$ $\chi(\operatorname{det} g)$ for some character χ of \mathcal{F}^{*}. We sometimes write χ_{n} to indicate the group G_{n} involved. Induction is always normalized unless otherwise stated, with Ind (ind respectively) denoting full (compact respectively) induction. Given representations σ_{i} of $\mathrm{G}_{n_{i}}, i=1, \ldots, k$, extend $\sigma_{n_{1}} \otimes \cdots \otimes \sigma_{n_{k}}$ to $\mathrm{P}_{n_{1}, \ldots, n_{k}}$, so that it is trivial on $N_{n_{1}, \ldots, n_{k}}$. Denote

$$
\operatorname{Ind}_{P_{n_{1}, \ldots, n_{k}}}^{\mathrm{G}_{n_{1}+\cdots+n_{k}}} \sigma_{n_{1}} \otimes \cdots \otimes \sigma_{n_{k}} \text { by } \sigma_{n_{1}} \times \cdots \times \sigma_{n_{k}}
$$

Given a unipotent radical $N_{n_{1}, \ldots, n_{k}}$ and a representations π of G_{n}, the Jacquet functor $\mathrm{r}_{n_{1}, \ldots, n_{k}}$ is defined to be the functor mapping π to the quotient space

$$
V_{\pi} /\left\{\pi(n) v-v \mid v \in V_{\pi}, n \in N_{n_{1}, \ldots, n_{k}}\right\} .
$$

The quotient space is a $\mathrm{G}_{n_{1}} \times \cdots \times \mathrm{G}_{n_{k}}$ module and is called the Jacquet module of π. Let $\widetilde{\mathrm{r}}$ denote the normalized Jacquet functor (refer to [BZ2]). Let ψ be any nontrivial, complex, additive character of \mathcal{F}. Define the character ψ_{n} of U_{n} by

$$
\psi_{n}(u)=\psi\left(u_{1,2}+\cdots+u_{n-1, n}\right), u=\left(u_{i j}\right)
$$

A generic (or nondegenerate, Whittaker) character is a character which is nontrivial on all the simple root groups in U_{n}. For $1 \leq k \leq\left[\frac{n}{2}\right]$, define a series of models for G_{n} to be representations $\mathcal{M}_{n, k}=\operatorname{Ind}_{\mathrm{M}_{k}}^{\mathrm{G}_{n}}\left(\psi_{n-2 k} \otimes 1 \otimes 1\right)$. Denote $\psi_{n-2 k} \otimes 1 \otimes$ 1 by $\hat{\psi}_{n-2 k}$. When n is understood, we simply write \mathcal{M}_{k}. We call \mathcal{M}_{0} a Whittaker model. The Whittaker models for any two Whittaker characters are equivalent, since the diagonal torus of G_{n} normalizes U_{n} and acts transitively on the set of Whittaker characters. The Weyl group of G_{n} is the symmetric group S_{n}, and we use cycle forms
($i_{1}, i_{2}, \ldots, i_{k}$) of permutations to denote the corresponding Weyl elements in W. For example, in G_{4},

$$
(1,2,3)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We also use the notations $\operatorname{Ind}_{n_{1}, \ldots, n_{k}}^{n_{1}+\cdots+n_{k}}=\operatorname{Ind}_{\mathrm{G}_{n_{1}} \times \cdots \times \mathrm{G}_{n_{k}}}^{\mathrm{G}_{n_{1}+\cdots+n_{k}}}, \widetilde{r}_{n_{1}, \ldots, n_{k}}^{n_{1}+\cdots+n_{k}}=\widetilde{\mathrm{r}}_{\mathrm{G}_{n_{1}} \times \cdots \times \mathrm{n}_{1}}^{\mathrm{G}_{n_{1}+\cdots+\mathrm{g}_{n}}}$, , and $\operatorname{Hom}_{n_{1}, \ldots, n_{k}}=\operatorname{Hom}_{\mathrm{G}_{n_{1}} \times \cdots \times \mathrm{G}_{n_{k}}}$.

3 Known Results on GL_{n}

Denote by $\operatorname{Alg} G$ the set of all smooth representations of an algebraic group G.
Proposition 3.1 (Proposition 1.9 [BZ2]) Let M, U be closed subgroups of G_{n} such that M normalizes $U, M \cap U=\{e\}$, and the subgroup $P=M U \subset \mathrm{G}_{n}$ is closed. Then

1. The functors $\operatorname{Ind}_{P}, \operatorname{ind}_{P}$ are exact.
2. The functor $\widetilde{\mathrm{r}}_{M}$ is left adjoint to Ind_{P}, that is, $\operatorname{Hom}_{M}\left(\widetilde{\mathrm{r}}_{M}(\pi), \rho\right) \simeq \operatorname{Hom}_{\mathrm{G}_{n}}\left(\pi, \operatorname{Ind}_{P}\right)$.
3. Induction by stages: let S, T be subgroups of M and $H=S T$ such that the functors $\operatorname{Ind}_{H}, \operatorname{ind}_{H}: A \lg S \mapsto \operatorname{Alg} M$ and $\widetilde{\mathrm{r}}_{S}: A \lg M \mapsto A \lg S$ are well defined. Then

$$
\operatorname{ind}_{P}^{\mathrm{G}_{n}} \circ \operatorname{ind}_{H}^{M}=\operatorname{ind}_{H}^{\mathrm{G}_{n}}, \operatorname{Ind}_{P}^{\mathrm{G}_{n}} \circ \operatorname{Ind}_{H}^{M}=\operatorname{Ind}_{H}^{\mathrm{G}_{n}}, \widetilde{\mathrm{r}}_{S}^{M} \circ \widetilde{\mathbf{r}}_{M}^{\mathrm{G}_{n}}=\widetilde{\mathbf{r}}_{S}^{\mathrm{G}_{n}}
$$

Theorem 3.2 (Jacquet's Theorem [$\mathbf{B Z 1}]$) Let $\pi \in \operatorname{AlgG}_{n}$ be irreducible. Then there exists a parabolic triple (P, M, U) of G_{n} and an irreducible cuspidal representation $\rho \in$ $\operatorname{Alg} M$ such that π can be embedded into $\operatorname{ind}_{P}^{\mathrm{G}_{n}}(\rho)$. In particular, π is admissible.

Let $\alpha=\left(n_{1}, \ldots, n_{r}\right)$ be an ordered partition of n, and let $\mathrm{G}_{\alpha}=\mathrm{G}_{n_{1}} \times \cdots \times \mathrm{G}_{n_{r}}$ be the subgroup of G_{n}, embedded as the subgroup of block-diagonal matrices. By blocks of α we mean the sets of indices
$I_{1}=\left\{1, \ldots, n_{1}\right\}, I_{2}=\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}, \ldots, I_{r}=\left\{n_{1}+\cdots+n_{r-1}+1, \ldots, n\right\}$.
For two partitions β, γ with blocks I_{1}, \ldots, I_{r} and J_{1}, \ldots, J_{s} respectively, set

$$
\begin{aligned}
& W^{\beta, \gamma}=\left\{w \in W \mid w(k)<w(l) \text { if } k<l \text { and both } k, l \text { belong to the same } I_{i}\right. \\
& \left.\qquad w^{-1}(k)<w^{-1}(l) \text { if } k<l \text { and both } k \text { and } l \text { belong to the same } J_{j}\right\} .
\end{aligned}
$$

Let $F_{w}=\operatorname{ind}_{\gamma \cap w(\beta)}^{\gamma} \circ w \circ \widetilde{\mathbf{r}}_{\beta \cap w^{-1}(\gamma)}^{\beta}$.
Theorem 3.3 (Theorem $1.2[\mathrm{Ze}]$) The functor $F=\widetilde{\mathrm{r}}_{\gamma}^{n} \circ \operatorname{ind}_{\beta}^{n}: \mathrm{AlgG}_{\beta} \mapsto \mathrm{AlgG}_{\gamma}$ is glued together from those F_{w} where $w \in W^{\beta, \gamma}$. That is, for π a representation of G_{n} and β, γ partitions of n the set of composition factors of $\widetilde{\mathrm{r}}_{\gamma}^{n} \circ \operatorname{ind}_{\beta}^{n}(\pi)$ is $\left\{F_{w}(\pi) \mid w \in W^{\beta, \gamma}\right\}$.

In the following, $C_{c}^{\infty}(X)$ denotes the space of smooth, compactly supported functions on a p-adic space X, and $\mathfrak{D}(X)$ denotes the space of complex-valued linear functionals on $C_{c}^{\infty}(X)$. Elements of $\mathfrak{D}(X)$ are called distributions. Given a Lie group G, define the left and right translations l_{g} and r_{g} on $G ; C_{c}^{\infty}(G)$ and $\mathfrak{D}(G)$ as the following:

$$
\begin{gathered}
l_{g} \cdot x=g x ; \quad r_{g} \cdot x=x g^{-1} \\
\left(l_{g} \cdot f\right)(x)=f\left(g^{-1} x\right) ; \quad\left(r_{g} \cdot f\right)(x)=f(x g) ; \\
\left(l_{g} \cdot T\right)(f)=T\left(l_{g^{-1}} \cdot f\right) ; \quad\left(r_{g} \cdot T\right)(f)=T\left(r_{g^{-1}} \cdot f\right)
\end{gathered}
$$

where $g, x \in G ; f \in C_{c}^{\infty}(G)$ and $T \in \mathfrak{D}(G)$.
Lemma 3.4 (Bernstein's localization principle, Theorem 6.9 [BZ1]) Assume that a p-adic group G acts on a p-adic space X by $q: X \mapsto X$ constructively, which means that the graph $\{(x, g x) \mid g \in G, x \in X\}$ of G is the union of finitely many locally closed subsets of $X \times X$. If every fiber $X_{y}=q^{-1}(y)$ is G-invariant and if $\mathfrak{D}\left(X_{y}\right)^{G}=0$ for every $y \in X$, then $\mathfrak{D}(X)^{G}=0$.

A segment \triangle is a representation of G_{n} of the form of $\rho \times \nu \rho \times \cdots \times \nu^{k} \rho$, where $k \in \mathbb{N}, m k=n$ and ρ is an irreducible cuspidal representation of G_{m}. We write $\triangle=\left[\rho, \nu^{k} \rho\right]$ to indicate the beginning and the end of a segment. Two segments $\triangle_{1}, \triangle_{2}$ are linked if $\triangle_{1} \not \subset \triangle_{2}, \triangle_{2} \not \subset \triangle_{1}$, and $\triangle_{1} \cup \triangle_{2}$ is also a segment. Let $\triangle_{1}=\left[\rho_{1}, \nu^{s} \rho_{1}\right], \triangle_{2}=\left[\rho_{2}, \nu^{t} \rho_{2}\right] . \triangle_{1}$ precedes \triangle_{2} if \triangle_{1} and \triangle_{2} are linked and $\rho_{2}=\nu^{m} \rho_{1}$ for some $m>0$.

If π is a representation, we denote by $\langle\pi\rangle$ (respectively $L(\pi)$) the unique irreducible submodule (respectively the unique irreducible quotient module) of π, when it exists. A sufficient condition for existence is explained in the following theorem, and, in many useful cases, unique submodules and unique quotients do exist.
Theorem 3.5 (Theorem 6.1, [BZ2]) Let $\triangle_{1}, \ldots, \triangle_{r}$ be segments of G_{n} such that for each pair of indices $i<j, \triangle_{i}$ does not precede \triangle_{j}. Let the same condition hold for segments $\triangle_{1}^{\prime}, \ldots, \triangle_{s}^{\prime}$.

