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Abstract
Given a smooth genus three curve C, the moduli space of rank two stable vector bundles on C with trivial determinant
embeds in P8 as a hypersurface whose singular locus is the Kummer threefold of C; this hypersurface is the Coble
quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric
four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to
recover SU𝐶 (2, 𝐿), the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree
L, as a subvariety of 𝐺 (2, 8). In fact, each point 𝑝 ∈ 𝐶 defines a natural embedding of SU𝐶 (2,O(𝑝)) in 𝐺 (2, 8).
We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is
singular exactly along the image of SU𝐶 (2,O(𝑝)) and thus deserves to be coined the Coble quadric of the pointed
curve (𝐶, 𝑝).
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1. Introduction

A century ago, Arthur Coble proved that there exists a unique quartic hypersurface C in P7 that is singular
exactly along the three-dimensional Kummer variety, image of the Jacobian of a nonhyperelliptic
genus 3 curve C via the |2Θ|-linear system ([Cob61]; see also [Bea03, Kol23]). This remarkable
hypersurface is now named after him, and its many very special features have been studied by several
algebraic geometers. For example, C is projectively self-dual [Pau02], it has close relationships with the
Θ-geometry of the curve (e.g., a Schottky–Jung configuration of Kummer surfaces of Prym varieties
[vGP92], etc.) and with moduli of configurations of points in the projective space [AB15].

Probably, the most striking property is, however, that C is the image, via the theta map, of the moduli
space of semistable rank two vector bundles on C with trivial determinant. This was first remarked
by Narasimhan and Ramanan in the seminal paper [NR87]. In particular, since the theta map is an
embedding for rank two bundles with trivial determinant [Bea88], we can identify C with the moduli
space SU𝐶 (2) itself.

In rank two, there is, up to isomorphism, only one other moduli space SU𝐶 (2, 𝐿) of rank two vector
bundles on C, obtained by fixing the determinant to be any given line bundle L of odd degree (up to
noncanonical isomorphisms, L is irrelevant). Contrary to C, this moduli space is smooth and we can
wonder what could be an analogue of the Coble quartic. The main results of this paper answer this
natural question.

In order to achieve this, we will use the theory of theta representations [Vin76], in the way this
was initiated in [GSW13] as a complex addition to arithmetic invariant theory. In our setting, the main
point is that starting from the GL8-module ∧4C8 one can easily construct the Coble quartics in terms
of Pfaffian loci. From this point of view, the curve C defined by a general element of ∧4C8 is not
immediately visible, but certain deep properties of the quartic C become easy to establish. For example,
we give in Theorem 3.4 a short, self-contained proof of the self-duality of C. Then we switch from P7 to
the Grassmannian 𝐺 (2, 8) and observe that also in this Grassmannian, there exist natural Pfaffian loci
corresponding to skew forms of rank at most 4 and 6, respectively of codimension 6 and 1:

𝐷 = 𝐷𝑍6 (𝑣) ⊂ 𝑄 = 𝐷𝑍1 (𝑣) ⊂ 𝐺 (2, 8).

Here, v is a general element in ∧4C8 and Q is a quadric section of the Grassmannian that is singular
exactly along the six-dimensional smooth locus D (the notation 𝐷𝑍𝑖 (𝑣) will be explained in Section 4.2).
The connection with the Coble quartic comes from the fact that D parametrizes a family of lines on it,
some of the so-called Hecke lines. We deduce (Theorem 4.8 later on):

Theorem 1.1. 𝐷 � SU𝐶 (2, 𝐿) for L of odd degree.

Consequently, the moduli space, which is smooth, comes up with a natural hypersurface of which
it is the singular locus, contrary to the even case for which the moduli space is singular and uniquely
determined by its singular locus, which is the Kummer. We extend the unicity statement by proving
(Theorem 5.1 later on):

Theorem 1.2. Q is the only quadratic section of the Grassmannian that is singular along D.
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Because of this property, Q really deserves to be called a Coble quadric. Moreover, exactly as the
Coble quartic, we show this hypersurface is self-dual in a suitable sense (Theorem 5.15). As a matter of
fact, for each point 𝑝 ∈ 𝐶, there is an embedding

𝜑𝑝 : SU𝐶 (2,O𝐶 (𝑝)) ↩→ 𝐺 (2, 8),

(see [Bea91]), and we show that at least for the generic p, there exists a unique quadric section of the
Grassmannian that is singular along the moduli space (Theorem 5.14).

Remarkably, we found other instances of this phenomenon: For example, an eightfold inside the flag
variety 𝐹𝑙 (1, 7, 8) whose singular locus is an abelian threefold, essentially the Jacobian of the curve
(see Remark 3.7).

The paper is organized as follows. In section 2, we recall a few classical results about lines on moduli
spaces of vector bundles on curves and more specifically about lines in the Coble quartic. In section 3,
we explain how the Coble quartic, the Kummer threefold and the associated Jacobian can be constructed
from a skew-symmetric four-form in eight variables, and we give a short proof of the self-duality of
the quartic. In section 4, we explain how this point of view allows to understand the lines in the Coble
quartic in terms of orbital degeneracy loci [BFMT20a, BFMT20b], and we deduce Theorem 1 (see
Theorem 21). The resulting description as a relative Pfaffian locus makes it clear that the odd moduli
space is the singular locus of a special quadratic section of the Grassmannian 𝐺 (2, 8). In order to prove
that this special quadric is unique, we need to study the square of the ideal of the Grassmannian 𝐺 (2, 6)
in its Plücker embedding. Going back to the relative setting we deduce Theorem 2 (see Theorem 27).
We finally complete the picture by explaining why and how the special quadric is also self-dual.

2. Lines in the Coble quartic

Throughout the text, we will denote by U𝐶 (𝑟, 𝑑) the moduli space of semistable vector bundles on a
curve C of rank r and determinant of degree d. If L is a degree d line bundle on C, we will denote
by SU𝐶 (𝑟, 𝐿) the subvariety of 𝑈𝐶 (𝑟, 𝑑) parametrizing vector bundles of determinant L; moreover,
SU𝐶 (𝑟) := SU𝐶 (𝑟,O𝐶 ). Since all the moduli spaces SU(𝑟, 𝐿) are (noncanonically) isomorphic when
the degree of L is fixed, we will also denote their isomorphism class by SU𝐶 (𝑟, 𝑑); it depends only on
d modulo r. Finally, we will denote by U𝐶 (𝑟, 𝑑)

eff the moduli space of vector bundles with effective
determinant. When 𝑑 = 1, this moduli space fibers over the curve C with fiber over c isomorphic to
SU𝐶 (2,O𝐶 (𝑐)).

2.1. Covering families of rational curves in SU𝐶 (2)

Rational curves in the moduli spaces SU𝐶 (𝑟, 𝑑) were extensively studied; see, for example, [NR75,
OPP98, Hwa00, HR04, Sun05, MS09, Pal16]. Restricting to 𝑔 = 3, 𝑟 = 2 and 𝑑 = 0, the results of
[MTiB20] show that there exist two different families of covering lines, that is, families of rational
curves of degree one with respect to the Theta embedding

C := SU2(𝐶) ↩→ |2Θ| = P(𝑉8),

passing through a general point of the moduli space. We will denote these two families by F𝐻 and
F𝑅 and consider them as subvarieties of the Grassmannain 𝐺 (2, 𝑉8). In the sequel, we describe these
two covering families in some detail. They are both of dimension six but behave very differently;
we will illustrate this by showing how different are the corresponding variety of minimal rational
tangents(VMRTs), which in our case, since we deal with lines, are just the spaces of lines through a
fixed general point.

2.2. Hecke lines

Before going through the body of this section, we need to recall the following
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Definition 2.1. A vector bundle V on C is called (𝑘, ℓ)-semistable (resp. (𝑘, ℓ)-stable) if for any proper
subbundle 𝑊 ⊂ 𝑉 we have

deg(𝑊) + 𝑘

rank(𝑊)
≤ (𝑟𝑒𝑠𝑝. <)

deg(𝑉) + 𝑘 − ℓ
rank(𝑉)

.

A generic Hecke line can be described by choosing a point 𝑐 ∈ 𝐶 and a rank two vector bundle F on
C with determinant det(𝐹) = O𝐶 (𝑐). Then the bundles E that fit into an exact sequence

0−→𝐸−→𝐹−→O𝑐−→0

are parametrized by P(𝐹∨
𝑐 ) � P1. They have trivial determinant and are all stable when F is (1, 0)-

semistable in the sense of [MS09, Definition 2.5]. For vector bundles of rank two and degree one, this
condition is equivalent to stability, hence also to semistability. The resulting curve in SU𝐶 (2) is a line
and such lines are called Hecke lines. Note that dualizing, we get an exact sequence

0−→𝐹∨−→𝐸∨−→O𝑐−→0,

so a Hecke line parametrizes all the possible extensions of O𝑐 by 𝐹∨.
By [Pal16, Remark 5.3], a general Hecke line defines a vector bundle E of rank 2 over 𝐶 × P1 fitting

into an exact sequence

0−→𝑝∗1𝐹
∨ ⊗ 𝑝∗2OP1 (−1)−→E∨−→𝑝∗1O𝑐−→0,

where 𝑝1 and 𝑝2 are the projections of 𝐶 × P1 onto the two factors C and P1. An easy consequence is
that, since E∨ admits a unique jumping line at c, this point can be uniquely recovered from the Hecke
line. (Beware this is only true for general Hecke lines.)

We will denote by F𝐻 the family of Hecke lines in SU𝐶 (2,O𝐶 ), considered as a subvariety of the
space 𝐺 (2, 𝑉8) of lines in P(𝑉8).

Remark 2.2. Although a Hecke line does not always define a unique point in C, once we have fixed such
a point c there is a well-defined morphism from SU𝐶 (2,O𝐶 (𝑐)) to F𝐻 . By the previous observations,
the resulting morphism from F̃𝐻 := U𝐶 (2, 1)eff to F𝐻 is birational.

Conversely, Hecke lines passing through a general point [𝐸] of SU𝐶 (2, 𝐾𝐶 ) (we make this choice of
determinant just for convenience) are obtained by choosing a projection 𝐸→𝐸𝑐→O𝑐 , where 𝐸𝑐 denotes
the fiber of the vector bundle E at the point 𝑐 ∈ 𝐶. So they are parametrized by (the image in F𝐻 of)
the total space of the projective bundle P(𝐸∨) over C. The tangent map of this morphism sends P(𝐸∨)

to the tangent space of the moduli space at [𝐸], which is the projectivization of

𝐻1(𝐶, E𝑛𝑑0 (𝐸)) � 𝐻0(𝐶, 𝐾𝐶 ⊗ E𝑛𝑑0 (𝐸))
∨ � 𝐻0(𝐶, 𝑆2𝐸)∨

since 𝐾𝐶 � det(𝐸). Here, E𝑛𝑑0 (𝐸) denotes the vector bundle of traceless endomorphisms of E. This
implies (see [Hwa00, HR04] for more general statements):

Proposition 2.3. The VMRT of the family F𝐻 of Hecke lines at a general point [𝐸] of the moduli space
is the image of the ruled surface P(𝐸∨) by the linear system |O𝐸 (2) |. In particular this surface contains
no line.

Equivalently, the latter claim means that a general Hecke line is not contained in any larger linear
space contained in SU𝐶 (2), although such larger linear spaces do exist.
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2.3. Lines in the ruling

For each line bundle 𝐿 ∈ Pic1(𝐶), consider the rank two vector bundles E obtained as extensions of the
form

0−→𝐿−→𝐸−→𝐾𝐶 ⊗ 𝐿∨−→0.

