
BULL. AUSTRAL. MATH. SOC. 20D10, 20N05

VOL. 49 (1994) [121-128]

ON CONNECTED TRANSVERSALS TO ABELIAN SUBGROUPS
MARKKU NIEMENMAA AND TOMAS KEPKA

In this paper we investigate the situation where a group G has an abelian subgroup
H with connected transversals. We show that if H is finite then G is solvable.
We also investigate some special cases where the structure of H is very close to
the structure of a cyclic group. Finally we apply our results to loop theory and
we show that if the inner mapping group of a finite loop Q is abelian then Q is
centrally nilpotent.

1. INTRODUCTION

If G is a group, H ^ G and A and B are two left transversals to H in G, then
we say that A and B are jff-connected if a~1b~1ab £ H for every a £ A and b £ B.
This concept was introduced by the authors in [10] where it was used to characterise
multiplication groups of loops. Naturally, connected transversals are interesting in
group theory in their own right and the authors continued their investigations in [11]
where they managed to prove the following two results: (1) If G is a finite group which
has an abelian subgroup H such that there exist ^-connected transversals A and B,
then G is solvable. (2) If, in addition, G = (A, B), H is of prime power order and the
core of H in G is trivial, then Z(G) ^ 1. In the present paper (see Theorem 4.1) we
are able to prove (1) also in the case that G is infinite and H is finite (the argument
of [11] based on Sylow theorems has to be replaced by other arguments and the use
of Zorn's lemma) and we prove (2) without the assumption that H is of prime power
order (see Proposition 6.3 and the remark after its proof). We also consider two special
cases where H = Cp

(2) and H = Cp x Cq
W (here p and q are two different prime

numbers). Finally, we prove several consequences of the above results in loop theory.
Perhaps the most interesting is the following result: If the inner mapping group of a
finite loop Q is abelian, then Q is centrally nilpotent.

2. PRELIMINARIES

Connected transversals are defined as in the first section. The core of H in G is
the largest normal subgroup of G contained in H and we denote it by LQ(H) . If p is
a prime number then we write Cp for the cyclic group of order p and Cp' = CpxCp.
In our proofs we need the following results.
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LEMMA 2 . 1 . II A and B are H-connected transversals in G and La{B) = 1,
then 1 G A D B and NG(H) = H x Z{G).

LEMMA 2 . 2 . Let H < G, A and B be B-connected transversals in G, C C
AUB and K = (H,C). Then CCLG(K).

The proofs of results can be found in [10, p.113-114].

LEMMA 2 . 3 . II H < G, A and B are H-connected transversals and LG(H) =
1, then Z(G) C An B. II N is a normal subgroup ot G and N C A D B, then

THEOREM 2 . 4 . Let H be a cyclic subgroup ot a group G. Then G' ̂  H it and
only il there exists a pair A, B ol H-connected transversals in G such that G = (.A, B).

For the proofs, see [12, Lemma 1.4 and Theorem 2.2].

LEMMA 2 . 5 . IIH is a cyclic subgroup ot a group G and there exist H-connected
transversals A and B in G, then G" ^ LG{H).

PROOF: This follows directly from [12, Corollary 2.3]. D

In group theory our notation is standard. In Section 6 we give some applications
on loop theory. For the concepts and basic results in loop theory the reader is advised
to consult [1, 7, 9, 10, 11].

3. CONNECTED TRANSVERSALS

In this section we prove several lemmas which will be used later in Section.

LEMMA 3 . 1 . Let K be a subgroup ot G and let A and B be subsets ot G such
that 1 G A n B, AB C BK, A~*B C BK, BA C AK and B~*A C AK. Then
(A,B) CAK = BK.

PROOF: NOW A C BK and thus AK C BK2 = BK. Likewise, BK C AK2 =
AK, hence AK = BK = E. Now denote F = A\J B U A'1 U B-1. Clearly, A'1 C E
and B'1 C E. Now AA C AE = ABK C BK2 = BK = E and in a similar way
A'1 A C E. Thus FA C E and now F2 = FF C FE = FAK C EK = E. By
induction, it is clear that Fn C. E and thus (A,B) C E. D

From now on in this section we assume that IT is a subgroup of G and there exist
J?-connected transversals A and B in. G. We write E = (A, B) and if H ^ K we
denote C = AnK, D = BDK, F = {C,D), V = HnF and W = Hn LG{K).
Naturally, C and D are if-connected in K and V -connected transversals in F.