1. The representation $\left\langle\triangle_{1}\right\rangle \times \cdots \times\left\langle\triangle_{r}\right\rangle$ has a unique irreducible submodule, denoted by $\left\langle\triangle_{1}, \ldots, \triangle_{r}\right\rangle$.
2. $\left\langle\triangle_{1}, \ldots, \triangle_{r}\right\rangle$ and $\left\langle\triangle_{1}^{\prime}, \ldots, \triangle_{s}^{\prime}\right\rangle$ are isomorphic if and only if the sequences of segments $\left\{\triangle_{1}, \ldots, \triangle_{r}\right\}$ and $\left\{\triangle_{1}^{\prime}, \ldots, \triangle_{s}^{\prime}\right\}$ are equal up to a chain of transpositions of two non-linked neighbors.
3. Any irreducible representation in AlgG_{n} is isomorphic to some representation of the form $\left\langle\triangle_{1}, \ldots, \triangle_{r}\right\rangle$.
4. The representation $\left\langle\triangle_{1}\right\rangle \times \cdots \times\left\langle\triangle_{r}\right\rangle$ is irreducible if and only if \triangle_{i} and \triangle_{j} are not linked for each pair $i, j=1, \ldots, r$.

Theorem 3.6 (Theorem 1.2.5, $[\mathrm{Ku}]$) Let $\triangle_{1}, \ldots, \triangle_{r}$ be segments of G_{n} such that for each pair of indices $i<j, \triangle_{i}$ does not precede \triangle_{j}. Let the same condition hold for segments $\triangle_{1}^{\prime}, \ldots, \triangle_{s}^{\prime}$.

1. The representation $L\left(\triangle_{1}\right) \times \cdots \times L\left(\triangle_{r}\right)$ has a unique irreducible quotient, denoted by $L\left(\triangle_{1}, \ldots, \triangle_{r}\right)$.
2. $L\left(\triangle_{1}, \ldots, \triangle_{r}\right)$ and $L\left(\triangle_{1}^{\prime}, \ldots, \triangle_{s}^{\prime}\right)$ are isomorphic if and only if the sequences of segments $\left\{\triangle_{1}, \ldots, \triangle_{r}\right\}$ and $\left\{\triangle_{1}^{\prime}, \ldots, \triangle_{s}^{\prime}\right\}$ are equal up to a chain of transpositions of two non-linked neighbors.
3. Any irreducible representation in AlgG_{n} is isomorphic to some representation of the form $L\left(\triangle_{1}, \ldots, \triangle_{r}\right)$.
4. The representation $L\left(\triangle_{1}\right) \times \cdots \times L\left(\triangle_{r}\right)$ is irreducible if and only if \triangle_{i} and \triangle_{j} are not linked for each pair $i, j=1, \ldots, r$.
Theorem 3.7 (Theorem 9.3, $[\mathrm{Ze}]$) An irreducible representation π in AlgG_{n} is quasi-square-integrable if and only if it is isomorphic to $L(\triangle)$ for some segment $\triangle=\left[\rho, \nu^{m} \rho\right]$, where ρ is an irreducible cuspidal representation of $\mathrm{G}_{k}, k m=n, k, m \in \mathbb{N}$. That is, it is the unique quotient of some segment. In particular, every irreducible cuspidal representation of G_{n} is quasi-square-integrable.

Lemma 3.8 (Lemma 3.2, [Ta1]) Let $\triangle_{1}, \triangle_{2}$ be two segments.

1. If \triangle_{1} and \triangle_{2} are not linked, then $L\left(\triangle_{1}\right) \times L\left(\triangle_{2}\right)=L\left(\triangle_{1}, \triangle_{2}\right)$.
2. If \triangle_{1} and \triangle_{2} are linked, then

$$
L\left(\triangle_{1}\right) \times L\left(\triangle_{2}\right)=L\left(\triangle_{1}, \triangle_{2}\right)+L\left(\left(\triangle_{1} \cap \triangle_{2}\right),\left(\triangle_{1} \cup \triangle_{2}\right)\right)
$$

where the summation is in the sense of semi-simplification (i.e., $L\left(\triangle_{1}, \triangle_{2}\right)$ and $L\left(\left(\triangle_{1} \cap \triangle_{2}\right),\left(\triangle_{1} \cup \triangle_{2}\right)\right)$ are composition factors of $\left.L\left(\triangle_{1}\right) \times L\left(\triangle_{2}\right).\right)$

Theorem 3.9 (Theorem 9.7, $[\mathrm{Ze}])$ 1. For any k segments $\triangle_{1}, \ldots, \triangle_{k}$, the representation $\pi=L\left(\triangle_{1}\right) \times \cdots \times L\left(\triangle_{k}\right)$ has a nontrivial Whittaker functional. In particular, every irreducible quasi-square-integrable representation of G_{n} is generic.
2. Any generic representation π of AlgG_{n} can be decomposed as a product

$$
\pi=L\left(\triangle_{1}\right) \times \cdots \times L\left(\triangle_{k}\right)
$$

for some segments $\triangle_{1}, \ldots, \triangle_{k}$, such that no two of them are linked. Moreover the set $\left\{\triangle_{1}, \ldots, \triangle_{k}\right\}$ is uniquely determined by π up to isomorphisms of representations.

Theorem 3.10 (Theorem 2, $[\mathrm{Ro}]$) Let π_{i} be irreducible representations of $\mathrm{G}_{n_{i}}, i=$ $1, \ldots, k$, and $n=n_{1}+\cdots+n_{k}$. Then

$$
\operatorname{Hom}_{n}\left(\pi_{1} \times \cdots \times \pi_{n_{k}}, \mathcal{M}_{n, 0}\right) \simeq \operatorname{Hom}_{n_{1}, \ldots, n_{k}}\left(\pi_{1} \otimes \cdots \otimes \pi_{n_{k}}, \mathcal{M}_{n_{1}, 0} \otimes \cdots \otimes \mathcal{M}_{n_{k}, 0}\right)
$$

Now we recall the classification of irreducible unitary representations of G_{n} due to M. Tadić [Ta2].

Let $\mathrm{D}_{0}(n)$ denote the set of isomorphism classes of irreducible representations of G_{n} which are square-integrable modulo the center and $\mathrm{D}_{0}=\bigcup_{n \geq 0} \mathrm{D}_{0}(n)$. Let $\mathrm{D}(n)$ be the set of representations of the form $\nu^{\alpha} \delta$, where α is real and $\delta \in \mathrm{D}_{0}(n)$; let $\mathrm{D}=\bigcup_{n \geq 0} \mathrm{D}(n)$ and let $\mathrm{M}(D)$ be the collection of all finite (unordered) multisets on D.

For ρ an irreducible cuspidal representation and $n \in \mathbb{N}$, let

$$
\triangle[n]^{\rho}=\nu^{\frac{-n+1}{2}} \rho \times \nu^{\frac{-n+3}{2}} \rho \times \cdots \times \nu^{\frac{n-1}{2}} \rho
$$

That is, $\triangle[n]^{\rho}$ is a segment with exponents of ν symmetric around 0 .
Given $a=\left(\delta_{1}, \ldots, \delta_{n}\right) \in \mathrm{M}(\mathrm{D}), \delta_{i}=\nu^{\alpha_{i}} \delta_{0}^{i}, \delta_{0}^{i} \in \mathrm{D}_{0}$, we may assume that $\alpha_{1} \geq$ $\cdots \geq \alpha_{n}$. The induced representation $\delta_{1} \times \cdots \times \delta_{n}$ has a unique irreducible quotient $L(a)$.

Given an irreducible representation σ, let σ^{+}denote its Hermitian (complex conjugate) contragradient. Set $\prod(\sigma, \alpha)=\nu^{\alpha} \sigma \times \nu^{-\alpha} \sigma^{+}$for α positive. For a positive integer n and $\delta \in \mathrm{D}_{0}$, set $u(\delta, n)=L\left(\nu^{p} \delta \times \nu^{p-1} \delta \times \cdots \times \nu^{-p} \delta\right)$, where $p=\frac{n-1}{2}$. Thus if δ is a representation of $\mathrm{G}_{m}, u(\delta, n)$ is a representation of $\mathrm{G}_{n m}$. We sometimes write $u\left(\delta_{m}, n\right)$ to emphasize the rank of δ.

Theorem 3.11 (Theorem 7.5, [Ta2]) Let

$$
\begin{gathered}
\mathfrak{B}=\left\{u(\delta, n), \prod(u(\delta, n), \alpha) \mid \delta \in \mathrm{D}_{0}, 0<\alpha<\frac{1}{2}\right\}, \\
a(n, d)^{\rho}=\left(\nu^{\frac{n-1}{2}} \triangle[d]^{\rho}, \nu^{\frac{n-3}{2}} \triangle[d]^{\rho}, \ldots, \nu^{\frac{n+1}{2}} \triangle[d]^{\rho}\right),
\end{gathered}
$$

where $n, d \in \mathbb{N}$, and ρ is an irreducible cuspidal representation.

1. If $\sigma_{1}, \ldots, \sigma_{r} \in \mathfrak{B}$, then $\sigma_{1} \times \cdots \times \sigma_{r}$ is irreducible and unitary.
2. If π is an irreducible unitarizable representation then there exist $\tau_{1}, \ldots, \tau_{s} \in \mathfrak{B}$, unique up to permutations, such that $\pi=\tau_{1} \times \cdots \times \tau_{s}$.
3. $L\left(a(n, d)^{\rho}\right)=\left\langle a(d, n)^{\rho}\right\rangle=u(\delta(\rho, d), n)$, where $\delta(\rho, d)=L\left(\triangle[d]^{\rho}\right)$.

For this part of notation and results, we refer to $[\mathrm{KV}]$ and $[\mathrm{Wa}]$. Let G denote a unimodular p-adic group.

Definition 3.12 Let the Frechet spaces $V_{\pi_{1}}, W_{\pi_{2}}$ be representations of G. A separately continuous bilinear form $B: V_{\pi_{1}} \times W_{\pi_{2}} \mapsto \mathbb{C}$ is said to be a (π_{1}, π_{2})-intertwining form if $B \circ\left(\pi_{1} \otimes \pi_{2}\right)(g)=B, g \in G$. We denote the linear space of these forms by $\mathrm{I}\left(\pi_{1}, \pi_{2}\right)$.

If $W_{\pi_{2}}$ admits an inner product $\langle\cdot, \cdot\rangle_{\pi_{2}}$, we define

$$
B_{T}(v, w)=\langle T v, w\rangle_{\pi_{2}}, v \in V_{\pi_{1}}, w \in W_{\pi_{2}}
$$

for any given intertwining operator $T \in \operatorname{Hom}_{G}\left(V_{\pi_{1}}, W_{\pi_{2}}\right)$. Then $B_{T} \in \mathrm{I}\left(\pi_{1}, \pi_{2}\right)$, and

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(V_{\pi_{1}}, W_{\pi_{2}}\right) \leq \operatorname{dim} \mathrm{I}\left(\pi_{1}, \pi_{2}\right)
$$

Theorem 3.13 (Theorem 4.7, [KV]) Assume that G is a unimodular p-adic group and R, Q are closed subgroups of G. Let $\pi_{1}=\operatorname{ind}_{R}^{G} \chi_{1}, \pi_{2}=\operatorname{ind}_{Q}^{G} \chi_{2}$, where χ_{1} (respectively χ_{2}) is a character of R (respectively Q). Then there exists a linear isomorphism between the linear space $\mathrm{I}\left(\pi_{1} \otimes \pi_{2}\right)$ and the linear space $\mathfrak{D}(G)^{R \times Q}$ of $R \times Q$-invariant distributions on G. Here the $R \times Q$-action on $T \in \mathfrak{D}(G)$ is given by

$$
(r, q) \cdot T=\left(\delta_{R}(r) \delta_{Q}(q)\right)^{-1} \chi_{1}^{-1}(r) \chi_{2}(q)\left(l_{r} \circ r_{q}\right) \cdot T
$$

for $r \in R, q \in Q$.