Such extensions are parametrized by P𝐿 := P(Ext1(𝐾𝐶 ⊗ 𝐿∨, 𝐿)) � P3. Hence, we obtain a ruling of
SU𝐶 (2) by a family of P3s parametrized by Pic1(𝐶), which we denote by P(R)→Pic1(𝐶).

Note that P𝐿 intersects the Kummer threefold along a copy 𝐶𝐿 of C [OPP98, 1.1]. According to
[OPP98, Theorem 1.3], a line in P𝐿 is a Hecke line if and only if it meets 𝐶𝐿 .

Moreover, by [OPP98, Proposition 1.2], two spaces P𝐿 and P𝑀 are always distinct for 𝐿 ≠ 𝑀 and,
for sufficiently general choices of L and M, they are disjoint. When they meet, their intersection is a
single point, or a line; the latter case happens exactly when 𝐾𝐶 − 𝐿 − 𝑀 is effective. In particular, if a
line is contained in P𝐿 ∩ P𝑀 , it must be a bisecant to both 𝐶𝐿 and 𝐶𝑀 .

Now, consider the family F𝑅 of lines contained in the P3s of the ruling. By what we have just recalled,
F𝑅 is the birational image in 𝐺 (2, 𝑉8) of the quadric bundle 𝐺 (2,R) over Pic1 (𝐶).
Proposition 2.4. The VMRT at a general point of SU𝐶 (2), of the family F𝑅 of lines in its ruling, is the
disjoint union of eight planes in P5.
Proof. It follows from [Pau02, Section 4.1] that the map P(R)−→SU𝐶 (2) is generically finite of
degree 8. This means that eight P3s of the ruling pass through a general point [𝐸] of SU𝐶 (2), and
for each of them the lines passing through [𝐸] are parametrized by a projective plane. Finally, these
projective planes are disjoint, again by [OPP98, Proposition 1.2]. �

For future use, we record the following easy consequence.
Corollary 2.5. Any plane in SU𝐶 (2, 𝐾𝐶) passing through a general point is contained in a unique P3

of the ruling.

3. Four-forms and orbital degeneracy loci

In this section, we recall the definitions of some orbital degeneracy loci closely connected to the
geometry of SU𝐶 (2,O𝐶 ), for C a general curve of genus 3. In particular, we recall how to recover
the Coble quartic from a general four-form in eight variables. Using this description, we give a short
proof of the self-duality statement of [Pau02]. Our references for orbital degeneracy loci (sometimes
abbreviated as ODL) are [BFMT20a, BFMT20b]. All the results in this section are contained either in
[Pau02] or in [GSW13]; our contribution consists in a new interpretation in terms of ODL and in the
technique employed in the proof of the self-duality statement, which does not rely anymore on [Pau02].
Notation. We will denote by 𝑉𝑛 and 𝑈𝑖 complex vector spaces of dimension n and i, respectively
(usually 𝑉𝑛 will be fixed and 𝑈𝑖 will be a variable subspace of 𝑉𝑛). We will also denote by 𝐺 (𝑖, 𝑉𝑛)
the Grassmannian of i-dimensional subspaces of 𝑉𝑛 and by 𝐹𝑙 (𝑖1, . . . , 𝑖𝑘 , 𝑉𝑛) the flag variety of flags
of subspaces of 𝑉𝑛 of dimensions 𝑖1 < · · · < 𝑖𝑘 . Over the flag variety, we will denote by U𝑖 𝑗 the rank-𝑖 𝑗
tautological bundle; over the Grassmannian, we will denote by U the tautological bundle and by Q the
universal quotient bundle.

3.1. A simple construction of the Coble quartic

In this section, we recall some results from [GSW13]. The starting point is a general four-form in eight
variables, 𝑣 ∈ ∧4𝑉8 � ∧4𝑉∨

8 , where 𝑉8 denotes a complex eight-dimensional vector space. Recall that
this is a theta-representation, being part of a Z2-grading of the exceptional Lie algebra

𝔢7 � 𝔰𝔩(𝑉8) ⊕ ∧4𝑉8.
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The action of the so-called theta-group, which here is SL(𝑉8), behaves very much as the action of the
adjoint group on a simple complex Lie algebra. In particular, one has Jordan decompositions, and the
GIT-quotient

∧4𝑉8//SL(𝑉8) � 𝔥/𝑊

for some finite complex reflection group W acting on what is called a Cartan subspace 𝔥 of the theta-
representation. We will make this Cartan subspace explicit later on. For now, we just need to know
that it coincides with the seven-dimensional representation of the Weyl group of 𝐸7. As a consequence,
the choice of v determines uniquely a nonhyperelliptic curve C of genus three (a plane quartic) with a
marked flex point [GSW13, Remark 6.1].

We will construct from our general 𝑣 ∈ ∧4𝑉8 a collection of geometric objects defined as orbital
degeneracy loci. The main point of this approach is that it allows us to reduce to simpler representations.
Typically, the Borel–Weil theorem gives an isomorphism

∧4𝑉8 � 𝐻0(P(𝑉8),∧
4Q) � 𝐻0 (P(𝑉8),∧

3Q∨(1)),

where Q denotes the rank seven quotient vector bundle on P(𝑉8). At the price of passing to a relative
setting over P(𝑉8), this reduces the study of ∧4𝑉8 to that of three-forms in seven variables.

But then the situation is much simpler because if 𝑉7 is a seven-dimensional complex vector space,
∧3𝑉∨

7 � ∧4𝑉7 has finitely many orbits under the action of GL(𝑉7). Each orbit closure Y allows
to associate to 𝑣 ∈ ∧4𝑉8 the locus 𝐷𝑌 (𝑣) ⊂ P(𝑉8) of points x where the image of v lies in the
corresponding 𝑌𝑥 ⊂ ∧3Q∨(1)𝑥 (this is exactly how orbital degeneracy loci are defined). By the general
results of [BFMT20a], for v general the main properties of Y will be transferred to 𝐷𝑌 (𝑣), starting from
its codimension. We can therefore focus on the orbit closures in ∧3𝑉∨

7 of codimension at most seven.
Remarkably, there are only three such orbit closures (not counting the whole space), that we can index
by their codimension: 𝑌1 is a hypersurface of degree 7, 𝑌4 is its singular locus, 𝑌7 is the singular locus
of 𝑌4. The corresponding orbital degeneracy loci have been described in [GSW13, 6.1, 6.2].

Proposition 3.1. For v general, the threefold Kum𝐶 := 𝐷𝑌4 (𝑣) is the Kummer variety of a nonhyperel-
liptic genus three curve C. It is the singular locus of the quartic hypersurface C := 𝐷𝑌1 (𝑣). Its singular
locus is the finite set Kum𝐶 [2] := 𝐷𝑌7 (𝑣).

Since the Coble quartic can be characterized as the unique quartic hypersurface that is singular
along the Kummer threefold [Bea91, Proposition 3.1], we can immediately deduce that it coincides with
𝐷𝑌1 (𝑣).

3.2. Kempf collapsings

A nice feature of our orbital degeneracy loci is the following. It turns out that the orbit closures
they are associated to, although singular, admit nice resolutions of singularities by Kempf collapsings,
which are birational contractions from total spaces of homogeneous vector bundles on flag manifolds.
These homogeneous vector bundles are typically nonsemisimple, making them more difficult to handle.
Nevertheless, these collapsings allow to describe the corresponding orbital degeneracy loci in terms of
zero loci of sections of vector bundles.

In the cases we are interested in, we obtain the following descriptions, where 𝑈𝑘 stands for a
k-dimensional subspace of 𝑉8. For 𝐴, 𝐵 subspaces of a vector space V, we will denote by (∧𝑝𝐴) ∧
(∧𝑞𝐵) ⊂ ∧𝑝+𝑞𝑉 the linear subspace spanned by the elements of the form 𝑎1 ∧ · · · ∧ 𝑎𝑝 ∧ 𝑏1 ∧ · · · ∧ 𝑏𝑞
with 𝑎1, . . . , 𝑎𝑝 ∈ 𝐴 and 𝑏1, . . . , 𝑏𝑞 ∈ 𝐵. For vector subbundles A,B of a the trivial bundle 𝑉 ⊗ O, we
use the same convention to define (∧𝑝A) ∧ (∧𝑞B) in ∧𝑝+𝑞𝑉 ⊗ O.

Proposition 3.2. Let 𝑣 ∈ ∧4𝑉8 be a generic element. The Coble quartic C associated to v can be
described as

https://doi.org/10.1017/fms.2024.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.52


Forum of Mathematics, Sigma 7

{
[𝑈1] ∈ P(𝑉8) | ∃𝑈4 ⊃ 𝑈1, 𝑣 ∈ (∧2𝑈4) ∧ (∧2𝑉8) + ∧3𝑉8 ∧𝑈1

}
.

The corresponding Kummer threefold Kum𝐶 is
{
[𝑈1] ∈ P(𝑉8) | ∃𝑈6 ⊃ 𝑈2 ⊃ 𝑈1, 𝑣 ∈ ∧4𝑈6 + ∧2𝑈6 ∧𝑈2 ∧𝑉8 + ∧3𝑉8 ∧𝑈1

}
.

The singular locus Kum𝐶 [2] of Kum𝐶 is
{
[𝑈1] ∈ P(𝑉8) | ∃𝑈7 ⊃ 𝑈4 ⊃ 𝑈1, 𝑣 ∈ ∧3𝑈4 ∧𝑉8 + (∧2𝑈4) ∧ (∧2𝑈7) + ∧3𝑉8 ∧𝑈1

}
.

These results follow from a combination of [GSW13, Section 6] and [KW13, Section 3]. Let us
clarify the statement for instance for Kum𝐶 , the explanations for the other loci being similar. In [GSW13,
Section 6], it is shown that Kum𝐶 := 𝐷𝑌4 (𝑣) is the Kummer threefold. In [KW13, Section 3] it is proved
that 𝑌4 ⊂ ∧4𝑉7 is desingularized by a the total space of the vector bundle

W := ∧4U5 + ∧2U5 ∧ U1 ∧𝑉7

over the flag variety 𝐹𝑙 (1, 5, 𝑉7). Here, we denoted by U1 and U5, respectively, the rank one and
rank five tautological vector bundles on 𝐹𝑙 (1, 5, 𝑉7). The projection from the total space of W to
𝑌4 ⊂ ∧4𝑉7 is given by the composition of the inclusion of W inside ∧4𝑉7 ⊗ O𝐹𝑙 (1,5,𝑉7) with the
projection to ∧4𝑉7. For v general, this desingularization Tot(W) → 𝑌4 of 𝑌4 can be relativized to obtain
a desingularization of 𝐷𝑌4 (𝑣), as explained in [BFMT20a, Section 2]. For this, we simply consider the
flag bundle 𝐹𝑙 (1, 5,Q): By the previous discussion, any point of 𝑥 = [𝑈1] ∈ 𝐷𝑌4 (𝑣) must be the image
of a flag 𝑈̄1 ⊂ 𝑈̄5 ⊂ Q𝑥 = 𝑉8/𝑈1 such that 𝑣 mod 𝑈1 belongs to ∧4𝑈̄5 + ∧2𝑈̄5 ∧ 𝑈̄1 ∧ Q𝑥 ⊂ ∧4Q𝑥 .
This flag originates from a flag (𝑈1 ⊂ 𝑈2 ⊂ 𝑈6 ⊂ 𝑉8) (such that 𝑈̄1 = 𝑈2/𝑈1, etc.), and we can rewrite
the previous condition as asking that 𝑥 = [𝑈1] belongs to the projection of

𝑍 (𝑣) :=
{
(𝑈1 ⊂ 𝑈2 ⊂ 𝑈6) ∈ 𝐹𝑙 (1, 2, 6, 𝑉8), 𝑣 ∈ ∧4𝑈6 + ∧2𝑈6 ∧𝑈2 ∧𝑉8 + ∧3𝑉8 ∧𝑈1

}
.