Moreover, F < LG(K) by Lemma 2.2 and K = HLG(K). Finally, K/LG(H) =* H/W.

In the following lemma we prove some technical results.
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LEMMA 3 . 2 . (1) If V = 1, then F = C = D Q Af\B. (2)IfW = l, then

p = C = D = LG(K) ^ Z(E). (3)IfW = l and H <K, then Z{E) > 1.

PROOF: (1) If a,b G C, then there exist elements c,d G C and e G D such that
c'^db, d~1o~1 and e-1o are elements of E. Clearly, these three elements belong to
V = 1 and thus ab = c, a"1 = d and a = e. We have shown that C = D is a
subgroup , hence F = C = D C. AC\B. (2) Now W = 1 implies V = 1 and by (1)
F=C = D. Clearly, D = £G(Jf) and [D, A] s$ F D D = 1 and [I?, J5] ^ # D D = 1,
hence Z> ^ Z(E). (3) This follows directly from (2). D

LEMMA 3 . 3 . Let G = {A,B), LG(E) = 1 and K = NG(H). If HnLa{K) = 1
then Z(G/Z(G)) = 1.

PROOF: By Lemma 2.1, K = NG{H) = HZ(G) and since H O La(K) = 1, it

follows that LG(K) = Z(G). By Lemma 3.2, AC\K = BDK = Z(G). Now we write

G — G/Z[G). Since XQ(£T) is trivial, it follows from Lemma 2.3 that An B contains

Z{G). Then denote E = Na(K). Since ~E = B7Z(G), by Lemma 2.1, we conclude

that I n I = I n S = Z(G). But now ~A n E~=AnE, hence AnE = BnEisa.

normal subgroup of G and by Lemma 2.3, AnE^ Z((A,B)) = Z[G). Thus Z(G) is

trivial and the proof is complete. U

LEMMA 3 . 4 . Let H be an abelian maxima/ subgroup of G and assume that H

is not normal in G and 1 6 A D B. Then AZ(G) = BZ(G) is a subgroup of G and

G*(A,B).

PROOF: It is easy to see that NG{H) = H and Z(G) ^ H. If a £ A, then
6-1a € H for some be B. Since a'^b'^ab € H it follows that 6-1o € B D aJIfc"1 =
ff n bEb-1 = T. If i\TG(T) = F , then S 6 JI and o = 6 = 1. If Na(T) = G, then
CG(T) = G, hence T < Z(G). Thus o 6 BZ{G) and we have shown that A C BZ(G).
In a similar way, J5 C AZ(G).

If a e A and b £ B, then there exists c £ B such that c-1a6 £ 5 . Since
a-H-'afc G H and o^c^oc G 5^, it follows that c^abaH = c^aabH = c^acH =
aH. Thus a~1c~1aba G H, hence c^ab G HdaHa'1. As in the first part of the proof
we conclude that c~xab G Z(G). This means that AB C BZ(G) and in the same way
J3AC AZ(G).

If again a 6 i and b £. B, then there exists c G B such that c~1o~16 G H. Now
c-^-HoJT = c^a^abE = c^acE = aE, hence a^c^a^ba G ff. It follows that
c^arH G i n a J o " 1 . As before, e^a^b € Z[G) and thus A~XB C BZ(G). Of
course, we also have B~x A C AZ(G). By Lemma 3.1, {A,B) C AZ(G) = BZ[G) and
now it is easy to see that AZ(G) is a subgroup of G. li G = (A,B), then G = AZ(G)

which means that E = Z(G). Since E is not normal in G, we conclude that {A, B)

is a proper subgroup of G. D
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LEMMA 3 . 5 . Assume that G = (A, B), H is an abeh'an subgroup of G and
1 eAHB. If R = f\{K : E < K < G} and E < R, then E is normal in R.