Proposition 3.14 Assume that G is a unimodular p-adic group and R, Q are closedunimodular subgroups of G. Let $\pi_{1}=\operatorname{Ind}_{R}^{G} \chi_{1}, \pi_{2}=\operatorname{Ind}_{Q}^{G} \chi_{2}$, where χ_{1} (respectively χ_{2}) is a character of $R($ respectively $Q)$. Then $\operatorname{dim} \operatorname{Hom}_{G}\left(\pi_{1}, \pi_{2}\right) \leq \operatorname{dim} \mathfrak{D}(G)^{R \times Q}$.

Proof The result follows the above theorem and the following facts:

1. $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{R}^{G} \chi_{1}, \operatorname{Ind}_{Q}^{G} \chi_{2}\right) \cong \operatorname{Hom}_{G}\left(\widetilde{\operatorname{Ind}_{Q}}{ }_{Q}^{G} \chi_{2}, \widetilde{\operatorname{Ind}}_{R}^{G} \chi_{1}\right)$.
2. $\widetilde{\operatorname{Ind}}_{Q}^{G} \chi_{2} \cong \operatorname{ind}_{Q}^{G} \chi_{2}^{-1}$, when Q is unimodular (refer to [BZ1], 2.25).

4 The Work of Heumos and Rallis

For G_{2}, there are only three types of irreducible representations: cuspidal representations, submodules of segments [$\rho, \nu \rho$], and quotients of segments [$\rho, \nu \rho$], where ρ is an irreducible cuspidal representation on $G_{1}=\mathcal{F}^{*}$. Submodules of segments are in fact characters, and hence have symplectic models (refer to Lemma 5.5). Cuspidal representations and quotients of segments both satisfy the criterion of Theorem 3.7 and admit Whittaker models. Therefore for G_{2} every irreducible representation has either a Whittaker model or a symplectic model.

Theorem 4.1 (Theorem 2.4.2, [HR]) Let π be an irreducible representation of $\mathrm{G}_{2 n}$, then $\operatorname{dim} \operatorname{Hom}_{2 n}\left(\pi, \mathcal{M}_{n}\right) \leq 1$.

Theorem 4.2 (Theorem 3.2.2, $[\mathrm{HR}]$) An irreducible representation of G_{n} cannot have both a Whittaker model and a symplectic model.

Theorem 4.3 (Theorem 3.1, [HR]) Let π be an irreducible unitary representation of G_{n}. Then $\operatorname{Hom}_{n}\left(\pi, \mathcal{M}_{i}\right)$ is nonzero for at most one integer $i, 0 \leq i \leq\left[\frac{n}{2}\right]$.

Theorem 4.4 (Theorem 9.1.1, [HR]) Let $I=\operatorname{Ind}_{2,1}^{3}\langle 1 \times \nu\rangle \otimes \nu^{-1}$. The representation〈I〉 (the unique irreducible submodule of I) has neither a Whittaker model nor a mixed model.

Theorem 4.5 (Theorem 8.1, [HR]) Let π be an irreducible unitary representation of G_{3}. Then π can be uniquely embedded as a submodule of Whittaker model \mathcal{M}_{0} or mixed model \mathcal{N}_{1}.

Theorem 4.6 (Theorem 11.5, [HR]) Let π be an irreducible unitary representation of G_{4}. Then π can be uniquely embedded as a submodule of Whittaker model \mathcal{M}_{0}, mixed model \mathcal{M}_{1}, or symplectic model \mathcal{M}_{2}.

Theorem 4.7 ([OS]) Let $\pi=\sigma_{1} \times \cdots \times \sigma_{t} \times \tau_{t+1} \times \cdots \times \tau_{s}$ be an irreducible unitary representation of $\mathrm{GL}_{2 n}(\mathcal{F})$, with $\sigma_{i}=u\left(\delta_{k_{i}}, 2 m_{i}\right) \in \mathfrak{B}$ and $\tau_{i}=\prod\left(u\left(\delta_{k_{i}}, 2 m_{i}\right), \alpha_{i}\right) \in$ \mathfrak{B}. Then π admits a symplectic model.

In the same paper, Offen and Sayag also made the following conjecture.
Conjecture 4.8 ([OS]) If π is an irreducible unitary representation of $\mathrm{GL}_{2 n}(\mathcal{F})$ admitting a symplectic model, then $\pi=\sigma_{1} \times \cdots \times \sigma_{t} \times \tau_{t+1} \times \cdots \times \tau_{s}$ for some $\sigma_{i}=u\left(\delta_{k_{i}}, 2 m_{i}\right) \in \mathfrak{B}$ and $\tau_{i}=\prod\left(u\left(\delta_{k_{i}}, 2 m_{i}\right), \alpha_{i}\right) \in \mathfrak{B}$.

5 Klyachko Models on GL_{5}

Lemma 5.1 For $i \neq j$, $\operatorname{Hom}_{\mathrm{G}_{4}}\left(\mathcal{M}_{i}, \mathcal{M}_{j}\right)=0$.
Proof By Proposition 3.14, it suffices to show the following claim: if a distribution T on G_{4} satisfies

$$
\begin{align*}
& \hat{\psi}_{4-2 i}\left(m_{i}\right) \hat{\psi}_{4-2 j}^{-1}\left(m_{j}\right) T\left(\left(l_{m_{i}} \circ r_{m_{j}}\right) \cdot f\right)=T(f) \tag{5.1}\\
& \quad \text { for all } f \in C_{c}^{\infty}\left(\mathrm{G}_{4}\right), m_{i} \in \mathrm{M}_{i}, m_{j} \in \mathrm{M}_{j}, i \neq j
\end{align*}
$$

then T is trivial.
First note that all $\mathrm{M}_{i}, i=0,1,2$ involved here are unimodular.
Let $H=\mathrm{M}_{i} \times \mathrm{M}_{j}$, for $i \neq j$. The action of H on G_{4} is given by

$$
\left(m_{i}, m_{j}\right) \cdot g=m_{i} g m_{j}^{-1} \text { for }\left(m_{i}, m_{j}\right) \in H, g \in \mathrm{G}_{4}
$$

This action is constructive by Theorem A in 6.15 of [BZ1]. Then by Bernstein's localization principle (Lemma 3.4), it is enough to show that T_{x} is trivial for all $x \in \mathrm{M}_{i} \backslash \mathrm{G}_{4} / \mathrm{M}_{j}$, where T_{x} is a distribution on $\mathrm{M}_{i} x \mathrm{M}_{j}$ satisfying equation (5.1).

Define a character ψ_{H} on H by

$$
\psi_{H}\left(m_{i}, m_{j}\right)=\hat{\psi}_{4-2 i}\left(m_{i}\right) \hat{\psi}_{4-2 j}\left(m_{j}\right) \text { for }\left(m_{i}, m_{j}\right) \in H
$$

and the action of $\left(m_{i}, m_{j}\right) \in H$ on $C_{c}^{\infty}\left(\mathrm{G}_{4}\right)$ by

$$
\left(m_{1}, m_{2}\right) \cdot \eta(g)=\psi_{H}^{-1}\left(\left(m_{1}^{-1}, m_{2}\right)\right) \eta\left(m_{1}^{-1} g m_{2}\right), \text { for } \eta \in C_{c}^{\infty}\left(\mathrm{G}_{4}\right)
$$

Let T_{x} be a nonzero H-invariant on an H-orbit $Y_{x}=\mathrm{M}_{i} x \mathrm{M}_{j}$, i.e.,

$$
T_{x}\left(\left(m_{i}, m_{j}\right) \cdot \eta\right)=\psi_{H}^{-1}\left(\left(m_{1}^{-1}, m_{2}\right)\right) T_{x}\left(\left(l_{m_{i}} \circ r_{m_{j}}\right) \cdot \eta\right)=T_{x}(\eta)
$$

for $\left(m_{i}, m_{j}\right) \in H$ and $\eta \in C_{c}^{\infty}\left(Y_{x}\right)$. Equivalently, T_{x} satisfies equation (5.1). Let H_{x} denote the stabilizer of x in H. Then $Y_{x} \cong H / H_{x}$. Note that $C_{c}^{\infty}\left(Y_{x}\right) \cong \underline{\operatorname{ind}}_{H_{x}}^{H} 1$ (un-normalized compact induction) and

$$
T_{x} \in \operatorname{Hom}_{H}\left({\underset{\operatorname{ind}}{H_{x}}}_{H}^{H}, \psi_{H}\right) \cong \operatorname{Hom}_{H_{x}}\left(\delta_{H} \delta_{H_{x}}^{-1}, \operatorname{Res}_{H_{x}} \psi_{H}\right)
$$

by Frobenius reciprocity, where δ_{H} (respectively $\delta_{H_{x}}$) is the modular function of H (respectively H_{x}). Since the absolute value of $\psi_{H} \equiv 1$ and $\delta_{H} \delta_{H_{x}}^{-1}$ is positive, by Schur's Lemma we have

$$
\operatorname{dim} \operatorname{Hom}_{H_{x}}\left(\delta_{H} \delta_{H_{x}}^{-1}, \operatorname{Res}_{H_{x}} \psi_{H}\right)=0 \text { or } \delta_{H} \delta_{H_{x}}^{-1}=\operatorname{Res}_{H_{x}} \psi_{H} \equiv 1
$$

Proposition 1.3 in [Kl] shows that there are no admissible double cosets between $\left(\mathrm{M}_{i}, \hat{\psi}_{4-2 i}\right)$ and $\left(\mathrm{M}_{j}, \hat{\psi}_{4-2 j}\right)$, so $\operatorname{Res}_{H_{x}} \psi_{H} \neq 1$ and $\operatorname{Hom}_{H_{x}}\left(\delta_{H} \delta_{H_{x}}^{-1}, \operatorname{Res}_{H_{x}} \psi_{H}\right)=0$ for all $x \in \mathrm{M}_{i} \backslash \mathrm{G}_{4} / \mathrm{M}_{j}$. Therefore $\mathfrak{D}\left(\mathrm{G}_{4}\right)^{H}=0$ and $\operatorname{Hom}_{\mathrm{G}_{4}}\left(\mathcal{M}_{i}, \mathcal{M}_{j}\right)=0$ follows.

Theorem 5.2 $\quad \mathcal{N}_{4, i}$ and $\mathcal{N}_{4, j}$ are disjoint for $i \neq j$. That is, an irreducible representation of G_{4} cannot have both a nontrivial \mathcal{M}_{i} model and a nontrivial \mathcal{M}_{j} model for $i \neq j$.