This is the zero locus of a global section of a globally generated bundle, obtained as a quotient of the
trivial bundle with fiber ∧4𝑉8. For v general, this section is general, so 𝑍 (𝑣) is smooth. Moreover, the
projection 𝑍 (𝑣) → 𝐷𝑌4 (𝑣) ⊂ P(𝑉8), obtained by just forgetting 𝑈2 and 𝑈6, is birational.

3.3. Self-duality of the Coble quartic

Because of the natural isomorphism ∧4𝑉8 � ∧4𝑉∨
8 (defined up to scalar or, more precisely, up to the

choice of a volume form on 𝑉8), the same constructions can be performed in the dual projective space
P(𝑉∨

8 ). This is related to the remarkable fact that the Coble quartic is projectively self-dual [Pau02]. Let
us show how this duality statement easily follows from our approach in terms of orbital degeneracy loci.

First, consider a general point [𝑈1] of C = 𝐷𝑌1 (𝑣). As we have seen in the previous section, there
exists (a unique) 𝑈4 ⊃ 𝑈1 such that v belongs to (∧2𝑈4) ∧ (∧2𝑉8) + ∧3𝑉8 ∧ 𝑈1. Reducing modulo
(∧2𝑈4) ∧ (∧2𝑉8), we get

𝑣̄ ∈ ∧3(𝑉8/𝑈4) ⊗ 𝑈1 � (𝑉8/𝑈4)
∨.

In general, 𝑣̄ is nonzero and defines a hyperplane in 𝑉8/𝑈4, that is, a hyperplane 𝑈7 of 𝑉8, containing
𝑈4. Note that this exactly means that

𝑣 ∈ (∧2𝑈4) ∧ (∧2𝑉8) + ∧3𝑈7 ∧𝑈1. (3.1)

Lemma 3.3. P(𝑈7) is the tangent hyperplane to C at [𝑈1].
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Proof. Let C̃ denote the variety of flags (𝑈1 ⊂ 𝑈4) such that v belongs to

F (𝑈1,𝑈4) := (∧2𝑈4) ∧ (∧2𝑉8) + ∧3𝑉8 ∧𝑈1.

We know that the projection C̃−→C is birational. Moreover, as a subvariety of the flag manifold
𝐹𝑙 (1, 4, 𝑉8), C̃ is the zero-locus of the section of the vector bundle ∧4𝑉8/F (𝑈1,𝑈4) defined by v since
such a section vanishes exactly when 𝑣 ∈ F (𝑈1,𝑈4) ⊂ ∧4𝑉8. Let 𝔭(𝑈1,𝑈4) denote the stabilizer of
the flag (𝑈1 ⊂ 𝑈4) inside 𝔤𝔩(𝑉8). The tangent space to 𝐹𝑙 (1, 4, 𝑉8) at the corresponding point is the
quotient 𝔤𝔩(𝑉8)/𝔭(𝑈1,𝑈4), and the tangent space to C̃ is the image, in this quotient, of the space of
endomorphisms 𝑋 ∈ 𝔤𝔩(𝑉8) such that 𝑋 (𝑣) belongs to F (𝑈1,𝑈4), as follows from the normal exact
sequence

0 → 𝑇C̃ → 𝑇𝐹𝑙 (1,4,𝑉8) |C̃ → (∧4𝑉8/F (𝑈1,𝑈4)) |C̃ → 0.

The tangent space to C is then the image of this space inside 𝔤𝔩(𝑉8)/𝔭(𝑈1) � Hom(𝑈1, 𝑉8/𝑈1), where
𝔭(𝑈1) denotes the stabilizer of the line 𝑈1.

So our claim will follow, if we can check that any 𝑋 ∈ 𝔤𝔩(𝑉8) such that 𝑋 (𝑣) belongs to F (𝑈1,𝑈4),
must send𝑈1 into the hyperplane 𝑈7. But (3.1) implies, once we apply X, that

𝑋 (𝑣) ∈ 𝑈4 ∧ (∧3𝑉8) + ∧3𝑈7 ∧ 𝑋 (𝑈1).

If 𝑋 (𝑣) belongs to F (𝑈1,𝑈4), it has to vanish modulo 𝑈4. So ∧3𝑈7 ∧ 𝑋 (𝑈1) must also vanish modulo
𝑈4, which is the case only if 𝑋 (𝑈1) ⊂ 𝑈7. �

Recall that once we fix a volume form on 𝑉8, we get an isomorphism of ∧4𝑉8 with ∧4𝑉∨
8 . We

will denote by 𝑣∨ the image of v. (Strictly speaking, it is uniquely defined only up to scalar, but this
is irrelevant in our constructions.) To make things clearer, we will denote by C (𝑣) the Coble quartic
defined by v in P(𝑉8) and by C (𝑣∨) the Coble quartic defined by 𝑣∨ in P(𝑉∨

8 ).

Theorem 3.4. The projective dual of C (𝑣) is C (𝑣∨).

Proof. For [𝑈1] a general point of C, we have a flag (𝑈1 ⊂ 𝑈4 ⊂ 𝑈7) such that v belongs to (∧2𝑈4) ∧
(∧2𝑉8) + ∧3𝑈7 ∧ 𝑈1. Choose an adapted basis 𝑒1, . . . , 𝑒8 so that 𝑒1 generates 𝑈1, etc. The condition
means that v is a linear combination of elementary tensors 𝑒𝑖 ∧ 𝑒 𝑗 ∧ 𝑒𝑘 ∧ 𝑒ℓ with 𝑖, 𝑗 ≤ 4, and of
𝑒5 ∧ 𝑒6 ∧ 𝑒7 ∧ 𝑒1.

Now, recall that if the chosen volume form on 𝑉8 is 𝑒1 ∧ · · · ∧ 𝑒8, and 𝑒∨1 , . . . , 𝑒
∨
8 is the dual basis of

𝑒1, . . . , 𝑒8, then the isomorphism of ∧4𝑉8 with ∧4𝑉∨
8 sends the elementary tensor 𝑒𝑖 ∧ 𝑒 𝑗 ∧ 𝑒𝑘 ∧ 𝑒ℓ to

±𝑒∨𝑝 ∧ 𝑒∨𝑞 ∧ 𝑒∨𝑟 ∧ 𝑒∨𝑠 , where {𝑖, 𝑗 , 𝑘, 𝑙} ∩ {𝑝, 𝑞, 𝑟, 𝑠} = ∅.
As a consequence, 𝑣∨ will be a linear combination of elementary tensors 𝑒∨𝑝 ∧ 𝑒∨𝑞 ∧ 𝑒∨𝑟 ∧ 𝑒∨𝑠 with

𝑝, 𝑞 ≥ 5, and 𝑒∨2 ∧ 𝑒∨3 ∧ 𝑒∨4 ∧ 𝑒∨8 . In other words,

𝑣∨ ∈ (∧2𝑈⊥
4 ) ∧ (∧2𝑉∨

8 ) + ∧3𝑈⊥
1 ∧𝑈⊥

7 .

This is exactly the condition that ensures that [𝑈⊥
7 ] belongs to C (𝑣∨). Thanks to the previous lemma,

we deduce that C (𝑣)∨ ⊂ C (𝑣∨). Moreover, the symmetry between𝑈1 and𝑈⊥
7 implies that in general,𝑈1

can be recovered from𝑈7 exactly as𝑈7 is constructed from𝑈1, which means that C (𝑣)∨ is birationally
equivalent to C (𝑣). Finally, since C (𝑣)∨ and C (𝑣∨) are both irreducible hypersurfaces, they must be
equal. �

The previous discussion shows that it is natural to define the variety C (𝑣, 𝑣∨) ⊂ 𝐹𝑙 (1, 4, 7, 𝑉8)
parametrizing the flags (𝑈1 ⊂ 𝑈4 ⊂ 𝑈7 ⊂ 𝑉8) satisfying condition (3.1). This is a smooth variety
dominating birationally both C (𝑣) and C (𝑣∨); there is a diagram
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𝐹𝑙 (1, 4, 7, 𝑉8)

𝐹𝑙 (1, 4, 𝑉8) C (𝑣, 𝑣∨)
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�����
���
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��

𝐹𝑙 (4, 7, 𝑉8)

C̃ (𝑣)

�����
���

��

� �

����������
C̃ (𝑣∨)

����
���

���

� �

����������

P(𝑉8) ⊃ C (𝑣) 𝑑C �������������������� C (𝑣∨) ⊂ P(𝑉∨
8 ).

One recovers that way the constructions explained is [Pau02, section 3.3]. We used the suggestive
notation 𝑑C for the Gauss map, which sends a smooth point of C (𝑣) to its tangent hyperplane, given by
the differential of the cubic’s equation.

3.4. The Cartan subspace

Recall that a Cartan subspace for the Z2-graded Lie algebra 𝔢7 = 𝔰𝔩(𝑉8) ⊕∧4𝑉8 is a maximal subspace of
∧4𝑉8, made of elements of 𝔢6 which are semisimple and commute [Vin76]. Among other nice properties,
a general element of∧4𝑉8 is SL(𝑉8)-conjugate to (finitely many) elements of any given Cartan subspace.

An explicit Cartan subspace of ∧4𝑉8 is worked out in [Oed22, (3.1)]. It coincides with the space of
Heisenberg invariants provided in [RSSS13, Remark 4.2]. Here is a list of seven generators, for a given
basis 𝑒1, . . . , 𝑒8 of 𝑉8:

ℎ1 = 𝑒1 ∧ 𝑒2 ∧ 𝑒3 ∧ 𝑒4 + 𝑒5 ∧ 𝑒6 ∧ 𝑒7 ∧ 𝑒8,
ℎ2 = 𝑒1 ∧ 𝑒3 ∧ 𝑒5 ∧ 𝑒7 + 𝑒6 ∧ 𝑒8 ∧ 𝑒2 ∧ 𝑒4,
ℎ3 = 𝑒1 ∧ 𝑒5 ∧ 𝑒6 ∧ 𝑒2 + 𝑒8 ∧ 𝑒4 ∧ 𝑒3 ∧ 𝑒7,
ℎ4 = 𝑒1 ∧ 𝑒6 ∧ 𝑒8 ∧ 𝑒3 + 𝑒4 ∧ 𝑒5 ∧ 𝑒7 ∧ 𝑒2,
ℎ5 = 𝑒1 ∧ 𝑒8 ∧ 𝑒4 ∧ 𝑒5 + 𝑒7 ∧ 𝑒2 ∧ 𝑒6 ∧ 𝑒3,
ℎ6 = 𝑒1 ∧ 𝑒4 ∧ 𝑒7 ∧ 𝑒6 + 𝑒2 ∧ 𝑒3 ∧ 𝑒8 ∧ 𝑒5,
ℎ7 = 𝑒1 ∧ 𝑒7 ∧ 𝑒2 ∧ 𝑒8 + 𝑒3 ∧ 𝑒5 ∧ 𝑒4 ∧ 𝑒6.

Combinatorially, each of these generators is given by a pair of complementary fourtuples of indices in
{1, . . . , 8}. Each of these 14 fourtuples shares a pair of indices with any other distinct, not complementary
fourtuple. This is the property that ensures the commutation in 𝔢6, since the Lie bracket of 𝔢6, restricted
to ∧4𝑉8, is given by the unique (up to scalar) 𝔰𝔩8-equivariant morphism

∧2(∧4𝑉8)−→ ∧4 𝑉8 ⊗ ∧4𝑉8−→𝑆21111110𝑉8 � 𝔰𝔩8,

where 𝑆21111110 denotes the Schur functor corresponding to the partition (2, 1, 1, 1, 1, 1, 1, 0). If we
start with two elementary tensors given by fourtuples with a common pair of indices, we can include
them into ∧4𝑈6 for some codimension two subspace 𝑈6 ⊂ 𝑉8. But then the Lie bracket factors through
𝑆21111110𝑈6 = {0}, so it has to vanish.