PROOF: If E is not normal in R, then NG(H) = E and Z(R) < E. If T < E
and NG(T) > E, then T ^ Z(R). Now we can proceed as in the proof of Lemma 3.4
and we can show that G = (A,B) = AZ(R) - BZ(R). Since Z{R) < H and A, B
are transversals to B in G we conclude that Z(R) = E. Thus E is normal in R, a
contradiction. D

4. MAIN RESULTS

THEOREM 4 . 1 . Let E be a finite abeiian subgroup of a group G such that there
exist E-connected transversals A and B in G. Then G is solvable.

PROOF: We show that there exists a mapping t : N -» N such that G(<(n)) = 1,
where n — \E\. From Lemma 2.5, it follows that we can put t(l) — 1 and t(2) = <(3) =
3. For n ^ 4 our proof is by induction. We first write m — max{((lt) : 1 ^ Jfc < ra}. If
LG(E) 7̂  1, then E/LG(E) and G/LG(E) satisfy the assumptions of our theorem and
thus G<m+1) = 1. Thus we may assume that LG(E) = 1. This means that leAdB.
Now we divide the proof into three parts.

(1) Assume that Z(G) = 1 and E H LG(K) > 1 whenever E <K. By induction,
G<m> < LG{K). If we write R = f\{K : E < K < G}, then G<m> < LG(R). If
R = E, then G<m> < LO{E) = 1. Thus we assume that E < R. Since Z(G) = 1,
we have NG{E) = E by Lemma 2.1. Thus E is not normal in R and Z(JE) < E.
We write C = A ("1 i? and D = B C\ R. Then G and JD are ^-connected transversals
in R. By Lemma 3.4, CZ(R) = DZ(R) is a subgroup of R. It follows that [C,D] s£
CZ{R) HE = Z{R). Clearly, Z(R) < Lfl(#) and if we write J? = R/LR{E), then
i2 = GIT, where G = 2? is an abeiian subgroup of R. By the theorem of Ito [6,
p.674-675], i f = 1, hence J?<s> = 1. Since G<m> ^ fl, we have G(m+S> = 1.

(2) Now assume that Z(G) > l a n d 5 n Xo(-K") > 1, where K = NG{E) =

EZ(G). If we write G = G/LG{K), then G*"0 = 1 , hence G(m) < L G (^) < K and

(3) Now we write E = {A,B) and A = {P ^ G : E ^ P, P n A = P n J ? i s a
subgroup of Z(£7)}. Now J 6 A, A is ordered by inclusion and clearly we can apply
Zorn's lemma. Let F be a maximal element of A. Then C = Ff\A = Ff\B is a
subgroup of Z(E), C is naturally an abeiian group and F = CE, hence F" = 1 by
Ito's theorem. If LG(F) n E > 1, then G(m) Sj LG(F) ^ F and G(m+2> = 1. Thus
we can assume that LG(F) n E = 1. Now we write G = G/LG(F) and let if be a
subgroup of G such that F ^ K and ^ o ( ^ ) HiT is trivial. Now ff = F = ff and since

I G ( F ) < M - K ) , u follows that % ( ^ ) = LG{K) and IG(F) < LoC/f) n F. On the
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other hand, from the fact that LQ{K) n~B is trivial it follows that LG(F) = LG{K)C\F

and thus LG(K) C\B = La{F) n H = 1. By Lemma 3.2, KC\A = KC\B = La(K) s*
Z{E) and we have shown that K € A, hence K = F. Thus it is clear that ~BOL^(V)
is not trivial whenever 2? < V s£ G. U Z(G) is trivial, then S ( m + S ) is trivial by (1)
of this proof, hence G<m+5> = 1. U Z(U) is not trivial, then ^ m + 1 ) is trivial by (2)
and thus G^m+S^ = 1. From the three parts of our proof it now follows that we can put
t(n) = m + 5. The proof is complete. U

We put an end to this section by considering the case where B is elementary
abelian of order p2 .

LEMMA 4 . 2 . Let G = (A,B) and B < G such that H S Gp
(2), then G' s*

NG(H).