Proof \mathcal{M}_{0} and \mathcal{M}_{2} are disjoint by Theorem 4.2 and it remains to show that \mathcal{M}_{0} and \mathcal{M}_{1} (respectively, \mathcal{M}_{1} and \mathcal{M}_{2}) are disjoint. Let π be an irreducible representation of G_{4}. Assume that π have both \mathcal{M}_{0} (Whittaker) model and \mathcal{M}_{1} model. By Proposition 3.2.1 of [HR], the contragradient $\tilde{\pi}$ of π also admits a Whittaker model. The dual of $\operatorname{Hom}_{\mathrm{G}_{4}}\left(\widetilde{\pi}, \mathcal{M}_{0}\right) \neq 0$ gives $\operatorname{Hom}_{\mathrm{G}_{4}}\left(\operatorname{ind}_{\mathrm{M}_{0}}^{\mathrm{G}_{4}} \hat{\psi}_{4}^{-1}, \pi\right) \neq 0$ (refer to [GK] or [BZ1]). The composition of nontrivial

$$
T_{1} \in \operatorname{Hom}_{\mathrm{G}_{4}}\left(\operatorname{ind}_{\mathrm{M}_{0}}^{\mathrm{G}_{4}} \hat{\psi}_{4}^{-1}, \pi\right) \text { and } T_{2} \in \operatorname{Hom}_{\mathrm{G}_{4}}\left(\pi, \mathcal{M}_{1}\right)
$$

produces a nontrivial intertwining operator (since π is irreducible) in

$$
\operatorname{Hom}_{\mathrm{G}_{4}}\left(\operatorname{ind}_{\mathrm{M}_{0}}^{\mathrm{G}_{4}} \hat{\psi}_{4}^{-1}, \mathcal{M}_{1}\right)
$$

The right action of M_{1} on $M_{0} \backslash G_{4}$ is constructive by [BZ1, Theorem A, 6.15]. The restriction of T to the coset $\mathrm{M}_{0} w \mathrm{M}_{1}$ is associated with $\operatorname{ind}_{\mathrm{M}_{1} \cap w^{-1} \mathrm{M}_{0} w}^{\mathrm{M}_{1}} \hat{\psi}_{4}^{-w}$, where $\hat{\psi}_{4}^{-w}(g)=\hat{\psi}_{4}^{-1}\left(w g w^{-1}\right)$, for $g \in \mathrm{M}_{1} \cap w^{-1} \mathrm{M}_{0} w$. Frobenius reciprocity gives

$$
\operatorname{Hom}_{\mathrm{M}_{1}}\left(\operatorname{ind}_{\mathrm{M}_{1} \cap w^{-1} \mathrm{M}_{0} w}^{\mathrm{M}_{1}} \hat{\psi}_{4}^{-w}, \hat{\psi}_{2}\right) \cong \operatorname{Hom}_{\mathrm{M}_{1} \cap w^{-1} \mathrm{M}_{0} w}\left(\hat{\psi}_{4}^{-w}, \hat{\psi}_{2}\right)
$$

By the result of [Kl], there exists no admissible double coset for the pair $\left(\mathrm{M}_{0}, \hat{\psi}_{4}^{-1}\right)$ and $\left(\mathrm{M}_{1}, \hat{\psi}_{2}\right)$, so $\operatorname{Hom}_{\mathrm{M}_{1} \cap w^{-1} \mathrm{M}_{0} w}\left(\hat{\psi}_{4}^{-w}, \hat{\psi}_{2}\right)=0$ for all $w \in \mathrm{G}_{4}$. Hence by Bernstein's localization principle

$$
\operatorname{Hom}_{\mathrm{G}_{4}}\left(\operatorname{ind}_{\mathrm{M}_{0}}^{\mathrm{G}_{4}} \hat{\psi}_{4}^{-1}, \operatorname{Ind}_{\mathrm{M}_{1}}^{G} \hat{\psi}_{2}\right)=0
$$

which contradicts our assumption. And this contradicts the result of Lemma 5.1 that $\operatorname{Hom}_{\mathrm{G}_{4}}\left(\mathcal{M}_{0}, \mathcal{M}_{1}\right)=0$. Hence π cannot possess both an \mathcal{M}_{0} model and an \mathcal{M}_{1} model. The proof for the disjointness of \mathcal{M}_{1} and \mathcal{M}_{2} follows the same argument, since $\widetilde{\pi}$ also admits a symplectic model if π does.

Lemma 5.3 For $k \neq \pm 2, \rho, \tau$ unitary representations of G_{1}, the representation $\nu^{k} \rho \times$ $\chi_{3}=\nu^{k} \rho \times\left\langle\nu^{-1} \tau \times \tau \times \nu \tau\right\rangle$ has a unique \mathcal{M}_{1} model.

Proof By reciprocity,

$$
\begin{aligned}
& \operatorname{Hom}_{4}\left(\operatorname{Ind}_{1,3}^{4} \nu^{k} \rho \otimes \chi_{3}, \operatorname{Ind}_{\mathrm{U}_{2} \times \mathrm{Sp}_{2} \times \mathrm{N}_{1}}^{\mathrm{G}_{4}} \psi_{2} \otimes 1 \otimes 1\right) \simeq \\
& \operatorname{Hom}_{2,2}\left(\widetilde{\mathrm{r}}_{2,2}^{4} \operatorname{Ind}_{1,3}^{4} \nu^{k} \rho \otimes \chi_{3}, \operatorname{Ind}_{\mathrm{U}_{2}}^{\mathrm{G}_{2}} \psi_{2} \otimes \operatorname{Ind}_{\mathrm{Sp}_{2}}^{\mathrm{G}_{2}} 1\right)
\end{aligned}
$$

Let $\beta=\{1,3\}, \gamma=\{2,2\}$. In the notation of Theorem 3.3,

$$
\mathrm{W}^{\beta, \gamma}=\left\{w_{0}=\mathrm{id}, w_{1}=(1,3,2)\right\}
$$

$$
\text { For } w_{0}=\mathrm{id}, \beta^{\prime}=\beta \cap w_{0}^{-1}(\gamma)=\{1,1,2\} \text {, and } \gamma^{\prime}=\gamma \cap w_{0}(\beta)=\{1,1,2\}
$$

$$
\begin{aligned}
F_{w_{0}} & =\operatorname{Ind}_{1,1,2}^{2,2} \circ \mathrm{id} \circ\left(\mathrm{r}_{1,1,2}^{1,3} \nu^{k} \rho \otimes\left\langle\nu^{-1} \tau \times \tau \times \nu \tau\right\rangle\right) \\
& =\left(\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{-1} \tau\right) \otimes\langle\tau \times \nu \tau\rangle .
\end{aligned}
$$

Because the representation $\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{-1} \tau$ has a unique Whittaker model and $\langle\tau \times \nu \tau\rangle=\nu^{\frac{1}{2}}\left\langle\nu^{-\frac{1}{2}} \tau \times \nu^{\frac{1}{2}} \tau\right\rangle$ has a unique $\mathcal{M}_{2,1}$ model, $\nu^{k} \times \chi_{3}$ has at least one \mathcal{M}_{1} model.

$$
\begin{aligned}
& \text { For } w_{1}=(1,3,2), \beta^{\prime}=\beta \cap w_{1}^{-1}(\gamma)=\{1,2,1\} \text {, and } \gamma^{\prime}=\gamma \cap w_{1}(\beta)=\{2,1,1\} \\
& \qquad \begin{aligned}
F_{w_{1}} & =\operatorname{Ind}_{2,1,1}^{2,2} \circ w_{1} \circ \widetilde{\mathrm{r}}_{1,2,1}^{1,3} \nu^{k} \rho \otimes\left\langle\nu^{-1} \tau \times \tau \times \nu \tau\right\rangle \\
& =\left\langle\nu^{-1} \tau \times \tau\right\rangle \otimes\left(\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu \tau\right)
\end{aligned}
\end{aligned}
$$

The representation $\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu \tau$ is irreducible and has a Whittaker model. Therefore $F_{w_{1}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2,1}$ model, and $\nu^{k} \times \chi_{3}$ has a unique \mathcal{M}_{1} model.
Lemma 5.4 For $k \neq t \pm 1$, and $k, t \neq \pm \frac{3}{2} ; \rho, \delta, \tau$ unitary representations of G_{1}, the representation $\nu^{k} \rho \times \nu^{t} \delta \times \chi_{2}=\nu^{k} \rho \times \nu^{t} \delta \times\left\langle\nu^{-\frac{1}{2}} \tau \times \nu^{\frac{1}{2}} \tau\right\rangle$ has a unique \mathcal{M}_{1} model.

Proof By reciprocity,

$$
\begin{aligned}
& \operatorname{Hom}_{4}\left(\operatorname{Ind}_{1,1,2}^{4} \nu^{k} \rho \otimes \nu^{t} \delta \times \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{2} \times \mathrm{Sp}_{2} \times \mathrm{N}_{1}}^{\mathrm{G}_{4}} \psi_{2} \otimes 1 \otimes 1\right) \simeq \\
& \operatorname{Hom}_{2,2}\left(\widetilde{\mathrm{r}}_{2,2}^{4} \operatorname{Ind}_{1,1,2}^{4} \nu^{k} \rho \times \nu^{t} \delta \times \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{2}}^{\mathrm{G}_{2}} \psi_{2} \otimes \operatorname{Ind}_{\mathrm{Sp}_{2}}^{\mathrm{G}_{2}} 1\right)
\end{aligned}
$$

Let $\beta=\{1,1,2\}, \gamma=\{2,2\}$. Then

$$
\mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(2,3), w_{2}=(1,3)(2,4), w_{3}=(1,3,2)\right\}
$$

and the quotient

$$
F_{w_{0}}=\left(\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{t} \delta\right) \otimes \chi_{2}
$$

Since $\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{t} \delta$ is irreducible and has a unique Whittaker model and χ_{2} has a unique $\mathcal{M}_{2,1}$ model, $\nu^{k} \rho \times \chi_{3}$ has at least one \mathcal{M}_{1} model. Note that

$$
F_{w_{1}}=\left(\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{-\frac{1}{2}} \tau\right) \otimes\left(\operatorname{Ind}_{1,1}^{2} \nu^{t} \delta \otimes \nu^{\frac{1}{2}} \tau\right)
$$

and $\operatorname{Ind}_{1,1}^{2} \nu^{t} \delta \otimes \nu^{\frac{1}{2}} \tau$ is irreducible and has a Whittaker model. Therefore $F_{w_{1}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2,1}$ model.

Since $F_{w_{2}}=\chi_{2} \otimes\left(\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{t} \delta\right)$, and $\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{t} \delta$ is irreducible and has a Whittaker model, $F_{w_{2}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2,1}$ model.

Also $F_{w_{3}}=\left(\operatorname{Ind}_{1,1}^{2} \nu^{t} \delta \otimes \nu^{-\frac{1}{2}} \tau\right) \otimes\left(\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{\frac{1}{2}} \tau\right)$, and $\left(\operatorname{Ind}_{1,1}^{2} \nu^{k} \rho \otimes \nu^{\frac{1}{2}} \tau\right)$ is irreducible and has a Whittaker model. Therefore $F_{w_{3}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2,1}$ model, and $\nu^{k} \rho \times \nu^{t} \delta \times \chi_{2}$ has a unique \mathcal{M}_{1} model.

Lemma 5.5 If χ is a character of $\mathrm{G}_{n}, n \in \mathbb{N}$, then χ has a unique $\mathcal{M}_{\left[\frac{n}{2}\right]}$ model.
Proof There are two cases.