Each pair of indices in {1, . . . , 8} belongs to three of the 14 fourtuples. For any triple (𝑖 𝑗 𝑘) among

(124), (137), (156), (235), (267), (346), (457),

ℎ𝑖 , ℎ 𝑗 and ℎ𝑘 share four disjoint pairs (for example ℎ1, ℎ2 and ℎ4 share (13), (24), (57), (68)). These
seven triples always meet in exactly one index, so they are in correspondence with the lines in a Fano
plane. One can find more on this in [Man06, Section 4].

A nice consequence of this description is the following

Proposition 3.5. C (𝑣) and C (𝑣∨) are isomorphic.
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Proof. Since our v is general, we may suppose up to the action of SL(𝑉8) that v belongs to our Cartan
subspace above, given in terms of the basis 𝑒1, . . . , 𝑒8 of 𝑉8. Denote the dual basis by 𝑒∨1 , . . . , 𝑒

∨
8 , and

choose the volume form 𝑒∨1 ∧ · · · ∧ 𝑒∨8 on 𝑉8. Then the induced isomorphism from ∧4𝑉8 to ∧4𝑉∨
8 sends

𝑒𝐼 = 𝑒𝑖1 ∧ 𝑒𝑖2 ∧ 𝑒𝑖3 ∧ 𝑒𝑖4 to 𝜖𝐼 ,𝐽 𝑒𝐽 , where J is the complement of I in {1, . . . , 8} and 𝜖𝐼 ,𝐽 is the sign of
the permutation (𝑖1, . . . , 𝑖4, 𝑗1, . . . , 𝑗4).

Now, observe that for each i, ℎ𝑖 is of the form 𝑒𝐾 + 𝑒𝐿 for two complementary sets of indices K and L.
Moreover, one can check that 𝜖𝐾,𝐿 is always equal to 1. This implies that ℎ∨𝑖 = 𝑒∨𝐾 + 𝑒∨𝐿 has exactly the
same expression as ℎ𝑖 in terms of the dual basis. In other words the map 𝑣 ↦→ 𝑣∨, when restricted to our
Cartan subspace, is essentially the identity, and the claim follows. �

3.5. The abelian threefold

Remarkably, one can construct the abelian threefold whose Kummer variety is Kum𝐶 by considering
another orbital degeneracy locus. The idea is to use the flag variety 𝐹𝑙 (1, 7, 𝑉8), the incidence corre-
spondence in P(𝑉8) × P(𝑉

∨
8 ) parametrizing flags (𝑈1 ⊂ 𝑈7). The rank six quotient bundle N = U7/U1

allows to realize the space of four-forms as

∧4𝑉∨
8 = 𝐻0 (𝐹𝑙 (1, 7, 𝑉8), 𝑝

∗
1O(1) ⊗ ∧3N ∨).

Exactly as before, this allows to associate to any GL(𝑉6)-orbit closure Y in ∧3𝑉6 an orbital degeneracy
locus 𝐷𝑌 (𝑣) ⊂ 𝐹𝑙 (1, 7, 𝑉8). Here, 𝑉6 is a six-dimensional vector space. In particular, the cone 𝑌10 over
the Grassmannian 𝐺 (3, 𝑉6) yields, for v generic, a smooth threefold A𝐶 := 𝐷𝑌10 (𝑣). In similar terms as
for the other orbital degeneracy loci, this threefold is

A𝐶 =
{
[𝑈1 ⊂ 𝑈7] ∈ 𝐹𝑙 (1, 7, 𝑉8) | ∃𝑈1 ⊂ 𝑈4 ⊂ 𝑈7, 𝑣 ∈ ∧3𝑈4 ∧𝑉8 + ∧4𝑈7 + ∧3𝑉8 ∧𝑈1

}
. (3.2)

Proposition 3.6. A𝐶 is a torsor over an abelian threefold, and the projection to P(𝑉8) is a double cover
of Kum𝐶 .
Proof. This is [GSW13, Proposition 6.12]. �

Over a point of A𝐶 , given by a flag 𝑈1 ⊂ 𝑈7, the four-form v defines a decomposable tensor in
∧3 (𝑈7/𝑈1). This tensor is never zero if v is general and therefore defines a four-dimensional space 𝑈4
such that 𝑈1 ⊂ 𝑈4 ⊂ 𝑈7. Hence, a rank-four vector bundle U4 on A𝐶 , a subbundle of the trivial bundle
𝑉8 ⊗ OA𝐶 .
Remark 3.7. The proper orbit closures of the GL(𝑉6)-action on ∧3𝑉6 are, apart from the cone over the
Grassmannian, a quartic hypersurface and the codimension five locus of partially decomposable tensors.
In our relative setting, the quartic induces a hypersurface of bidegree (2, 2) in P(𝑉8) × P(𝑉

∨
8 ), whose

singular locus is an eightfold that is singular exactly along A𝐶 . So once again we get a very interesting
singular hypersurface. It would be very nice to find a modular interpretation of these loci.

4. Lines from alternating forms

In this section, we will identify the two covering families of lines in SU𝐶 (2) in terms of orbital
degeneracy loci; this will give a very explicit description of these families in terms of existence of
special flags of vector spaces. As a consequence of this, we will obtain Theorem 4.8, in which we
identify the moduli space SU𝐶 (2, 𝐿), for L of odd degree, with an orbital degeneracy locus in 𝐺 (2, 𝑉8)
associated to 𝑣 ∈ ∧4𝑉8.

4.1. The ruling and its lines

Recall the definition of the abelian threefold A𝐶 from Equation (3.2). Our next result relates it to the
ruling described in section 2.3.
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Proposition 4.1. The family P(U4) over A𝐶 coincides with the ruling P(R) over Pic1 (𝐶) of the moduli
space SU𝐶 (2).

Proof. We need to prove that for any flag (𝑈1 ⊂ 𝑈7) in A𝐶 , defining the four-plane𝑈4, the linear space
P(𝑈4) is contained in C. If we can show that C is even covered by this family of P3s, we will be done
since the ruling is unique. So let us prove these two statements. �

Lemma 4.2. The image of P(U4) in P(𝑉8) is contained in the Coble quartic.

Proof. Consider a point of A𝐶 and the associated flag 𝑈1 ⊂ 𝑈4 ⊂ 𝑈7. By the very definition of A𝐶 ,
this means we can write

𝑣 = 𝑒1 ∧ 𝑤 + 𝑣′ + 𝑒2 ∧ 𝑒3 ∧ 𝑒4 ∧ 𝑒8

for some vectors 𝑒1 ∈ 𝑈1 and 𝑒2, 𝑒3, 𝑒4 ∈ 𝑈4, with 𝑤 ∈ ∧3𝑉8, 𝑒8 ∈ 𝑉8 and 𝑣′ ∈ ∧4𝑈7. Under the
generality hypothesis we can suppose that 𝑈4 = 〈𝑒1, 𝑒2, 𝑒3, 𝑒4〉, and it suffices to check that 𝑈 ′

1 = C𝑒2
defines a point of C.

Modulo 𝑒1 and 𝑒2, the tensor w is a three-form in six variables. Since the secants of the Grassman-
nian 𝐺 (3, 6) in its Plücker embedding fill up the ambient projective space, generically we can write
𝑤 = 𝑎 ∧ 𝑏 ∧ 𝑐 + 𝑑 ∧ 𝑒 ∧ 𝑓 modulo 𝑒1 and 𝑒2, for some vectors 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 . Modulo 𝑒1 and 𝑒2 again,
𝑣′ is a four-form in only five variables, so it defines a hyperplane that will cut the three-dimensional
space 〈𝑎, 𝑏, 𝑐〉 in codimension one, say along 〈𝑎, 𝑏〉, and similarly it will cut 〈𝑑, 𝑒, 𝑓 〉 in codimension
one, say along 〈𝑑, 𝑒〉. In other words, we may suppose that modulo 𝑒1 and 𝑒2, 𝑣′ = 𝑎 ∧ 𝑏 ∧ 𝑑 ∧ 𝑒. But
then, modulo 𝑒2 we get

𝑣 = 𝑒1 ∧ (𝑎 ∧ 𝑏 ∧ 𝑐 + 𝑑 ∧ 𝑒 ∧ 𝑓 ) + 𝑎 ∧ 𝑏 ∧ 𝑑 ∧ 𝑒.

So v belongs to (∧2𝑈 ′
4) ∧ (∧2𝑉8) + ∧3𝑉8 ∧ 𝑈 ′

1 if 𝑈 ′
4 = 〈𝑒1, 𝑒2, 𝑎, 𝑑〉. The existence of such a space

𝑈 ′
4 ⊃ 𝑈 ′

1 is precisely the required condition for𝑈 ′
1 to belong to C, so we are done. �

Lemma 4.3. The family P(U4) covers the Coble quartic.

Proof. This can be done by a Chern class computation, being equivalent to the fact that the degree of
P(U4) with respect to the relative hyperplane class does not vanish. Notice that by Equation (3.2), A𝐶

can be considered as a subvariety of 𝐹𝑙 (1, 4, 7, 𝑉8). Even more, it is the zero locus in the flag manifold
of the section 𝑣 of the rank 19 vector bundle

G := ∧4𝑉8/(∧
3U4 ∧𝑉8 + ∧4U7 + ∧3𝑉8 ∧ U1)

over 𝐹𝑙 (1, 4, 7, 𝑉8) defined by v. Since this section is general, the class of A𝐶 in the Chow ring of the
flag manifold is the top Chern class of G. So the degree we are looking for is

∫
P(U4)

𝑐1 (U∨
1 )

6 =
∫

A𝐶

𝑠3(U∨
4 ) =

∫
𝐹𝑙 (1,4,7,𝑉8)

𝑐19 (G)𝑠3(U∨
4 ) = 32,

as can be computed using [GS, Schubert2 package]. This implies the claim. �

Remark. 32 is the expected number: Since the Coble hypersurface has degree 4, we recover the fact
that exactly 8P3s of the ruling pass through a general point of the quartic, as recalled in the proof of
Proposition 2.4.

The previous statement allows to reconstruct the curve C purely in terms of the four-form and its
associated orbital degeneracy loci. Indeed, we have recalled that a P3 of the ruling meets the Kummer
threefold along a copy of the curve.

Corollary 4.4. For any point of A𝐶 , with associated flag (𝑈1 ⊂ 𝑈4 ⊂ 𝑈7), the intersection of P(𝑈4)
with Kum𝐶 is a copy of the curve C.
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And of course we also recover the family of lines in the ruling as a quadric bundle. Indeed, the same
arguments as in section 2.3 yield:

Corollary 4.5. The total space of the fiber bundle 𝐺 (2,U4) over A𝐶 maps birationally to the family F𝑅
in 𝐺 (2, 𝑉8).

4.2. Hecke lines from alternating forms

In the previous section, we have defined some ODL 𝐷𝑌𝑖 (𝑣) from orbits inside the space of three-
forms in seven variables (i.e., in the notation of the previous sections, inside ∧3𝑉7). We will use a
similar construction to obtain ODL inside the Grassmannian 𝐺 (2, 𝑉8). The Borel–Weil theorem gives
an isomorphism

∧4𝑉8 � 𝐻0(𝐺 (2, 𝑉8),∧
4Q) = 𝐻0(𝐺 (2, 𝑉8),∧

2Q∨(1)),

where Q denotes the rank six quotient vector bundle on 𝐺 (2, 𝑉8). Thus, in this case, we need to look at
two-forms in six variables.