PROOF: We divide the proof into three parts. (1) If LG(B) > 1, then H/LG(H)
is cyclic and G' ^ H by Theorem 2.4. Thus we may assume that LG(B) = 1 (then
1 £ AHB). (2) Assume now that Z(G) = 1. If H < K, then H f~l LG(K) > 1
by Lemma 3.2 and HLG(K)/LG(K) = K/LG{K) is cycUc , hence G' ^ K. Thus
G' ^ R = f]{K : K > H} and naturally R is normal in G. Now NG(H) = H
and thus H < R and 27 is not normal in R. This is a contradiction to Lemma 3.5 ,
hence we may assume that Z{G) > 1. (3) Now consider T = NG(H) = HZ(G). If
B D LG[T) = 1, then LG(T) = Z(G) by Lemma 3.2. Thus the core of T/Z(G) in
G/Z(G) is trivial and by (2) of this proof Z(G/Z(G)) > 1. On the other hand, this is
not possible because of Lemma 3.3. Thus B D LG(T) > 1 and then BLG(T)/LG(T)
is cyclic and again by Theorem 2.4, G' < BLG(T) = T = NG(B). D

5. A SPECIAL CASE

In this section we consider the situation where G is a finite group, B is a subgroup
of G such that B = Cpx C^2' and there exist fT-connected transversals A and B in
G (here p and q are two different prime numbers).

THEOREM 5 . 1 . If G is a Unite group, G = {A, B) and B 2* Cp x C,( 2 ) , then

PROOF: Assume by induction that G is a counterexample of smallest possible
order. Thus LG(B) = 1. We first show that Z{G) ^ 1. If Z(G) = 1, then NG(B) = B

by Lemma 2.1. If B < K, then F D LG(K) = R ^ 1 by Lemma 3.2. If iT/fl is cyclic,
then G' < BLG(K) = K by Theorem 2.4. If # / .R is not cyclic, then B/R ^ C,( 2 )

and G' ^ iVo(^) by Lemma 4.2. Thus G' ^ f\NG(K), where if ranges over all
subgroups of G which properly contain H. U T = flK, then G' < JVG(!T). Thus
NG(T) is normal in G. If T = B, then NG(T) = NG(B) = B and B is normal in <?,
a contradiction. Thus B <T and we now have a contradiction to Lemma 3.5.
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Thus we may assume that Z(G) > 1. Now let x G Z{G) such that x ^ 1
and \x\ = r, where r is a prime number and consider the group K = H{x). If
H n LG(K) = 1, then La(K) < Z(G) by Lemma 3.2 and, in fact, LG(K) = (x).
By induction, the core of H(x)/(x) in G/(x) is nontrivial. Hence we have a normal
subgroup D of G such that (x) < D ^ #(x) . But now D ^ Xo(iif), a contradiction.
Thus H D iG(.K') > 1 and the order of LG(K) is one of the following: pq2r,pqr, q2r,pr
or qr. If r ^ p and r ^ q then we immediately have the characteristic Sylow p-subgroup
(or the characteristic Sylow g-subgroup) in LG(K) and since LG(K) is normal in G,
we conclude that La{H) > 1, which is not possible. Thus r = p or r = q. If
r = q, then the order of LQ(K) is one of the following: pq3,pq2,pq,q2 or gs. In
the three first cases we can proceed by using the characteristic Sylow p-subgroup of
La(K). If \La(K)\ = q2 or = q*, then HLa(K)/La(K) is cyclic and by Theorem
2.4, G' 4, HLG(K) = K. Thus K is normal in G and the Sylow p-subgroup of
K is normal in G, hence La(ff) > 1, a contradiction. Thus we may finally assume
that r = p and Z(G) is a p-group. Now the order of LQ{K) is one of the following:
p2q2,p2q,pq2,pq or p2 . In the four first cases we have the characteristic Sylow q-
subgroup in LQ{K) and this leads to a contradiction as before. If \LQ(K)\ = p2,
then we write G = G/La(K). Now ~H = HLa(K)/La(K) = K/La(K) S C,(2). If
LQ(H) is not trivial, then we can proceed as in the first part of the proof of Lemma
4.2 and we conclude that G' ^ HLQ(K) = K. Now K is normal in G and K has the
characteristic Sylow g-subgroup, hence LQ(H) > 1. Thus we can assume that LQ^H)
is trivial. Then by Lemma2.1, N-^(S) =~HZ(G) and 2fnZ(G) is trivial. By Lemma
4.2, G* < NQ(H) , hence G' ^ T = Na{HLG(K)) = NG(K) and thus T is normal in
G. Clearly, % ( # ) = T, hence HZQ5) = T. Now we write N/La{K) = Z(G) and
thus KN = T. Now by Lemma2.3, Z(&) C l n J B and then ~AC\T = BDT = ^(G) .
It follows that {Ar\T)La{K) = N. Let Q be the subgroup of order g2 in H. Now Q
is characteristic in K, hence Q is normal in T. Thus T — Q x N and Q ^ £(T) • On
the other hand, Z(T) = CT(T) < CT(E) ^ NT{H) ^ Na(B) = HZ(G). Since T is
normal in G, we know that Z(T) is normal in G and thus Q < Z(T) ^ LG(HZ(G)).
Since Z{G) is a p-group, it follows that LG(HZ(G)) has a characteristic Sylow q-
subgroup Q and then Q ^ LG(H). This is our final contradiction and the proof is
complete. D