1. $\mathrm{n}=2 \mathrm{k}$: Since $\mathrm{SL}_{2 k}$ is the commutator subgroup of $\mathrm{G}_{2 k}$ and characters are trivial on the commutator subgroup, χ admits an embedding in $\operatorname{Ind}_{\mathrm{SL}_{2 k}}^{\mathrm{G}_{2 k}} 1$ and also in

$$
\mathcal{M}_{k}=\operatorname{Ind}_{\mathrm{Sp}_{2 k}}^{\mathrm{G}_{2 k}} 1=\operatorname{Ind}_{\mathrm{SL}_{2 k}}^{\mathrm{G}_{2 k}} \operatorname{Ind}_{\mathrm{SP}_{2 k}}^{\mathrm{SL}_{2 k}} 1 .
$$

2. $\mathrm{n}=2 \mathrm{k}+1$: Similarly χ admits an embedding in $\operatorname{Ind}_{\mathrm{SL}_{2 k+1}}^{\mathrm{G}_{2 k+1}} 1$, hence an embedding in

$$
\mathcal{M}_{k}=\operatorname{Ind}_{\mathrm{U}_{1} \times \mathrm{Sp}_{2 k} \times \mathrm{N}_{1}}^{\mathrm{G}_{2 k+1}} 1=\operatorname{Ind}_{\mathrm{SL}_{2 k+1}}^{\mathrm{G}_{2 k+1}} \operatorname{Ind}_{\mathrm{U}_{1} \times \mathrm{Sp}_{2 k} \times \mathrm{N}_{1}}^{\mathrm{SL}_{2 k+1}} 1
$$

The embedding is unique since χ is one-dimensional.
Lemma 5.6 In $\mathrm{G}_{n}=\mathrm{G}_{m+2 k}$, if $\left(\pi, V_{\pi}\right)$ has a unique \mathcal{N}_{k} model, then so does

$$
\pi^{\prime}=\nu^{t} \otimes \pi, t \in \mathbb{R}
$$

Proof The existence of an \mathcal{M}_{k} model for $\left(\pi, V_{\pi}\right)$ means that for $x \in V_{\pi}$, there exists a function $f_{x}: G \mapsto V$, such that

1. $f_{x}(u g)=\psi_{m}(u) f_{x}(g)$, for $u \in \mathrm{U}_{m} \times \mathrm{Sp}_{2 k} \times \mathrm{N}_{k}, g \in \mathrm{G}_{n}$.
2. $f_{a x+b y}=a f_{x}+b f_{y}$, for $a, b \in \mathbb{C}, x, y \in \mathrm{G}_{n}$.
3. $\pi(s) f_{x}=f_{\pi(s) x}$. That is $f_{x}(g s)=f_{\pi(s) x}(g)$, for $g, s \in \mathrm{G}_{n}, x \in V$.
4. f_{x} is locally constant. (That is, there exists open compact subgroup $K_{f_{x}} \subset \mathrm{G}_{n}$ such that $f_{x}(g k)=f_{x}(g)$, for $k \in K_{f_{x}}, g \in \mathrm{G}_{n}$.)
Let $\mathrm{W}=\left\{h_{x} \mid h_{x}(g)=f_{\nu^{t}(g) x}(g), \forall x \in V, g \in \mathrm{G}_{n}\right\}$. Then W is a \mathcal{M}_{k} model of π^{\prime}, upon the verification of the following facts:
5. $h_{x}(u g)=f_{\nu^{t}(u g) x}(u g)=f_{\nu^{t}(g) x}(u g)=\psi_{m}(u) f_{\nu^{t}(g) x}(g)=\psi_{m}(u) h_{x}(g)$.
6. $h_{a x+b y}(g)=f_{a \nu^{t}(g) x+b \nu^{t}(g) y}(g)=a f_{\nu^{t}(g) x}(g)+b f_{\nu^{t}(g) y}(g)=a h_{x}(g)+b h_{y}(g)$.
7. $\pi^{\prime}(s) h_{x}(g)=h_{x}(g s)=f_{\nu^{t}(g s) x}(g s)=f_{\pi(s) \nu^{t}(g s) x}(g)=f_{\nu^{t}(g) \nu^{t}(s) \pi(s) x}(g)=h_{\pi^{\prime}(s) x}(g)$.
8. Because $\nu: \mathrm{G}_{n} \mapsto \mathbb{R}_{>0}$ is a homomorphism, $\nu(K)=1$ for all compact subgroup K of G_{n}. Given any f_{x}, there exists an open compact subgroup $K_{f_{x}}$ in G_{n} such that $f_{x}(g k)=f_{x}(g)$, for $k \in K_{f_{x}}$. Then $h_{x}(g k)=f_{\nu^{t}(g k) x}(g k)=\nu^{t}(g) f_{x}(g k)=$ $\nu^{t}(g) f_{x}(g)=f_{\nu^{t}(g) x}(g)=h_{x}(g)$.
By the above construction, if π^{\prime} admits two different models $\mathcal{M}_{k}, \mathcal{M}_{k^{\prime}}$, then so does $\pi=\nu^{-t} \otimes \pi^{\prime}$. This shows the uniqueness.

Let $\delta_{i}, \rho_{i}, \tau_{i}$ be square integrable representations of G_{i}, let χ_{i} be characters of G_{i} (we omit the subscript i if $i=1$), and let $\alpha, \lambda \in\left(0, \frac{1}{2}\right)$ be real numbers.

Theorem 5.7 Any unitary representation on G_{5} has one of the following expressions and indicted models:

1. δ_{5}, a square integrable representation of G_{5}, has a unique Whittaker model.
2. $u(\delta, 5)=L\left(\nu^{2} \delta \times \nu \delta \times \delta \times \nu^{-1} \delta \times \nu^{-2} \delta\right)$, a character of G_{5}, has a unique \mathcal{M}_{2} model.
3. Unitary representations induced from $\mathrm{P}_{1,4}$:
(a) $\delta \times \delta_{4}$ has a unique Whittaker model, since δ and δ_{4} both have Whittaker models.
(b) $\delta \times \chi_{4}$ has a unique \mathcal{M}_{2} model.
(c) $\delta \times L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right)$ has a unique \mathcal{M}_{2} model.
4. Unitary representations induced from $\mathrm{P}_{2,3}$:
(a) $\delta_{2} \times \delta_{3}$ has a unique Whittaker model, since δ_{2} and δ_{3} both have Whittaker models.
(b) $\delta_{3} \times \chi_{2}$ has a unique \mathcal{M}_{1} model.
(c) $\delta_{2} \times \chi_{3}$ has a unique \mathcal{M}_{1} model.
(d) $\chi_{2} \times \chi_{3}$ has a unique \mathcal{M}_{2} model.
5. Unitary representations induced from $\mathrm{P}_{1,1,3}$:
(a) $\delta \times \tau \times \delta_{3}$ has a unique Whittaker model, since δ, τ, and δ_{3} all have Whittaker models.
(b) $\delta \times \tau \times \chi_{3}$ has a unique \mathcal{M}_{1} model.
(c) $\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \delta_{3}$ has a unique Whittaker model, since δ and δ_{3} both have Whittaker models.
(d) $\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \chi_{3}$, has a unique \mathcal{M}_{1} model.
6. Unitary representations induced from $\mathrm{P}_{1,1,1,2}$:
(a) $\delta \times \rho \times \tau \times \delta_{2}$ has a unique Whittaker model, since δ, ρ, τ, and δ_{2} all have Whittaker models.
(b) $\delta \times \tau \times \rho \times \chi_{2}$ has a unique \mathcal{M}_{1} model.
(c) $\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \tau \times \delta_{2}$ has a unique Whittaker model, since δ, τ, and δ_{2} all have Whittaker models.
(d) $\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \tau \times \chi_{2}$ has a unique \mathcal{M}_{1} model.
7. Unitary representations induced from $\mathrm{P}_{1,2,2}$:
(a) $\delta \times \delta_{2} \times \delta_{2}^{\prime}$ has a unique Whittaker model, since δ, δ_{2}, and δ_{2}^{\prime} all have Whittaker models.
(b) $\delta \times \delta_{2} \times \chi_{2}$ has a unique \mathcal{M}_{1} model.
(c) $\delta \times \chi_{2} \times \chi_{2}^{\prime}$ has a unique \mathcal{M}_{2} model.
(d) $\delta \times \nu^{\alpha} \delta_{2} \times \nu^{-\alpha} \delta_{2}$ has a unique Whittaker model, since δ and δ_{2} both have Whittaker models.
(e) $\delta \times \nu^{\alpha} \chi_{2} \times \nu^{-\alpha} \chi_{2}$ has a unique \mathcal{M}_{2} model.
8. Unitary representations induced from $\mathrm{P}_{1,1,1,1,1}$:
(a) $\delta \times \tau \times \rho \times \delta^{\prime} \times \tau^{\prime}$ has a unique Whittaker model, since $\delta, \tau, \rho, \delta^{\prime}$, and τ^{\prime} all have Whittaker models.
(b) $\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \tau \times \rho \times \rho^{\prime}$ has a unique Whittaker model, since δ, τ, ρ, and ρ^{\prime} all have Whittaker models.
(c) $\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \nu^{\lambda} \tau \times \nu^{-\lambda} \tau \times \rho$ has a unique Whittaker model, since δ, τ, and ρ all have Whittaker models.

Proof 3(b): Set $\chi_{4}=\left\langle\nu^{-\frac{3}{2}} \rho \times \nu^{-\frac{1}{2}} \rho \times \nu^{\frac{1}{2}} \rho \times \nu^{\frac{3}{2}} \rho\right\rangle$, where ρ is a unitary represen-
tation of G_{1}. By reciprocity,

$$
\begin{aligned}
& \operatorname{Hom}_{5}\left(\delta \times \chi_{4}, \operatorname{Ind}_{\mathrm{U}_{1} \times \mathrm{Sp}_{4} \times \mathrm{N}_{2}}^{\mathrm{G}_{5}} \psi_{1}\right.\otimes 1 \otimes 1) \\
& \simeq \\
& \operatorname{Hom}_{1,4}\left(\widetilde{\mathrm{r}}_{1,4}^{5} \operatorname{Ind}_{1,4}^{5} \delta \otimes \chi_{4}, \operatorname{Ind}_{\mathrm{U}_{1}}^{\mathrm{G}_{1}} \psi_{1} \otimes \operatorname{Ind}_{\mathrm{S}_{4}}^{\mathrm{G}_{4}} 1\right)
\end{aligned}
$$

For $\beta=\{1,4\}, \gamma=\{1,4\}, \mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(1,2)\right\}$, and the quotient $F_{w_{0}}=\delta \otimes \chi_{4}$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{4,2}$ model. $F_{w_{1}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{4,2}$ model, because

$$
\begin{aligned}
F_{w_{1}} & =\nu^{-\frac{3}{2}} \rho \otimes \operatorname{Ind}_{1,3}^{4} \delta \otimes \nu^{\frac{1}{2}}\left\langle\nu^{-1} \rho \times \rho \times \nu \rho\right\rangle \\
& =\nu^{-\frac{3}{2}} \rho \otimes \nu^{\frac{1}{2}}\left(\operatorname{Ind}_{1,3}^{4} \nu^{-\frac{1}{2}} \delta \otimes\left\langle\nu^{-1} \rho \times \rho \times \nu \rho\right\rangle\right)
\end{aligned}
$$

and the representation $\operatorname{Ind}_{1,3}^{4} \nu^{-\frac{1}{2}} \delta \otimes\left\langle\nu^{-1} \rho \times \rho \times \nu \rho\right\rangle$ has an $\mathcal{M}_{4,1}$ model (refer to Lemma 5.3). Hence $\delta \times \chi_{4}$ has a unique \mathcal{M}_{2} model.