If 𝑉6 is as before a six-dimensional complex vector space, ∧4𝑉∨
6 � ∧2𝑉6 has only two proper

GL(𝑉6)-orbit closures, that we will index by their codimension: the Pfaffian cubic hypersurface 𝑍1 and
its singular locus 𝑍6, that is the cone over the Grassmannian𝐺 (2, 𝑉6). These allow us to construct inside
𝐺 (2, 𝑉8) the two orbital degeneracy loci 𝐷𝑍1 (𝑣) and 𝐷𝑍6 (𝑣).

Let us first consider 𝐷𝑍6 (𝑣), which can also be defined by

𝐷𝑍6 (𝑣) :=
{
[𝑈2] ∈ 𝐺 (2, 𝑉8) | ∃𝑈6 ⊃ 𝑈2, 𝑣 ∈ ∧3𝑉8 ∧𝑈2 + ∧4𝑈6

}
.

Lemma 4.6. 𝐷𝑍6 (𝑣) is a smooth Fano sixfold of even index.

Proof. By definition, 𝐷𝑍6 (𝑣) is the projection in𝐺 (2, 𝑉8) of the locus 𝑍6 (𝑣) in 𝐹𝑙 (2, 6, 𝑉8) parametriz-
ing flags (𝑈2 ⊂ 𝑈6 ⊂ 𝑉8) such that v belongs to the 56-dimensional space ∧3𝑉8 ∧𝑈2 + ∧4𝑈6. Taking
the quotient of ∧4𝑉8 by the latter, we get a rank 14 vector bundle P on 𝐹𝑙 (2, 6, 𝑉8), generated by global
sections since it is a quotient of a trivial bundle. Moreover, v defines a generic section of this bundle,
and 𝑍6(𝑣) is the zero-locus of this section, hence it is smooth. Since 𝐹𝑙 (2, 6, 𝑉8) has dimension 20,
𝑍6 (𝑣) has dimension 6 and its canonical bundle is given by the adjunction formula. A straightforward
computation yields

𝐾𝑍6 (𝑣) = det(U2)
−3 ⊗ det(U6)

5.

On the other hand, for any [𝑈2] ∈ 𝐺 (2, 𝑉8), the quotient of ∧4𝑉8 by ∧3𝑉8 ∧ 𝑈2 is isomorphic to
∧4 (𝑉8/𝑈2) � ∧2(𝑉8/𝑈2)

∨ ⊗ det(𝑉8/𝑈2). This is a space of skew-symmetric forms in six dimensions,
and the existence of𝑈6 exactly means that v defines a skew-symmetric form in∧2(𝑉8/𝑈2)

∨⊗det(𝑉8/𝑈2)
whose rank is at most two. In fact, the rank must be exactly two, since for v generic, a simple dimension
count shows that the rank can never be zero. In particular, the projection of 𝑍6 (𝑣) to 𝐷𝑍6 (𝑣) is an
isomorphism.

More than that, the kernel of our two-form on 𝑉8/𝑈2 is 𝑈6/𝑈2, so we get a nondegenerate skew-
symmetric form on the quotient 𝑉8/𝑈6, which is therefore identified with its dual. To be precise, since
the skew-symmetric form has values in det(𝑉8/𝑈2), we get an isomorphism 𝑉8/𝑈6 � (𝑉8/𝑈6)

∨ ⊗

det(𝑉8/𝑈2). Taking determinants, we deduce that det(𝑈2)
2 � det(𝑈6)

2; in other words, the line bundle
L = det(U6) ⊗ det(U2)

∨ is 2-torsion on 𝑍6 (𝑣).
But then we can rewrite the canonical bundle as

𝐾𝑍6 (𝑣) = det(U2) ⊗ det(U6) ⊗ L⊗4.
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Note that det(U2)
∨ ⊗ det(U6)

∨ is very ample on 𝐹𝑙 (2, 6, 𝑉8) since it defines its canonical Plücker type
embedding. Since L is torsion, we deduce that 𝑍6 (𝑣) is Fano. But then its Picard group is torsion free,
so L is actually trivial. So finally 𝐾𝑍6 (𝑣) = det(U2)

2, hence the index is even. �

The previous discussion shows that 𝐷𝑍6 (𝑣) is a Pfaffian locus defined by a skew-symmetric map
𝜓𝑣 : Q→Q∨(1) associated with v. The restriction of 𝜓𝑣 to 𝐷𝑍6 (𝑣) has constant rank, hence its Kernel
Ker(𝜓𝑣 ) is a rank four vector bundle on 𝐷𝑍6 (𝑣), that coincides with (U6/U2) |𝐷𝑍6 (𝑣)

and fits into an
exact sequence

0→Ker(𝜓𝑣 )−→Q|𝐷𝑍6 (𝑣)
−→Q∨(1) |𝐷𝑍6 (𝑣)

−→Ker(𝜓𝑣 )∨(1)−→0. (4.1)

Let us set once and for all the more compact notation 𝐷 := 𝐷𝑍6 (𝑣) and 𝐺 := 𝐺 (2, 𝑉8). The exact
sequence (4.1) allows to describe the normal bundle N𝐷/𝐺 as follows.

Lemma 4.7. We have isomorphisms N𝐷/𝐺 � ∧2 Ker(𝜓𝑣 )∨(1) and N ∨
𝐷/𝐺

� N𝐷/𝐺 (−2).

We will use this information later on. Our next goal is to prove the following theorem.

Theorem 4.8. For a generic 𝑣 ∈ ∧4𝑉8, the orbital degeneracy locus 𝐷𝑍6 (𝑣) is isomorphic to the moduli
space SU𝐶 (2,O𝐶 (𝑐)) of semistable rank two vector bundles on C with fixed determinant O𝐶 (𝑐), for a
certain point 𝑐 ∈ 𝐶.

Remark 4.9. Such embeddings defined by Hecke lines are studied in [Bea91, section 3.4], and there is
one, denoted 𝜑𝑝 in loc. cit., for each choice of a point p on the curve C. Here, we only get one of these
embeddings, in agreement with the already mentioned fact that v does not only determine a genus three
curve but a marked point on this curve.

Remark 4.10. An interesting consequence is that we know a minimal resolution of the structure sheaf
of SU𝐶 (2,O𝐶 (𝑐)) inside the Grassmannian 𝐺 (2, 𝑉8). From this resolution, it is easy to check that the
intersection with a general copy of 𝐺 (2, 6) inside 𝐺 (2, 𝑉8) is a K3 surface of genus 13. This kind of
description is used in [KM23] to provide a new model for the general such K3 surface.

Let us begin by showing that 𝐷𝑍6 (𝑣) defines a six-dimensional family of Hecke lines.

Proposition 4.11. Let [𝑈2] ∈ 𝐷𝑍6 (𝑣), then P(𝑈2) ⊂ P(𝑉8) is a line in C.

Proof. Let [𝑈1] ∈ P(𝑈2) be a point in the line. By definition of 𝐷𝑍6 (𝑣), one can write

(𝑣 mod 𝑈1) = 𝑢2 ∧ 𝑣
′ + 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑

for some 𝑢2 ∈ 𝑈2, some trivector 𝑣′ and some vectors 𝑎, 𝑏, 𝑐, 𝑑. The trivector 𝑣′ is a trivector in six
variables; therefore, it can in general be written as 𝑒∧ 𝑓 ∧𝑔+ℎ∧𝑖∧𝑙 for some vectors 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑙 since the
secant variety of 𝐺 (3, 6) is the whole Plücker space. Now, modulo𝑈2, dim(〈𝑎, 𝑏, 𝑐, 𝑑〉 ∩ 〈𝑒, 𝑓 , 𝑔〉) ≥ 1
and dim(〈𝑎, 𝑏, 𝑐, 𝑑〉 ∩ 〈ℎ, 𝑖, 𝑙〉) ≥ 1. Thus, we can suppose that 𝑎 = 𝑒 and 𝑏 = ℎ. But then if we let
𝑈4 = 〈𝑈2, 𝑎, 𝑏〉, it is straightforward to check that (𝑣 mod 𝑈1) ∈ (∧2𝑈4) ∧ (∧2𝑉8). This ensures that
[𝑈1] belongs to C. �

The point-line incidence variety of the family of lines parametrized by 𝐷𝑍6 (𝑣) is given by the
projective bundle P(U2) → 𝐷𝑍6 (𝑣).

Proposition 4.12. The family of lines parametrized by 𝐷𝑍6 (𝑣) covers C.

Proof. This is again a Chern class computation. Indeed, by irreducibility of the varieties in play, it is
sufficient to check that, if U∨

1 denotes the relative dual tautological line bundle of P(U2) → 𝐷𝑍6 (𝑣), then
𝑐1 (U∨

1 )
6 ≠ 0; indeed U∨

1 is the pullback to P(U2) of OP(𝑉8) (1). This implies that the image of P(U2)
inside P(𝑉8) has dimension at least six and is thus the Coble quartic C by Proposition 4.11. Notice that
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one can work directly on 𝑍6 (𝑣) since it is isomorphic to 𝐷𝑍6 (𝑣). Since 𝑍6 (𝑣) can be constructed as
the zero locus of a section of a vector bundle inside the flag variety 𝐹𝑙 (2, 4, 𝑉8), we can verify that
𝑐1 (U∨

1 )
6 ≠ 0 with [GS] by constructing the coordinate ring of the zero locus 𝑍6(𝑣) and of the projective

bundle P(U2) over it, similarly to what we did in the proof of Lemma 4.3. �

Proposition 4.13. The lines parametrized by 𝐷𝑍6 (𝑣) are Hecke lines.

Proof. Suppose by contradiction that the lines parametrized by 𝐷𝑍6 (𝑣) are not Hecke. Since they form
a covering family, they must be lines in the ruling, that is, 𝐷𝑍6 (𝑣) ⊂ F𝑅. Now, recall that F𝑅 is
a birational image of the quadric bundle 𝐺 (2,U4) over A𝐶 . The preimage of 𝐷𝑍6 (𝑣) in 𝐺 (2,U4) is
rationally connected, being birationally equivalent to the Fano manifold 𝐷𝑍6 (𝑣). But then its projection
to A𝐶 must be constant. Since the fibers of this projection are only four-dimensional, while the dimension
of 𝐷𝑍6 (𝑣) is six, we get a contradiction. �

Proof of Theorem 4.8. Recall that the family F𝐻 of Hecke lines has dimension seven, so 𝐷𝑍6 (𝑣) cannot
be the whole family. In fact, F𝐻 has a rational map 𝜂 to C, and by the same argument as above, the
fact that 𝐷𝑍6 (𝑣) is Fano ensures that its image in F𝐻 is contained in a fiber of 𝜂, over some point
𝑐 ∈ 𝐶. But then the morphism from SU𝐶 (2,O𝐶 (𝑐)) to F𝐻 is birational onto its image 𝐷𝑍6 (𝑣). Since
SU𝐶 (2,O𝐶 (𝑐)) has Picard rank one [Ram73], this morphism must be an isomorphism. �

5. A Coble type quadric hypersurface

The aim of this section is to show that the Coble quadric hypersurface in 𝐺 (2, 𝑉8) deserves its name in
the sense that it is singular along the moduli space and it is uniquely determined by this property. So
the section is mainly devoted to the proof of Theorem 5.1. In the last part, we also prove a self-duality
statement concerning this hypersurface which is analogous to the self-duality of the Coble quartic in
P(𝑉8).

5.1. The relative Pfaffian

As we have seen, the fact that 𝐷𝑍6 (𝑣) is defined as a Pfaffian locus in 𝐺 (2, 𝑉8) implies that it is the
singular locus of a Pfaffian hypersurface, defined as the first degeneracy locus 𝐷𝑍1 (𝑣) of the skew-
symmetric morphism Q−→Q∨(1) defined by v.

Theorem 5.1. The hypersurface 𝐷𝑍1 (𝑣) of 𝐺 (2, 𝑉8) is a quadratic section of the Grassmannian. It is
the unique quadratic section that is singular along 𝐷𝑍6 (𝑣).