6. APPLICATION TO LOOP THEORY

We say that a groupoid Q is a loop if Q has unique division and a neutral element
(thus loops are nonassociative versions of groups). The mappings La(x) = ax and
Ra(x) = xa define two permutations on Q for every a 6 Q and the permutation group
M(Q) = {La,Ra : a £ Q) is called the multiplication group of Q. By I(Q) we denote
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the stabilizer of the neutral element and I(Q) is called the inner mapping group of Q.
It is rather easy to see that the core of I(Q) in M(Q) is trivial and A = {La : a £ Q}
and B = {Ra : a € Q} are I(Q) - connected transversals in M(Q). The concept of the
multiplication group of a loop was introduced by Bruck [1] and he used this concept to
investigate the structure of loops. Glauber man [3] and [4] studied very thoroughly loops
of odd order and Conway [2], Griess [5] and Liebeck [8] have investigated the connection
between certain finite simple groups and finite Moufang loops. In [10, Theorem 4.1]
Kepka and Niemenmaa gave the following characterisation of multiplication groups of
loops.

THEOREM 6 . 1 . A group G is isomorphic to the multiplication group of a. loop if
and only if there exist a subgroup H satisfying LQ(H) = 1 and B-connected transver-
sals A and B satisfying G = {A, B).

By combining theorems 5.1 and 6.1 we get the following

COROLLARY 6 . 2 . If Q is a finite loop then it is not possible that I{Q) =
Cp x C^ ', where p and q are two different prime numbers.

REMARK. In [10] and [12] it was shown that I(Q) can not be a nontrivial cyclic group.
On the other hand, I(Q) = C2 X C2 is possible as was shown in [10, p.120].

Our next application deals with the central nilpotency of a finite loop Q. For
this concept and related results, we advise the reader to consult [1, 9, 11]. We first
introduce the following purely group theoretical result.

PROPOSITION 6 . 3 . Let H be an abelian subgroup of a finite group G such
that there exist H-connected transversals A and B in G and assume that G — {A, B).
Then H is subnormal in G.

PROOF: Assume that G is a counterexample of smallest order. If LG(B) > 1,
then H/LG{H) is subnormal in G/La{B), hence H is subnormal in G. Thus we may
assume that LG(B) = 1 (this means that 1 6 A fl B.) Then assume that Z(G) - 1
and let H < K < G. By Lemma 3.2, H n LG(K) > 1. Thus HLG(K)/LG(K) is
subnormal in G/LG(K) and since K = HLG(K), we conclude that K is subnormal
in G. Clearly, R - [\{K : H < K < G} is subnormal in G. If R = H, then B is
subnormal in G. If B < R, then by Lemma 3.5, B is normal in R. Thus we may
assume that Z{G) > 1. Now BZ(G)/Z(G) is subnormal in G/Z(G), hence BZ(G) is
subnormal in G. But then B is subnormal in G and we are ready. D

From the preceding proposition it follows that if G is a finite group, B < G is
abelian, LG(B) — 1 and there exist JJ-connected transversals A and B such that
G = (A,B) then Z(G) ^ 1. This improves the result of Theorem 3.4 in [11] and now
proceeding as in Section 4 in [11] we can prove the following interesting result in loop
theory.
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COROLLARY 6 . 4 . Let Q be a finite loop such that the inner mapping group
I(Q) is abelian. Then Q is centrally nilpotent.
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