3(c): By reciprocity,

$$
\begin{aligned}
& \operatorname{Hom}_{5}\left(\delta \times L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right), \operatorname{Ind}_{\mathrm{U}_{1} \times \mathrm{Sp}_{4} \times \mathrm{N}_{2}}^{\mathrm{G}_{5}} \psi_{1} \otimes 1 \otimes 1\right) \simeq \\
& \operatorname{Hom}_{1,4}\left(\widetilde{\mathrm{r}}_{1,4}^{5} \operatorname{Ind}_{1,4}^{5} \delta \otimes L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right), \operatorname{Ind}_{\mathrm{U}_{1}}^{\mathrm{G}_{1}} \psi_{1} \otimes \operatorname{Ind}_{\mathrm{SP}_{4}}^{\mathrm{G}_{4}} 1\right)
\end{aligned}
$$

For $\beta=\gamma=\{1,4\}$, we have $\mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(1,2)\right\}$, with quotient $F_{w_{0}}=\delta \otimes L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right)$. Because $L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right)$ has a unique \mathcal{M}_{2} model by [HR, Theorem 11.1], $F_{w_{0}}$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{2}$ model. For

$$
F_{w_{1}}=\operatorname{Ind}_{1,1,3}^{1,4} \circ w_{1} \circ \widetilde{\mathbf{r}}_{1,1,3}^{1,4} \delta \times L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right)
$$

with δ_{2} either (i) supercuspidal or (ii) Steinberg:
(i) When δ_{2} is supercuspidal, $F_{w_{1}}=0$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2}$ model.
(ii) When δ_{2} is Steinberg, set

$$
\pi=L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right)=L\left(L\left(\triangle_{1}\right) \times L\left(\triangle_{2}\right)\right)
$$

where $\delta_{2}=\left\langle\nu^{\frac{1}{2}} \rho \times \nu^{-\frac{1}{2}} \rho\right\rangle$, and segments $\triangle_{1}=[\rho, \nu \rho], \triangle_{2}=\left[\nu^{-1} \rho, \rho\right]$.
By Lemma 3.8, $L\left(\triangle_{1}\right) \times L\left(\triangle_{2}\right)=\langle\nu \rho \times \rho\rangle \times\left\langle\rho \times \nu^{-1} \rho\right\rangle$ has two constitutions, $L\left(L\left(\triangle_{1}\right) \times L\left(\triangle_{2}\right)\right)=\pi$ and

$$
\begin{aligned}
L\left(\triangle_{1} \cup \triangle_{2}, \triangle_{1} \cap \triangle_{2}\right) & =L\left(\triangle_{1} \cup \triangle_{2}\right) \times L\left(\triangle_{1} \cap \triangle_{2}\right) \\
& =L\left(\left[\nu^{-1} \rho, \rho, \nu \rho\right]\right) \times \rho
\end{aligned}
$$

First, $\widetilde{\mathrm{r}}_{1,3}^{4} \operatorname{Ind}_{2,2}^{4}\langle\nu \rho \times \rho\rangle \times\left\langle\rho \times \nu^{-1} \rho\right\rangle$ has two constitutions, $F_{w_{0}^{\prime}}$ and $F_{w_{1}^{\prime}}$, where $F_{w_{0}^{\prime}}=\nu \rho \otimes\left(\operatorname{Ind}_{1,2}^{3} \rho \times\left\langle\rho \times \nu^{-1} \rho\right\rangle\right)$ and $F_{w_{1}^{\prime}}=\rho \otimes\left(\operatorname{Ind}_{2,1}^{3}\langle\nu \rho \times \rho\rangle \otimes \nu^{-1} \rho\right)$ are obtained from $\mathrm{W}^{\beta^{\prime}, \gamma^{\prime}}=\left\{w_{0}^{\prime}=i d, w_{1}^{\prime}=(1,2,3)\right\}$, with $\beta^{\prime}=\{2,2\}$ and $\gamma^{\prime}=\{1,3\}$. Next, $\widetilde{\mathrm{r}}_{1,3}^{4} \operatorname{Ind}_{3,1}^{4}\left\langle\nu \rho \times \rho \times \nu^{-1} \rho\right\rangle \otimes \rho$ also has two constitutions, $F_{w_{0}^{\prime \prime}}$ and $F_{w_{1}^{\prime \prime}}$, where
$F_{w_{0}^{\prime \prime}}=\nu \rho \otimes\left(\operatorname{Ind}_{2,1}^{3}\left\langle\rho \times \nu^{-1} \rho\right\rangle \otimes \rho\right)$ and $F_{w_{1}^{\prime \prime}}=\rho \otimes\left\langle\nu \rho \times \rho \times \nu^{-1} \rho\right\rangle$ are obtained from $\mathrm{W}^{\beta^{\prime \prime}, \gamma^{\prime \prime}}=\left\{w_{0}^{\prime \prime}=i d, w_{1}^{\prime \prime}=(1,2,3,4)\right\}$, with $\beta^{\prime \prime}=\{3,1\}$ and $\gamma^{\prime \prime}=\{1,3\}$. Since

$$
\begin{aligned}
\widetilde{\mathrm{r}}_{1,3}^{4} L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right) & =\widetilde{\mathrm{r}}_{1,3}^{4} \operatorname{Ind}_{2,2}^{4}\langle\nu \rho \times \rho\rangle \times\left\langle\rho \times \nu^{-1} \rho\right\rangle-\widetilde{\mathrm{r}}_{1,3}^{4}\left\langle\nu \rho \times \rho \times \nu^{-1} \rho\right\rangle \times \rho \\
& =\rho \otimes\left(\operatorname{Ind}_{2,1}^{3}\langle\nu \rho \times \rho\rangle \otimes \nu^{-1} \rho\right)-\rho \otimes\left\langle\nu \rho \times \rho \times \nu^{-1} \rho\right\rangle \\
& =\rho \otimes L\left(\langle\nu \rho \times \rho\rangle \times \nu^{-1} \rho\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
F_{w_{1}} & =\operatorname{Ind}_{1,1,3}^{1,4} \circ w_{1} \circ\left(\delta \otimes \rho \otimes L\left(\langle\nu \rho \times \rho\rangle \times \nu^{-1} \rho\right)\right. \\
& =\rho \otimes\left(\operatorname{Ind}_{1,3}^{4} \delta \otimes L\left(\langle\nu \rho \times \rho\rangle \times \nu^{-1} \rho\right)\right) .
\end{aligned}
$$

We claim that $\operatorname{Ind}_{1,3}^{4} \delta \otimes L\left(\langle\nu \rho \times \rho\rangle \times \nu^{-1} \rho\right)$ has an $\mathcal{M}_{4,1}$ model. The quotient of

$$
\widetilde{\mathbf{r}}_{2,2}^{4} \operatorname{Ind}_{1,2,1}^{4} \delta \otimes\langle\nu \rho \times \rho\rangle \otimes \nu^{-1} \rho
$$

is $\lambda=\operatorname{Ind}_{1,1}^{2}(\delta \otimes \nu \rho) \otimes \operatorname{Ind}_{1,1}^{2}\left(\rho \otimes \nu^{-1} \rho\right)$. Because $\operatorname{Ind}_{1,1}^{2} \delta \otimes \nu \rho$ has a Whittaker model and the quotient $L\left(\rho \times \nu^{-1} \rho\right)$ of $\operatorname{Ind}_{1,1}^{2} \rho \otimes \nu^{-1} \rho$ has a symplectic model, λ has an $\mathcal{M}_{4,1}$ model and so does $\operatorname{Ind}_{1,2,1}^{4} \delta \otimes\langle\nu \rho \times \rho\rangle \otimes \nu^{-1} \rho$. Since $\operatorname{Ind}_{1,2,1}^{4} \delta \otimes\langle\nu \rho \times \rho\rangle \otimes \nu^{-1} \rho$ consists of two irreducible constitutions, $\operatorname{Ind}_{1,3}^{4} \rho \otimes\left\langle\nu \rho \times \rho \times \nu^{-1} \rho\right\rangle$ (with a Whittaker model) and $\operatorname{Ind}_{1,3}^{4} \delta \otimes L\left(\langle\nu \rho \times \rho\rangle \times \nu^{-1} \rho\right)$, the $\mathcal{N}_{4,1}$ model must be supported in $\operatorname{Ind}_{1,3}^{4} \delta \otimes L\left(\langle\nu \rho \times \rho\rangle \times \nu^{-1} \rho\right)$. This proves the claim.

By the disjointness of $\mathcal{M}_{4,1}$ and $\mathcal{M}_{4,2}, \operatorname{Ind}_{1,3}^{4} \delta \otimes L\left(\langle\nu \rho \times \rho\rangle \times \nu^{-1} \rho\right)$ has no $\mathcal{M}_{4,2}$ model, and we conclude that $F_{w_{1}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2}$ model. Hence $\delta \times L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right)$ has a unique \mathcal{M}_{2} model.

4(b): Set $\chi_{2}=\left\langle\nu^{-\frac{1}{2}} \rho \times \nu^{\frac{1}{2}} \rho\right\rangle$. By reciprocity,
$\operatorname{Hom}_{5}\left(\delta_{3} \times \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{3} \times \mathrm{SP}_{2} \times \mathrm{N}_{1}}^{\mathrm{G}_{5}} \psi_{3} \otimes 1 \otimes 1\right) \simeq$

$$
\operatorname{Hom}_{3,2}\left(\widetilde{\mathrm{r}}_{3,2}^{5} \operatorname{Ind}_{3,2}^{5} \delta_{3} \otimes \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{3}}^{\mathrm{G}_{3}} \psi_{3} \otimes \operatorname{Ind}_{\mathrm{S}_{2}}^{\mathrm{G}_{2}} 1\right)
$$

For $\beta=\gamma=\{3,2\}, \mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(2,4)(3,5), w_{2}=(3,4)\right\}$, and the quotient $F_{w_{0}}=\delta_{3} \otimes \chi_{2}$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. For $F_{w_{1}}=\operatorname{Ind}_{1,2,2}^{3,2} \circ w_{1} \circ$ $\widetilde{\mathrm{r}}_{1,2,2}^{3,2} \delta_{3} \otimes \chi_{2}$, with δ_{3} either (i) supercuspidal or (ii) Steinberg:
(i) When δ_{3} is supercuspidal, $F_{w_{1}}=0$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model.
(ii) When δ_{3} is Steinberg, set $\delta_{3}=\left\langle\nu \tau \times \tau \times \nu^{-1} \tau\right\rangle$. Then

$$
F_{w_{1}}=\left(\operatorname{Ind}_{1,2}^{3} \nu \tau \otimes \chi_{2}\right) \otimes\left\langle\tau \times \nu^{-1} \tau\right\rangle .
$$

Since $\left\langle\tau \times \nu^{-1} \tau\right\rangle$ has a Whittaker model, $F_{w_{1}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model.
For $F_{w_{2}}=\operatorname{Ind}_{2,1,1,1}^{3,2} \circ w_{2} \circ \widetilde{\mathrm{r}}_{1,2,2}^{3,2} \delta_{3} \otimes \chi_{2}$, with δ_{3} either supercuspidal or Steinberg:
(i) When δ_{3} is supercuspidal, $F_{w_{2}}=0$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model.
(ii) When δ_{3} is Steinberg,

$$
F_{w_{2}}=\left(\operatorname{Ind}_{2,1}^{3}\langle\nu \tau \times \tau\rangle \otimes \nu^{-\frac{1}{2}} \rho\right) \otimes\left(\operatorname{Ind}_{1,1}^{2} \nu^{-1} \tau \otimes \nu^{\frac{1}{2}} \rho\right)
$$

The representation $\operatorname{Ind}_{1,1}^{2} \nu^{-1} \tau \otimes \nu^{\frac{1}{2}} \rho$ has a Whittaker model, so $F_{w_{2}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Hence $\delta_{3} \times \chi_{2}$ has a unique \mathcal{M}_{1} model.
4(c): Set $\chi_{3}=\left\langle\nu^{-1} \rho \times \rho \times \nu \rho\right\rangle$. By reciprocity,

$$
\begin{aligned}
\operatorname{Hom}_{5}\left(\delta_{2} \times \chi_{3}, \operatorname{Ind}_{\mathrm{U}_{3} \times \mathrm{Sp}_{2} \times \mathrm{N}_{1}}^{\mathrm{G}_{5}} \psi_{3} \otimes 1 \otimes 1\right) & \simeq \\
& \operatorname{Hom}_{3,2}\left(\widetilde{\mathrm{r}}_{3,2}^{5} \operatorname{Ind}_{2,3}^{5} \delta_{2} \otimes \chi_{3}, \operatorname{Ind}_{\mathrm{U}_{3}}^{\mathrm{G}_{3}} \psi_{3} \otimes \operatorname{Ind}_{\mathrm{Sp}_{2}}^{\mathrm{G}_{2}} 1\right)
\end{aligned}
$$

For $\beta=\{2,3\}, \gamma=\{3,2\}$,

$$
\mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(1,4,2,5,3), w_{2}=(2,4,3)\right\}
$$