Remark 5.2. Starting from a genus three curve C and its Kummer threefold embedded in P7 by the
linear system |2Θ|, the original observation of Coble was that there exists a unique Heisenberg-invariant
quartic C that is singular along the Kummer. Beauville proved much later that the Heisenberg-invariance
hypothesis was actually not necessary [Bea03]. In our context, the curve and its Heisenberg group are
not easily available (although there are connections between the latter and the Weyl group𝑊 (𝐸7) of the
theta-representation ∧4𝑉8), so we do not use any Heisenberg-invariance hypothesis.

5.1.1. Structure of the proof of Theorem 5.1
Recall that D stands for 𝐷𝑍6 (𝑣) and G for 𝐺 (2, 𝑉8). That 𝐷𝑍1 (𝑣) is a quadratic section of G follows
from the fact that it is defined by a rank six Pfaffian, obtained as the image of v by the cubic morphism

𝑆3 (∧2Q∨(1))→ ∧6 Q∨(3) = O𝐺 (2).

In order to prove that this is the only quadratic section that is singular along D, recall that the conormal
bundle of D in the Grassmannian G is the quotient of the ideal sheaf I𝐷 by its square I2

𝐷 . Twisting by
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O𝐺 (2) and taking cohomology, we get an exact sequence

0−→𝐻0(𝐺, I2
𝐷 (2))−→𝐻0(𝐺, I𝐷 (2))−→𝐻0 (𝐷,N ∨

𝐷/𝐺 (2))−→𝐻1 (𝐺, I2
𝐷 (2)).

Observe that 𝐻0(𝐺, I𝐷 (2)) parametrizes quadratic sections of G (up to scalar) that contain D, while,
since D is smooth, 𝐻0(𝐺, I2

𝐷 (2)) parametrizes quadratic sections that are singular along D. Our claim is
that the latter space is one-dimensional. This will be proved in three steps: First, compute the dimension
of the space of quadrics containing D; second, bound 𝐻0(𝐷,N ∨

𝐷/𝐺
(2)) from below; third, prove that

𝐻1 (𝐺, I2
𝐷 (2)) vanishes. These results are contained in Lemmas 5.3, 5.6, 5.11. From the fact that

𝐻1 (I2
𝐷 (2)) = 0, the exact sequence

0−→𝐻0 (I2
𝐷 (2))−→𝐻0 (I𝐷 (2))−→𝐻0(N ∨

𝐷/𝐺 (2)) = 𝐻0 (N𝐷/𝐺)−→0,

knowing that ℎ0 (I𝐷 (2)) = 71 and ℎ0 (N𝐷/𝐺) ≥ 70, will allow us to conclude that ℎ0 (I2
𝐷 (2)) ≤ 1 and

the proof will be complete.

5.1.2. Quadrics containing the moduli space
Let us count the quadric sections of 𝐺 = 𝐺 (2, 𝑉8) that contain the moduli space 𝐷 � SU𝐶 (2, 𝐿).

Lemma 5.3. ℎ0(𝐺, I𝐷 (2)) = 71.

Proof. Let us first recall the classical minimal resolution of the ideal I generated by submaximal Pfaffians
of a generic skew-symmetric matrix of size 6; in other words, the ideal of the cone over the Grassmannian
𝐺 (2, 𝑉6) inside ∧2𝑉6. As usual, we will use the notation 𝑆𝜆, for 𝜆 a partition, in order to indicate the
corresponding Schur functor. Letting 𝑆 = C[∧2𝑉6], this resolution is the following [Wey03, (6.4.6)]:

0

𝐼

��

∧4𝑉∨
6 ⊗ 𝑆(−2)

��

𝑆21111𝑉
∨
6 ⊗ 𝑆(−3)

��

𝑆311111𝑉
∨
6 ⊗ 𝑆(−4)

�����������
⊕ 𝑆22222𝑉

∨
6 ⊗ 𝑆(−5)

											

𝑆322221𝑉
∨
6 ⊗ 𝑆(−6)

�����������
											

𝑆332222𝑉
∨
6 ⊗ 𝑆(−7)

��

det(𝑉∨
6 )

3 ⊗ 𝑆(−9)

��

0

��

Since D is a Pfaffian locus of the expected dimension, given by a skew-symmetric mapQ→Q∨(1), we
deduce the following free resolution of its twisted ideal sheaf (we used identifications like 𝑆332222Q∨ =
∧2Q∨(−2)):
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0

I𝐷 (2)

��

∧4Q

��

𝔰𝔩(Q)

��

𝑆2Q∨(−1)



�������
⊕ 𝑆2Q(−1)

��







𝔰𝔩(Q) (−2)

���������
��








∧2Q(−3)

��

O𝐺 (−4)

��

0

��

Note that this resolution is self-dual, up to twist. Moreover, using the Bott–Borel–Weil theorem one
can check that all the factors are acyclic homogeneous vector bundles, with two exceptions: ∧4Q has
a nonzero space of sections, isomorphic to ∧4𝑉8; and 𝑆2Q∨(−1), which is one of the two irreducible
factors of Ω2

𝐺 , has a one dimensional cohomology group in degree two. We end up with a canonical
exact sequence

0−→ ∧4 𝑉8−→𝐻0 (𝐺, I𝐷 (2))−→C−→0, (5.1)

and our claim follows. �

Remark 5.4. Being defined by a cubic Pfaffian, the equation of the hypersurface 𝐷𝑍1 (𝑣) must be a cubic
SL(𝑉8)-covariant of v in ∧4𝑉8, taking values in 𝐻0 (O𝐺 (2)) � 𝑆22𝑉8. In fact, it is a GL(𝑉8)-covariant,
that by homogeneity with respect to 𝑉8, must take its values in 𝑆22𝑉8 ⊗ det(𝑉8). One can check that the
latter module has multiplicity one inside 𝑆3(∧4𝑉8), so this covariant is unique up to scalar. For example,
it can be obtained as the composition

𝑆3 (∧4𝑉8) ↩→𝑆3(∧2𝑉8 ⊗ ∧2𝑉8) → 𝑆3(∧2𝑉8) ⊗ 𝑆3(∧2𝑉8) → 𝑆3(∧2𝑉8) ⊗ ∧6𝑉8 →

→ 𝑆3 (∧2𝑉8) ⊗ ∧2𝑉∨
8 ⊗ det(𝑉8) → 𝑆2(∧2𝑉8) ⊗ det(𝑉8) → 𝑆22𝑉8 ⊗ det(𝑉8).

Following the natural morphisms involved in these arrows, this would allow to give an explicit formula
for an equation of the quadratic hypersurface 𝐷𝑍1 (𝑣) in terms of the coefficients of v (this was done in
[RSSS13] for the Coble quartic itself). It would suffice to do this when v belongs to our preferred Cartan
subspace; this is in principle a straightforward computation but the resulting formulas would be huge.

Remark 5.5. The embedding of ∧4𝑉8 inside 𝐻0(𝐺, I𝐷 (2)) in Equation (5.1) is given by the derivatives
of 𝐷𝑍1 (𝑣) with respect to v, that is, can be obtained by polarizing the cubic morphism discussed in
the previous remark. On the other hand, modulo these derivatives, (4) shows that there is a uniquely
defined ‘non-Pfaffian’ quadric vanishing on D. This non-Pfaffian quadric comes from the contribution
of 𝑆2Q∨(−1) in the resolution of I𝐷 (2). Since in this resolution, these two terms are connected one
to the other through three morphisms having respective degree two, one and two with respect to v, the
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non-Pfaffian quadric must be given by a quintic covariant in v. And indeed, a computation with Lie
[vLCL92] shows that

Hom(𝑆5 (∧4𝑉8), 𝑆22𝑉8 ⊗ (det(𝑉8))
2)GL(𝑉8) � C2.

A special line in this space of covariants is generated by the cubic covariant defining the Pfaffian quadric,
twisted by the invariant quadratic form (defined by the wedge product). The quotient is our non-Pfaffian
quadric. As before, we could in principle compute it explicitly by constructing a specific covariant. One
way to construct such a covariant is to observe that

𝑆2 (∧4𝑉8) � 𝑆221111𝑉8 ⊂ ∧2𝑉8 ⊗ ∧6𝑉8 = ∧2𝑉8 ⊗ ∧2𝑉∨
8 ⊗ det(𝑉8).

Taking the square of the resulting morphism, we can define a quartic covariant

𝑆4 (∧4𝑉8) → 𝑆2 (∧2𝑉8) ⊗ 𝑆2(∧2𝑉∨
8 ) ⊗ det(𝑉8)

2 → 𝑆22𝑉8 ⊗ ∧4𝑉∨
8 ⊗ det(𝑉8)

2,

hence the desired quintic covariant.

5.1.3. The normal bundle of D in 𝐺 (2, 𝑉8)

Let us now bound from below the dimension of 𝐻0 (𝐷,N ∨
𝐷/𝐺

(2)). By Lemma 4.7, this space is
isomorphic with 𝐻0 (N𝐷/𝐺), which parametrizes infinitesimal deformations of D inside G. Some of
these deformations must be induced by the deformation of [𝑣] inside P(∧4𝑉8), which should provide
69 parameters. But recall that the family F𝐻 of Hecke lines inside 𝑆𝑈𝐶 (2) is a subvariety of 𝐺 (2, 𝑉8),
birationally fibered over the curve C, with one fiber isomorphic to 𝐷 � SU𝐶 (2,O𝐶 (𝑐)) for some point
𝑐 ∈ 𝐶. So we expect one extra deformation of D to be obtained by deforming c in the curve C. That
these deformations are independent is essentially the content of

Lemma 5.6. ℎ0(𝐷,N𝐷/𝐺) ≥ 70.

Proof. The locus in ∧4𝑉6 � ∧2𝑉∨
6 corresponding to skew-symmetric forms of rank at most 2 is

desingularized by the total space of ∧4U4 over the Grassmannian 𝐺 (4, 𝑉6) [Wey03, (6.4.2)]. As a
consequence of this and of [BFMT20a, Proposition 2.3], the Pfaffian locus D is desingularized by the
zero locus 𝑍 := 𝑍6 (𝑣) inside 𝐹𝑙 (2, 6, 𝑉8) of a (general) section of the bundleV = ∧4(𝑉8/U2)/∧

4(U6/U2).
This bundle is an extension of irreducible bundles

0 → ∧3(U6/U2) ⊗ (𝑉8/U6) → V → ∧2 (U6/U2) ⊗ det(𝑉8/U6) → 0.

By dimension count, Z is in fact isomorphic to D via the natural projection. Under this isomorphism and
by Lemma 4.7, N𝐷/𝐺 can be identified with the restriction of N := ∧2(U6/U2) ⊗ det(𝑉8/U6) to Z. In
order to compute the cohomology of this restriction, we can tensorize with N the Koszul complex ∧•V∨

of the global section of V , whose zero locus is 𝑍 ⊂ 𝐹𝑙 (2, 6, 𝑉8). This gives the following resolution of
N𝐷/𝐺 by locally free sheaves on 𝐹𝑙 (2, 6, 𝑉8)

0 → ∧•V∨ ⊗ N → N𝐷/𝐺 → 0.

By applying the Bott–Borel–Weil theorem we can compute the cohomology groups of the bundles
∧𝑘V∨ ⊗ N , for all 𝑘 ≥ 0. Those that do not vanish are the following:

𝐻0 (∧0V∨ ⊗ N ) = ∧4𝑉8,

𝐻0(∧1V∨ ⊗ N ) = C,
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Table 1. Betti table of M..

0 1 2 3 4 5

0 : · · · · · ·

1 : · · · · · ·

2 : · · · · · ·

3 : · · · · · ·

4 : 105 399 595 405 105 ·

5 : · · · 21 35 15

𝐻2(∧3V∨ ⊗ N ) = C, 𝐻3(∧3V∨ ⊗ N ) = C2,

𝐻4 (∧4V∨ ⊗ N ) = 𝐻5 (∧4V∨ ⊗ N ) = ∧4𝑉8,

𝐻4(∧5V∨ ⊗ N ) = 𝔰𝔩(𝑉8) ⊕ C
3, 𝐻5(∧5V∨ ⊗ N ) = 𝔰𝔩(𝑉8) ⊕ C

4, 𝐻6(∧5V∨ ⊗ N ) = C,

𝐻6(∧7V∨ ⊗ N ) = 𝐻7(∧7V∨ ⊗ N ) = C,

𝐻8(∧9V∨ ⊗ N ) = 𝐻9(∧9V∨ ⊗ N ) = C,

𝐻12(∧13V∨ ⊗ N ) = 𝐻13(∧13V∨ ⊗ N ) = C.

A direct consequence is that 𝜒(N𝐷/𝐺) = 70. Moreover, observe that

𝐻𝑞 (∧𝑘V∨ ⊗ N ) = 0 for 𝑞 − 𝑘 > 1.

Since these groups give the first page of the spectral sequence in cohomology induced by the Koszul
complex of O𝑍 twisted by N , this implies that 𝐻𝑖 (N𝐷/𝐺) = 0 for 𝑖 > 1. Therefore, ℎ0 (N𝐷/𝐺) =
𝜒(N𝐷/𝐺) + ℎ

1 (N𝐷/𝐺) ≥ 70. �

5.1.4. An affine module M
As usual 𝑉6 denotes a six-dimensional vector space. Let S be the coordinate ring of ∧2𝑉6. The ideal I of
the cone over 𝐺 (2, 𝑉6) is generated by the submaximal Pfaffians of the generic skew-symmetric matrix
of size 6; the GL(6)-module generated by these submaximal Pfaffians is ∧4𝑉∨

6 ⊂ 𝑆2 (∧2𝑉∨
6 ). The square

of I is then generated by the symmetric square of this module. The module decomposes [vLCL92] as

𝑆2 (∧4𝑉∨
6 ) = 𝑆221111𝑉

∨
6 ⊕ 𝑆2222𝑉

∨
6 .

The first component is∧2𝑉∨
6 ⊗det𝑉∨

6 and must be interpreted as parametrizing quartics that are multiples
of linear forms by the Pfaffian cubic. The ideal they generate is 𝑆+𝐼𝑃 , where 𝑆+ ⊂ 𝑆 is the irrelevant
ideal, and 𝐼𝑃 denotes the ideal of the Pfaffian hypersurface.

Consider the exact sequence

0 → 𝑆+𝐼𝑃 → 𝐼2 → 𝑀 := 𝐼2/𝑆+𝐼𝑃 → 0.

The quotient module M is generated by 𝑆2222𝑉
∨
6 . According to [GS], the minimal resolution 𝑅• of M

has the Betti numbers of Table 1.
The minimal resolution is GL6-equivariant, and it is not difficult to write it in terms of Schur functors.

Indeed, we know that the quartic generators are parametrized by 𝑆2222𝑉
∨
6 , so the first syzygy module

must be contained in 𝑆2222𝑉
∨
6 ⊗ ∧2𝑉∨

6 , and it turns out that there is a unique GL6-module of the correct
dimension inside this tensor product. Proceeding inductively, we arrive at the following conclusion: The
minimal GL6-equivariant resolution of the S-module M has the following shape:
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0

𝑀

��

𝑆2222𝑉
∨
6 ⊗ 𝑆(−4)

��

(𝑆32221𝑉
∨
6 ⊕ S222211𝑉

∨
6 ) ⊗ 𝑆(−5)

��

(𝑆422211𝑉
∨
6 ⊕ 𝑆33222𝑉

∨
6 ⊕ S322221𝑉

∨
6 ) ⊗ 𝑆(−6)

��

(𝑆432221𝑉
∨
6 ⊕ S422222𝑉

∨
6 ) ⊗ 𝑆(−7)

��

S333331𝑉
∨
6 ⊗ 𝑆(−8)



���������������

𝑆442222𝑉
∨
6 ⊗ 𝑆(−8)

��

S433332𝑉
∨
6 ⊗ 𝑆(−9)



���������������

��

S443333𝑉
∨
6 ⊗ 𝑆(−10)



����������������

��

0

��

Here, vertical arrows have degree one and diagonal arrows have degree two. Notice that the complex in
bold reproduces the resolution of the Pfaffian ideal I itself.
Remark 5.7. As J. Weyman observed, one could also obtain this resolution by considering the natural
resolution of the Pfaffian hypersurface given by the total space of the vector bundle ∧2U over the
Grassmannian 𝐺 (4, 𝑉6). The morphism 𝜋 from Tot(∧2U ) to ∧2𝑉6 is a resolution of singularities, and
one can check that M is the push-forward by 𝜋 of the module given by the pull-back of the line bundle
O(2) from the Grassmannian. Applying the geometric technique from [Wey03], one can extract the
minimal resolution of M from the collection of GL(𝑉6)-modules given by

𝐹𝑖 =
⊕
𝑗≥0

𝐻 𝑗 (𝐺 (4, 𝑉6),O(2) ⊗ ∧𝑖+ 𝑗 (∧2U )⊥).

Here, (∧2U )⊥ is the kernel of the natural projection ∧2𝑉∨
6 → ∧2U∨. The bundle (∧2U )⊥ is not

semisimple but is an extension of O(−1) by U∨ ⊗𝑄∨. Remarkably, it is the contribution of O(−1) that
reproduces the minimal resolution of I (twisted) inside that of M.

5.1.5. Relativizing M
Now, we want to use these results in the relative setting. Since ∧4Q is a vector bundle on𝐺 (2, 𝑉8) which
is locally isomorphic to ∧2𝑉6, we can relativize the construction of I and 𝐼𝑃 and M. For convenience,
let us restrict to the complement X of the zero section inside the total space of this vector bundle. We
get sheaves of OX -modules and ideals that we denote, respectively, by I ′, I ′

𝑃 ,M′. Note that, since we
avoid the zero section, we get an exact sequence

0 → I ′
𝑃 → I ′2 → M′ → 0.

Then we consider 𝑣 ∈ ∧4𝑉8 as a general section of ∧4Q, that we interpret as a morphism from
𝐺 = 𝐺 (2, 𝑉8) to the total space of ∧4Q. By the definition of orbital degeneracy loci [BFMT20b,
Definition 2.1], the ideal of 𝐷𝑍1 (𝑣) is I𝑃 := I ′

𝑃 ⊗ O𝐺 and the ideal of 𝐷 = 𝐷𝑍6 (𝑣) is I𝐷 := I ′ ⊗ O𝐺 .
Let us also denote M = M′ ⊗ O𝐺 . Of course, these tensor products are taken over OX .
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Lemma 5.8. There is an exact sequence

0 → I𝑃 → I2
𝐷 → M → 0.

Proof. By the right exactness of tensor product, here by O𝐺 , we get an exact sequence

I𝑃 → I2
𝐷 → M → 0.

But the map I𝑃 ⊂ I2
𝐷 (which expresses the fact that D is contained in the singular locus of the Pfaffian

hypersurface) clearly remains an injection, and we are done. �

In order to control M, we will now consider the complex of vector bundles induced by the resolution
we constructed for M. We can deduce a resolution of M′ and then tensor out again by O𝐺 . In order to
prove that we get a resolution of M (the resolution given just below), we need to check that the Tor-
sheaves of OX -modules T 𝑜𝑟𝑖 (M′,O𝐺) vanish for 𝑖 > 0. All the Tor-sheaves we compute in the sequel
will also be for OX -modules.

0

M

��

𝑆2222Q(−4)

��

𝑆32221Q(−5) ⊕ 𝑆222211Q(−5)

��

𝑆422211Q(−6) ⊕ 𝑆33222Q(−6) ⊕ 𝑆322221Q(−6)

��

𝑆432221Q(−7) ⊕ 𝑆422222Q(−7)

��

𝑆333331Q(−8)



����������������

𝑆442222Q(−8)

��

𝑆433332Q(−9)



����������������

��

𝑆443333Q(−10)



�����������������

��

0

��

Lemma 5.9. For any 𝑖 > 0,

1. T 𝑜𝑟𝑖 (I ′
𝑃 ,O𝐺) = 0,

2. T 𝑜𝑟𝑖 (OX /I ′,O𝐺) = 0,
3. T 𝑜𝑟𝑖 (I ′/I ′2,O𝐺) = 0,
4. T 𝑜𝑟𝑖 (M′,O𝐺) = 0.

Proof. (1) is obvious since I ′
𝑃 is locally free. (2) is a consequence of the generic perfection theorem

(see [EN67]), since I and therefore I ′ is perfect, and D has the expected dimension. (3) is a consequence
of (2) because I ′/I ′2 is a locally free OX /I ′-module (recall that since we have a generality assumption
the singular locus is avoided). Finally, to prove (4) observe first that, by the long exact sequence
of Tor, T 𝑜𝑟𝑖 (I ′,O𝐺) = T 𝑜𝑟𝑖+1(OX /I ′,O𝐺) = 0 for any 𝑖 > 0. Because of (3) this implies that
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T 𝑜𝑟𝑖 (I ′2,O𝐺) = 0 for any 𝑖 > 0. Then we can use the exact sequence of Lemma 5.8 to deduce that
T 𝑜𝑟𝑖 (M′,O𝐺) = 0 when 𝑖 > 1 and that there is an exact sequence

0−→T 𝑜𝑟1 (M′,O𝐺)−→I𝑃−→I2
𝐷−→M−→0.

By Lemma 5.8, T 𝑜𝑟1 (M′,O𝐺) vanishes as well, and we are done. �

Lemma 5.10. M(2) is acyclic.

Proof. Twist the previous resolution of M by O(2), and deduce from the Bott–Borel–Weil theorem
that all the bundles in the twisted resolution are acyclic. This implies the claim. �

Lemma 5.11. 𝐻𝑖 (I2
𝐷 (2)) = 0 for any 𝑖 > 0.

Proof. This follows immediately from Lemmas 5.8 and 5.10. �

This concludes the proof of Theorem 5.1. Note the following consequence: D has nonobstructed
deformations.

Corollary 5.12. ℎ0 (N𝐷/𝐺) = 70 and ℎ𝑖 (N𝐷/𝐺) = 0 for any 𝑖 > 0.

5.2. Deforming the Pfaffian hypersurface

We already observed that, varying v in∧4𝑉8, we only get a codimension one family of deformations of D.
The missing dimension is provided by the choice of the point on the curve C, but this is invisible in our
constructions. We will nevertheless prove that the special quadric section of the Grassmannian deforms.

Lemma 5.13. For a generic point 𝑝 ∈ 𝐶 and the associated embedding 𝜑𝑝 : SU𝐶 (2,O𝐶 (𝑝)) ↩→
𝐺 (2, 𝑉8) (see Remark 4.9), there exists at most one quadric hypersurface 𝑄𝑝 in the Grassmannian that
is singular along SU𝐶 (2,O𝐶 (𝑝)).

Proof. Such a quadric corresponds to a line in𝐻0 (𝐺 (2, 𝑉8), I2
SU𝐶 (2,O𝐶 (𝑝))

(2)) and we have computed in
the proof of Theorem 5.1 that this space has dimension one for certain special points p. By semicontinuity,
this dimension remains smaller or equal to one for p generic. �

Theorem 5.14. For the generic embedding 𝜑𝑝 , there exists a unique quadric hypersurface of 𝐺 (2, 𝑉8)
that is singular along SU𝐶 (2,O𝐶 (𝑝)).