The quotient $F_{w_{0}}=\left(\operatorname{Ind}_{2,1}^{3} \delta_{2} \otimes \nu^{-1} \rho\right) \otimes\langle\rho \times \nu \rho\rangle$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model, and $F_{w_{1}}=\chi_{3} \otimes \delta_{2}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Note that $F_{w_{2}}=\operatorname{Ind}_{1,2,1,1}^{3,2} \circ w_{2} \circ \widetilde{\mathbf{r}}_{1,1,2,1}^{2,3} \delta_{2} \otimes$ $\left\langle\nu^{-1} \rho \times \rho \times \nu \rho\right\rangle$.
(i) When δ_{2} is supercuspidal, $F_{w_{2}}=0$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model.
(ii) When δ_{2} is Steinberg, set $\delta_{2}=\left\langle\nu^{\frac{1}{2}} \tau \times \nu^{-\frac{1}{2}} \tau\right\rangle$. Because

$$
F_{w_{2}}=\left(\operatorname{Ind}_{1,2}^{3} \nu^{\frac{1}{2}} \tau \otimes\left\langle\nu^{-1} \rho \times \rho\right\rangle\right) \otimes \operatorname{Ind}_{1,1}^{2} \nu^{-\frac{1}{2}} \tau \otimes \nu \rho
$$

and $\operatorname{Ind}_{1,1}^{2} \nu^{-\frac{1}{2}} \tau \otimes \nu \rho$ has a Whittaker model, $F_{w_{2}}$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Hence $\delta_{2} \times \chi_{3}$ has a unique \mathcal{M}_{1} model.
4(d): Set $\chi_{3}=\left\langle\nu^{-1} \tau \times \tau \times \nu \tau\right\rangle, \chi_{2}=\left\langle\nu^{-\frac{1}{2}} \rho \times \nu^{\frac{1}{2}} \rho\right\rangle$. By reciprocity,

$$
\begin{aligned}
\operatorname{Hom}_{5}\left(\chi_{3} \times \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{1} \times \mathrm{Sp}_{4} \times \mathrm{N}_{2}}^{\mathrm{G}_{5}} \psi_{1} \otimes 1 \otimes 1\right) & \simeq \\
& \operatorname{Hom}_{1,4}\left(\widetilde{\mathrm{r}}_{1,4}^{5} \operatorname{Ind}_{3,2}^{5} \chi_{3} \times \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{1}}^{\mathrm{G}_{1}} \psi_{1} \otimes \operatorname{Ind}_{\mathrm{SP}_{4}}^{\mathrm{G}_{4}} 1\right)
\end{aligned}
$$

For $\beta=\{3,2\}, \gamma=\{1,4\}, \mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(1,2,3,4)\right\}$, and the quotient $F_{w_{0}}=\nu^{-1} \tau \otimes\left(\operatorname{Ind}_{2,2}^{4}\left\langle\nu^{-1} \tau \times \tau\right\rangle \otimes\left\langle\nu^{-\frac{1}{2}} \rho \times \nu^{\frac{1}{2}} \rho\right\rangle\right)$. By [HR, Proposition 11.4], $\left\langle\nu^{-1} \tau \times \tau\right\rangle \times\left\langle\nu^{-\frac{1}{2}} \rho \times \nu^{\frac{1}{2}} \rho\right\rangle$ has a unique \mathcal{M}_{2} model, so $F_{w_{0}}$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{2}$ model.

By the disjointness of $\mathcal{M}_{4,1}$ and $\mathcal{M}_{4,2}$ and the fact that $\operatorname{Ind}_{3,1}^{4} \chi_{3} \otimes \nu^{\frac{1}{2}} \rho$ has an $\mathcal{M}_{4,1}$ model,

$$
F_{w_{1}}=\nu^{-\frac{1}{2}} \rho \otimes\left(\operatorname{Ind}_{3,1}^{4} \chi_{3} \otimes \nu^{\frac{1}{2}} \rho\right)
$$

has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2}$ model. Hence $\chi_{3} \times \chi_{2}$ has a unique \mathcal{M}_{2} model.

5(b) and (d) are both in the form of $\nu^{k} \delta \times \nu^{t} \tau \times \chi_{3}$, for $k \neq t \pm 1$, and $k, t \neq \pm 2$. Now we want to show that $\nu^{k} \delta \times \nu^{t} \tau \times \chi_{3}$ has a unique \mathcal{M}_{1} model. Set $\chi_{3}=\left\langle\nu^{-1} \rho \times\right.$ $\rho \times \nu \rho\rangle$. By reciprocity,

$$
\begin{aligned}
& \operatorname{Hom}_{5}\left(\nu^{k} \delta \times \nu^{t} \tau \times \chi_{3}, \operatorname{Ind}_{\mathrm{U}_{3} \times \mathrm{Sp}_{2} \times \mathrm{N}_{1}}^{\mathrm{G}_{5}} \psi_{3} \otimes 1 \otimes 1\right) \simeq \\
& \quad \operatorname{Hom}_{3,2}\left(\widetilde{\mathrm{r}}_{3,2}^{5} \operatorname{Ind}_{1,1,3}^{5} \nu^{k} \delta \otimes \nu^{t} \tau \otimes \chi_{3}, \operatorname{Ind}_{\mathrm{U}_{3}}^{\mathrm{G}_{3}} \psi_{3} \otimes \operatorname{Ind}_{\mathrm{S}_{2}}^{\mathrm{G}_{2}} 1\right)
\end{aligned}
$$

For $\beta=\{1,1,3\}, \gamma=\{3,2\}$,

$$
\mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(1,4,2,5,3), w_{2}=(2,4,3)\right\}
$$

and the quotient $F_{w_{0}}=\left(\operatorname{Ind}_{1,1,1}^{3} \nu^{k} \delta \otimes \nu^{t} \tau \otimes \nu^{-1} \rho\right) \otimes\langle\rho \times \nu \rho\rangle$. Since $\operatorname{Ind}_{1,1,1}^{3} \nu^{k} \delta \otimes$ $\nu^{t} \tau \otimes \nu^{-1} \rho$ and $\operatorname{Ind}_{1,1}^{2} \nu^{k} \delta \otimes \nu^{t} \tau$ both have unique Whittaker models by Theorem 3.10, $F_{w_{0}}$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model, and $F_{w_{1}}=\chi_{3} \otimes\left(\operatorname{Ind}_{1,1}^{2} \nu^{k} \delta \otimes \nu^{t} \tau\right)$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Since $\operatorname{Ind}_{1,2}^{3} \nu^{k} \delta \otimes\left\langle\nu^{-1} \rho \times \rho\right\rangle$ is irreducible and has an \mathcal{M}_{1} model,

$$
F_{w_{2}}=\left(\operatorname{Ind}_{1,2}^{3} \nu^{k} \delta \otimes\left\langle\nu^{-1} \rho \times \rho\right\rangle\right) \otimes\left(\operatorname{Ind}_{1,1}^{2} \nu^{t} \tau \otimes \nu \rho\right)
$$

has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Therefore $\nu^{k} \delta \times \nu^{t} \tau \times \chi_{3}$ has a unique \mathcal{M}_{1} model.
6(b) and (d) are both in the form of $\nu^{k} \delta \times \nu^{s} \tau \times \nu^{t} \tau^{\prime} \times \chi_{2}$, and none of them are linked. That is, $k, s, t \neq \pm \frac{1}{2}, \pm \frac{3}{2}$ and the difference between any pair of them is not ± 1. We want to show that $\nu^{k} \delta \times \nu^{s} \tau \times \nu^{t} \tau^{\prime} \times \chi_{2}$ has a unique \mathcal{M}_{1} model. Set $\chi_{2}=\left\langle\nu^{-\frac{1}{2}} \rho \times \nu^{\frac{1}{2}} \rho\right\rangle$. By reciprocity,

$$
\begin{aligned}
& \operatorname{Hom}_{5}\left(\nu^{k} \delta \times \nu^{s} \tau \times \nu^{t} \tau^{\prime} \times \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{3} \times \mathrm{Sp}_{2} \times \mathrm{N}_{1}}^{\mathrm{G}_{5}} \psi_{3} \otimes 1 \otimes 1\right) \simeq \\
& \operatorname{Hom}_{3,2}\left(\widetilde{\mathrm{r}}_{3,2}^{5} \operatorname{Ind}_{1,1,1,2}^{5} \nu^{k} \delta \otimes \nu^{s} \tau \otimes \nu^{t} \tau^{\prime} \otimes \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{3}}^{\mathrm{G}_{3}} \psi_{3} \otimes \operatorname{Ind}_{\mathrm{Sp}_{2}}^{\mathrm{G}_{2}} 1\right)
\end{aligned}
$$

For $\beta=\{1,1,1,2\}, \gamma=\{3,2\}$,

$$
\mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(1,4,2,5,3), w_{2}=(3,4), \ldots\right\}
$$

and the quotient $F_{w_{0}}=\left(\operatorname{Ind}_{1,1,1}^{3} \nu^{k} \delta \otimes \nu^{s} \tau \otimes \nu^{t} \tau^{\prime}\right) \otimes \chi_{2}$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Any other $F_{w_{i}}$ cannot keep χ_{2} at the $(4,5)$-th position. (If it does, then $w_{i}^{-1}(1) \leq w_{i}^{-1}(2) \leq w_{i}^{-1}(3)$ will force $w_{i}=$ id.) Therefore we cannot find another factor with an $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Thus $\nu^{k} \delta \times \nu^{s} \tau \times \nu^{t} \tau^{\prime} \times \chi_{2}$ has a unique \mathcal{M}_{1} model.

7 (b): Set $\chi_{2}=\left\langle\nu^{-\frac{1}{2}} \rho \times \nu^{\frac{1}{2}} \rho\right\rangle$. By reciprocity,

$$
\begin{aligned}
& \operatorname{Hom}_{5}\left(\delta \times \delta_{2} \times \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{3} \times \mathrm{Sp}_{2} \times \mathrm{N}_{1}}^{\mathrm{G}_{5}} \psi_{3} \otimes 1 \otimes 1\right) \simeq \\
& \quad \operatorname{Hom}_{3,2}\left(\widetilde{\mathrm{r}}_{3,2}^{5} \operatorname{Ind}_{1,2,2}^{5} \delta \otimes \delta_{2} \otimes \chi_{2}, \operatorname{Ind}_{\mathrm{U}_{3}}^{\mathrm{G}_{3}} \psi_{3} \otimes \operatorname{Ind}_{\mathrm{S}_{\mathrm{p}_{2}}}^{\mathrm{G}_{2}} 1\right)
\end{aligned}
$$

For $\beta=\{1,2,2\}, \gamma=\{3,2\}$,

$$
\mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(2,4)(3,5), w_{2}=(3,4), w_{3}=(1,4,3,2)\right\}
$$

and the quotient $F_{w_{0}}=\left(\operatorname{Ind}_{1,2}^{3} \delta \otimes \delta_{2}\right) \otimes \chi_{2}$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Also

$$
F_{w_{1}}=\left(\operatorname{Ind}_{1,2}^{3} \delta \otimes \chi_{2}\right) \otimes \delta_{2}
$$

has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model. Note that

$$
F_{w_{2}}=\operatorname{Ind}_{1,1,1,1,1}^{3,2} \circ w_{2} \circ \widetilde{\mathfrak{r}}_{1,1,1,1,1}^{1,2,2} \delta \otimes \delta_{2} \otimes \chi_{2}
$$

where δ_{2} is either (i) supercuspidal or (ii) Steinberg.
(i) When δ_{2} is supercuspidal, $F_{w_{2}}=0$ has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model.
(ii) When δ_{2} is Steinberg, set $\delta_{2}=\left\langle\nu^{\frac{1}{2}} \tau \times \nu^{-\frac{1}{2}} \tau\right\rangle$. Then

$$
F_{w_{2}}=\left(\operatorname{Ind}_{1,1,1}^{3} \delta \otimes \nu^{\frac{1}{2}} \tau \otimes \nu^{-\frac{1}{2}} \rho\right) \otimes\left(\operatorname{Ind}_{1,1}^{2} \nu^{-\frac{1}{2}} \tau \otimes \nu^{\frac{1}{2}} \rho\right)
$$

has no $\mathcal{M}_{0} \otimes \mathcal{M}_{1}$ model, and neither does

$$
F_{w_{3}}=\left(\operatorname{Ind}_{2,1}^{3} \delta_{2} \otimes \nu^{-\frac{1}{2}} \rho\right) \otimes\left(\operatorname{Ind}_{1,1}^{2} \delta \otimes \nu^{\frac{1}{2}} \rho\right)
$$

Hence $\delta \times \delta_{2} \times \chi_{2}$ has a unique \mathcal{M}_{1} model.
7(c) and (e) are both in the form of $\delta \times \nu^{\alpha} \chi_{2} \times \nu^{\lambda} \chi_{2}^{\prime}$, where $\alpha \neq \lambda \pm 1 ; \alpha, \lambda \neq$ $\pm \frac{1}{2}, \pm \frac{3}{2}$. Now we want to show that $\delta \times \nu^{\alpha} \chi_{2} \times \nu^{\lambda} \chi_{2}^{\prime}$ has a unique \mathcal{M}_{2} model. By reciprocity,

$$
\begin{aligned}
& \operatorname{Hom}_{5}\left(\delta \times \nu^{\alpha} \chi_{2} \times \nu^{\lambda} \chi_{2}^{\prime}, \operatorname{Ind}_{\mathrm{U}_{1} \times \mathrm{Sp}_{4} \times \mathrm{N}_{2}}^{\mathrm{G}_{5}} \psi_{1} \otimes 1 \otimes 1\right) \simeq \\
& \\
& \operatorname{Hom}_{1,4}\left(\widetilde{\mathrm{r}}_{1,4}^{5} \operatorname{Ind}_{1,2,2}^{5} \delta \otimes \nu^{\alpha} \chi_{2} \otimes \nu^{\lambda} \chi_{2}^{\prime}, \operatorname{Ind}_{\mathrm{U}_{1}}^{\mathrm{G}_{1}} \psi_{1} \otimes \operatorname{Ind}_{\mathrm{S}_{4}}^{\mathrm{G}_{4}} 1\right)
\end{aligned}
$$

For $\beta=\{1,2,2\}, \gamma=\{1,4\}$,

$$
\mathrm{W}^{\beta, \gamma}=\left\{w_{0}=i d, w_{1}=(1,2), w_{2}=(1,2,3,4)\right\}
$$

and the quotient $F_{w_{0}}=\delta \otimes\left(\operatorname{Ind}_{2,2}^{4} \nu^{\alpha} \chi_{2} \otimes \nu^{\lambda} \chi_{2}^{\prime}\right)$ has a unique $\mathcal{M}_{0} \otimes \mathcal{M}_{2}$ model. Let $\chi_{2}=\left\langle\nu^{-\frac{1}{2}} \tau \times \nu^{\frac{1}{2}} \tau\right\rangle$ and $\chi_{2}^{\prime}=\left\langle\nu^{-\frac{1}{2}} \rho \times \nu^{\frac{1}{2}} \rho\right\rangle$. Then

$$
F_{w_{1}}=\nu^{-\frac{1}{2}+\alpha} \tau \otimes\left(\operatorname{Ind}_{1,1,2}^{4} \delta \otimes \nu^{\frac{1}{2}+\alpha} \tau \otimes \nu^{\lambda} \chi_{2}^{\prime}\right)
$$

has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2}$ model, because $\operatorname{Ind}_{1,1,2}^{4} \delta \otimes \nu^{\frac{1}{2}+\alpha} \tau \otimes \nu^{\lambda} \chi_{2}^{\prime}$ has an $\mathcal{M}_{4,1}$ model by Lemma 5.4. Also

$$
F_{w_{2}}=\nu^{-\frac{1}{2}+\lambda} \rho \otimes\left(\operatorname{Ind}_{1,2,1}^{4} \delta \otimes \nu^{\alpha} \chi_{2} \otimes \nu^{\frac{1}{2}+\lambda} \rho\right)
$$

has no $\mathcal{M}_{0} \otimes \mathcal{M}_{2}$ model, since $\operatorname{Ind}_{1,2,1}^{4} \delta \otimes \chi_{2} \otimes \nu^{\frac{1}{2}+\lambda} \rho$ has an $\mathcal{M}_{4,1}$ model. Hence $\delta \times \nu^{\alpha} \chi_{2} \times \nu^{\lambda} \chi_{2}^{\prime}$ has a unique \mathcal{M}_{2} model.

Then Table 1 lists models of unitary representation on G_{5}, where $\alpha, \lambda \in\left(0, \frac{1}{2}\right)$ are real numbers; δ_{i}, ρ_{i}, and τ_{i} are square-integrable representations of G_{i}, and χ_{i} are characters of G_{i}. We omit the subscript i if $i=1$.

Acknowledgments I am most grateful to my advisor Dihua Jiang for his guidance and support during the preparation of this paper. I would also like to thank professor Paul Garrett for his useful suggestions and comments.

Representation	Model
δ_{5}	\mathcal{M}_{0}
$L\left(\nu^{2} \delta \times \nu \delta \times \delta \times \nu^{-1} \delta \times \nu^{-2} \delta\right)$	\mathcal{M}_{2}
$\delta \times \delta_{4}$	\mathcal{M}_{0}
$\delta \times \chi_{4}$	\mathcal{M}_{2}
$\delta \times L\left(\nu^{\frac{1}{2}} \delta_{2} \times \nu^{-\frac{1}{2}} \delta_{2}\right)$	\mathcal{M}_{2}
$\delta_{2} \times \delta_{3}$	\mathcal{M}_{0}
$\delta_{3} \times \chi_{2}$	\mathcal{M}_{1}
$\delta_{2} \times \chi_{3}$	\mathcal{M}_{1}
$\chi_{2} \times \chi_{3}$	\mathcal{M}_{2}
$\delta \times \tau \times \delta_{3}$	\mathcal{M}_{0}
$\delta \times \tau \times \chi_{3}$	\mathcal{M}_{1}
$\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \delta_{3}$	\mathcal{M}_{0}
$\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \chi_{3}$	\mathcal{M}_{1}
$\delta \times \rho \times \tau \times \delta_{2}$	\mathcal{M}_{0}
$\delta \times \tau \times \rho \times \chi_{2}$	\mathcal{M}_{1}
$\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \tau \times \delta_{2}$	\mathcal{M}_{0}
$\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \tau \times \chi_{2}$	\mathcal{M}_{1}
$\delta \times \delta_{2} \times \delta_{2}^{\prime}$	\mathcal{M}_{0}
$\delta \times \delta_{2} \times \chi_{2}$	\mathcal{M}_{1}
$\delta \times \chi_{2} \times \chi_{2}^{\prime}$	\mathcal{M}_{2}
$\delta \times \nu^{\alpha} \delta_{2} \times \nu^{-\alpha} \delta_{2}$	\mathcal{M}_{0}
$\delta \times \nu^{\alpha} \chi_{2} \times \nu^{-\alpha} \chi_{2}$	\mathcal{M}_{2}
$\delta \times \tau \times \rho \times \delta^{\prime} \times \tau^{\prime}$	\mathcal{M}_{0}
$\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \tau \times \rho \times \rho^{\prime}$	\mathcal{M}_{0}
$\nu^{\alpha} \delta \times \nu^{-\alpha} \delta \times \nu^{\lambda} \tau \times \nu^{-\lambda} \tau \times \rho$	\mathcal{M}_{0}

Table 1: Models of unitary representation on G_{5}.

References

[BGG] I.N. Bernstein, I.M. Gelfand, and S.I. Gelfand, 'Models of representations of compact Lie groups', Tr. Sem. Petrovskogo, No. 2 (1976), 3-21. Selecta Math. Sov.,1, No. 2, (1981), 121-142.
[Br] F. Bruhat, Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France 84(1956),97-205.
[Bu] D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55, Cambridge University Press, Cambridge, 1997.
[BZ1] I. N. Bernstein and A. V. Zelevinski, Representations of $\mathrm{GL}(n, \mathcal{F})$, where \mathcal{F} is a non-archimedean local field. Upsehi Mat. Nauk 31(1976), no. 3, 5-70.
[BZ2] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups I. Ann. Sci. École Norm. Sup. (4) 10(1977), no. 4, 441-472.
[Ge] S. I. Gelfand, Representations of a general linear group over a finite field. In: Lie groups and their representations, Halsted, New York, 1975, pp. 119-132.
[GK] S. I. Gelfand and D. Kajdan, Representations of the group GL (n, K) where K is a local field. In: Lie groups and their representations, Halsted, New York, 1975, pp. 95-118.
[HR] M. J. Heumos and S. Rallis, Symplectic-Whittaker models for GL n. Pacific J. Math. 146(1990), no. 2, 247-279.
[Kl] A. A. Klyachko, Models for the complex representations of the groups GL(n, q). Math. USSR-Sb. 48(1984), no.2, 365-379.
[Ku] S. S. Kudla, The local Langlands correspondence: the non-Archimedean case. Proc. Sympos. Pure Math. 55(1994), no. 2, 365-391.
[KV] J. A. C. Kolk and V. S. Varadarajan, On the transverse symbol of vectorial distributions and some applications to harmonic analysis. Indag. Math. (N.S.) 7(1996), no. 1, 67-96.
[MW1] C. Moeglin and J. L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes p-adiques. Math. Z. 196(1987), no. 3, 427-452.
[MW2] ——Sur l'involution de Zelevinski. J. Reine Angew. Math 372(1986), 136-177.
[Of1] O. Offen, On symplectic periods of the discrete spectrum of GL(2n). Israel J. Math. 154(2006), 253-298.
[Of2] Residual spectrum of GL(2n) distinguished by the symplectic group. Duke Math. J. 134(2006), no. 2, 313-357.
[OS] O. Offen and E. Sayag, On unitary representations of $\mathrm{GL}_{2 n}$ distinguished by the symplectic group. J. Number Theory 125(2007), no. 2, 344-355.
[Ro] F. Rodiers, Whittaker models for admissible representations of reductive p-adic split groups. Harmonic analysis on homogeneous spaces Proc. Sympos. Pure Math. 26, American Mathematical Society, Providence, RI, 1973, pp. 425-430.
[So] D. Soudry, 'A uniqueness theorem for representations of $G S O(6)$ and the strong multiplicity one theorem for generic representations of GSp(4)',Israel Journal of Mathematics, Vol. 58, no. 3 (1987).
[Ta1] M. Tadić, Topology of unitary dual of non-Archimedean GL(n). Duke Math. J. 55(1987), no. 2, 385-422.
[Ta2] , Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Ann. Sci. École Norm. Sup. (4) 19(1986), no. 3, 355-382.
[Wa] G. Warner, Harmonic analysis on semisimple Lie groups I, II. Springer, New York, 1972.
[Ze] A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup.(4) 13(1980), no. 2, 165-210.

Department of Mathematics, National Cheng Kung University, Tainan 701, TAIWAN
e-mail: nienpig@mail.ncku.edu.tw

[^0]: Received by the editors February 16, 2006.
 AMS subject classification: Primary: 22E50.
 Keywords: Klyachko models, Whittaker-symplectic model.
 (C)Canadian Mathematical Society 2009.