Proof. Let us consider the embedding𝑄 = 𝐷𝑍1 (𝑣) ↩→ 𝐺 from Theorem 5.1. Let 𝐻 ′
𝑄/𝐺

be the so-called
‘locally trivial Hilbert scheme’ parametrizing locally trivial deformations of 𝑄 ⊂ 𝐺, as defined in
[GK89, 2.2]. Remark that the construction of [GK89] is done for finite singularities, but their arguments,
as the authors underline in the introduction, go through for arbitrary singularities because of [FK87]. Let

N ′
𝑄/𝐺 = Ker(N𝑄/𝐺 → T 1

𝑄),

where T 1
𝑄 denotes the first cotangent sheaf of Q (as defined, for instance, in [Ser06, Section 1.1.3]).

In order that the locally trivial Hilbert scheme be smooth at Q, by [GK89, Prop. 2.3], we need that
𝐻1 (𝑄,N ′

𝑄/𝐺
) = 0. If this happens, then ℎ0 (𝑄,N ′

𝑄/𝐺
) = dim(𝐻 ′

𝑄/𝐺
) and we will show that this

equals 70. By [Ser06, Section 4.7.1], we have an exact sequence

0 → 𝑇𝑄 → 𝑇𝐺 |𝑄 → N𝑄/𝐺 → T 1
𝑄 → 0.

Hence, N ′
𝑄/𝐺

coincides with the image of 𝑇𝐺/𝑄 inside N𝑄/𝐺 , which is exactly the (twisted) Jacobian
ideal J𝑄/𝐺 (2) restricted to Q. In turn, the Jacobian ideal of the Pfaffian locus of 6×6 matrices is exactly
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the ideal of 4× 4 skew-symmetric minors. This implies that J𝑄/𝐺 (2) is the twisted ideal I𝐷 (2)/I𝑄 (2)
of D inside O𝑄 (2) = O𝑄 (𝑄). Let us therefore consider the exact sequence

0 → I𝑄 (2) → I𝐷 (2) → J𝑄/𝐺 (2) → 0. (5.2)

By Lemma 5.3, we have ℎ0(𝐺, I𝐷 (2)) = 71 and in the proof of the same lemma we showed that
ℎ𝑖 (𝐺, I𝐷 (2)) = 0, for 𝑖 > 0. On the other hand, we have I𝑄 (2) = O𝐺 . Via the long cohomology exact
sequence associated to sequence (5.2), we deduce that ℎ0 (𝐺,J𝑄/𝐺 (2)) = 70 and ℎ𝑖 (𝐺,J𝑄/𝐺 (2)) = 0
for 𝑖 > 0. Hence 𝐻 ′

𝑄/𝐺
is smooth of dimension 70 at [𝑄]. We have a natural map between Hilbert

schemes

𝜎 : 𝐻 ′
𝑄/𝐺 → 𝐻𝐷 ,

where 𝐻𝐷 is the component of the Hilbert scheme of𝐺 (2, 𝑉8) that contains the point [𝐷] defined by D.
Both spaces have dimension 70 and are smooth, respectively, at [𝑄] and [𝐷] by Corollary 5.12. In
order to show that 𝜎 is dominant, it is enough to check that the induced morphism of tangent spaces
is dominant. This is true because 𝐻0(𝐺,J𝑄/𝐺 (2)) and 𝐻0(N𝐷/𝐺) are both dominated by 𝐻0(I𝐷 (2)),
and the morphism from I𝐷 (2) to N𝐷/𝐺 factorizes through J𝑄/𝐺 (2). This concludes the proof. �

5.3. Grassmannian self-duality

Exactly as we constructed the singular quadric hypersurface 𝐷𝑍1 (𝑣) ⊂ 𝐺 (2, 𝑉8), there is another
hypersurface 𝐷𝑍1 (𝑣

∨) ⊂ 𝐺 (2, 𝑉∨
8 ) = 𝐺 (6, 𝑉8). Because of Proposition 3.5, these two hypersurfaces are

projectively isomorphic since they are constructed from lines contained in isomorphic Coble quartics.
But one should also expect some projective duality statement analogous to Theorem 3.4. Of course,
we cannot refer to classical projective duality since we want to consider 𝐷𝑍1 (𝑣) and 𝐷𝑍1 (𝑣

∨) really as
hypersurfaces in Grassmannians, not as subvarieties of the ambient projective spaces. It turns out that a
version of projective duality in this setting (and for certain other ambient varieties than Grassmannians)
was once proposed in [Cha07] (that remained unpublished). We will refer to it as Grassmannian duality.

The idea is the following. Consider, say, a hypersurface H in 𝐺 (2, 𝑉8) (or any Grassmannian, but let
us restrict to the case we are interested in). At a smooth point ℎ = [𝑈2] of H, the tangent space to H is a
hyperplane in𝑇ℎ𝐺 (2, 𝑉8) = Hom(𝑈2, 𝑉8/𝑈2) or, equivalently, a line in the dual space Hom(𝑉8/𝑈2,𝑈2).
If this line is generated by a surjective morphism, the kernel of this morphism is a four-dimensional
subspace of 𝑉8/𝑈2. Equivalently, this defines a six-dimensional space 𝑈6 such that 𝑈2 ⊂ 𝑈6 ⊂ 𝑉8. We
get in this way a rational map from H to 𝐺 (6, 𝑉8), and we can define the Grassmannian dual 𝐻∨ as
the image of this rational map. For more details, see [Cha07, section 1.6]. Chaput has a remarkable
biduality theorem generalizing the classical statement, according to which duality for subvarieties of
Grassmannians is an involution [Cha07, Theorem 2.1].

So this Grassmannian duality is perfectly natural, and we have:
Theorem 5.15. 𝐷𝑍1 (𝑣) � 𝐷𝑍1 (𝑣

∨) is Grassmannian self-dual.
Proof. Suppose that𝑈2 belongs to 𝐷𝑍1 (𝑣). By definition, this means that there exists𝑈4 ⊃ 𝑈2 (unique
in general) such that

𝑣 ∈ 𝑈2 ∧ (∧3𝑉8) + (∧2𝑈4) ∧ (∧2𝑉8).

If we mod out by ∧2𝑈4, we get a tensor in𝑈2 ⊗ ∧3 (𝑉8/𝑈4) � 𝑈2 ⊗ (𝑉8/𝑈4)
∨, that is, a morphism from

𝑉8/𝑈4 to 𝑈2. Generically, this morphism has full rank, and its kernel defines some 𝑈6 ⊃ 𝑈4. So we get
a flag (𝑈2 ⊂ 𝑈4 ⊂ 𝑈6) such that

𝑣 ∈ 𝑈2 ∧ (∧2𝑈6) ∧𝑉8 + (∧2𝑈4) ∧ (∧2𝑉8). (5.3)

�
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Lemma 5.16. 𝑈6 defines a point of 𝐷𝑍1 (𝑣
∨).

Proof. Using adapted basis, one checks that condition (5.3) implies that

𝑣∨ ∈ 𝑈⊥
6 ∧ (∧2𝑈⊥

2 ) ∧𝑉
∨
8 + (∧2𝑈⊥

4 ) ∧ (∧2𝑉∨
8 ).

In particular, 𝑣∨ mod 𝑈⊥
6 has rank at most four. �

Lemma 5.17. 𝑈6 defines a point of 𝐷𝑍1 (𝑣)
∨.

Proof. Using a basis of𝑉8 adapted to the flag (𝑈2 ⊂ 𝑈4 ⊂ 𝑈6), we can rewrite relation (5.3) in the form

𝑣 = 𝑒1 ∧ 𝑒5 ∧ 𝑒6 ∧ 𝑒7 + 𝑒2 ∧ 𝑒5 ∧ 𝑒6 ∧ 𝑒8 + 𝑣
′, 𝑣′ ∈ (∧2𝑈4) ∧ (∧2𝑉8),

where 𝑈2 = 〈𝑒1, 𝑒2〉 and 𝑈6 = 〈𝑒1, . . . , 𝑒6〉. We can describe infinitesimal deformations of 𝑈2 by some
infinitesimal deformations of the vectors in the adapted basis, say 𝑒𝑖 ↦→ 𝑒𝑖 + 𝜖𝛿𝑖 , and we must keep a
similar relation. Modding out by 𝑈4, we only remain with the relation

𝛿1 ∧ 𝑒5 ∧ 𝑒6 ∧ 𝑒7 + 𝛿2 ∧ 𝑒5 ∧ 𝑒6 ∧ 𝑒8 = 0 mod 𝑈4,

which we can simply rewrite as 𝛿18 = 𝛿27. This relation describes the tangent hyperplane to 𝐷𝑍1 (𝑣) at
𝑈2, as a hyperplane in Hom(𝑈2, 𝑉8/𝑈2), orthogonal to the morphism 𝑒∗8 ⊗ 𝑒1 − 𝑒

∗
7 ⊗ 𝑒2. The kernel of

this morphism is𝑈6/𝑈2, and we are done. �

These two lemmas together imply that 𝐷𝑍1 (𝑣
∨) coincides with the Grassmannian dual to 𝐷𝑍1 (𝑣).

The proof of the theorem is complete.
Note that we can resolve the singularities of 𝐷𝑍1 (𝑣) by considering flags (𝑈2 ⊂ 𝑈4) as before, which

gives a subvariety 𝐷̃𝑍1 (𝑣) ⊂ 𝐹𝑙 (2, 4, 𝑉8). By considering the flags (𝑈2 ⊂ 𝑈4 ⊂ 𝑈6) as in the proof of
the previous statement, we obtain a subvariety 𝐷𝑍1 (𝑣, 𝑣

∨) ⊂ 𝐹𝑙 (2, 4, 6, 𝑉8) that resolves simultaneously
the singularities of 𝐷𝑍1 (𝑣) and 𝐷𝑍1 (𝑣

∨). As for the Coble quartic, we get a diagram

𝐹𝑙 (2, 4, 6, 𝑉8)

𝐹𝑙 (2, 4, 𝑉8) 𝐷𝑍1 (𝑣, 𝑣
∨)

��











�����
���

�

��

��

𝐹𝑙 (4, 6, 𝑉8)

𝐷̃𝑍1 (𝑣)

��













� 	

�����������
������������ 𝐷̃𝑍1 (𝑣

∨)

�����
����

��


 �

�����������

𝐺 (2, 𝑉8) ⊃ 𝐷𝑍1 (𝑣)
𝑑𝐷 ���������������������� 𝐷𝑍1 (𝑣

∨) ⊂ 𝐺 (6, 𝑉8)

The birational map 𝐷̃𝑍1 (𝑣) � 𝐷̃𝑍1 (𝑣
∨) must be a flop, resolved by two symmetric contractions.

Question. Is there a modular interpretation of 𝐷𝑍1 (𝑣) as for the Coble quartic and of this diagram?

Remark 5.18. Our framework excludes the hyperelliptic genus three curves, but there should be a very
similar story for these curves. In fact, consider a general pencil of quadrics in P7 = P(𝑉8). The eight
singular members of the pencil define such a hyperelliptic curve C. It is a special case of the results of
[DR77] that the moduli space SU𝐶 (2, 𝐿), for L of odd degree, can be identified with the biorthogonal
Grassmannian, that is the subvariety of𝐺 (2, 𝑉8) parametrizing subspaces that are isotropic with respect
to any quadric in the pencil. On the other hand, the even moduli space SU𝐶 (2) is a double cover of
the six-dimensional quadric Q6, branched over a quartic section which is singular along a copy of the
Kummer threefold of the curve. One expects this quartic to be of Coble type in the sense that it should
be the unique quartic section of Q6 that is singular along the Kummer of C. It should also be self-dual
in a suitable sense, and the whole story should be related to the representation theory of Spin8. We plan
to explore these topics in future work.
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