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HANKEL OPERATORS ON PSEUDOCONVEX DOMAINS OF
FINITETYPE IN C?

FREDERIC SYMESAK

ABSTRACT. Theaim of this paper isto study small Hankel operatorsh on the Hardy
space or on weighted Bergman spaces, where Q isafinite type domainin c? or astrictly
pseudoconvex domain in c". We give a sufficient condition on the symbol f so that h
belongs to the Schatten class Sp, 1 < p < +oo.

1. Introduction. Let Q a bounded pseudoconvex domain of finite type m in C?
givenby Q = {z € C%r(2) < 0}, wherer is a C> function such that |Vr(z)| = 1 on
aQ={z;r(2) =0}.

Let H (Q) be the space of holomorphic functions in Q. We denote by Sthe Szegd
projection: itisthe orthogonal projection fromL?(9 Q) onto L?(0 Q)NH (Q), the subspace
of holomorphic functionsin Q of which boundary valuesfunctionisin L2(9 Q). For g in
L2(9 Q), Sg has a holomorphic extensionin Q given by

9@ = [ Sz doQ). z€Q.

where Sz () isthe Szego kernel of Q.
For f in L2(0 Q) N H (Q), the big Hankel operator H and the small Hankel operator h
of symbol f are defined by

) Hg = X(f Sg) —f Sg.
) hg=S(fSg). g€ L*0Q).
Letg> —landdVy = (—r(z))qu, wheredV is the Lebesgue measure of Q. We denote

by By the weighted Bergman projection: it is the orthogonal projection from L?(dV,)
onto the weighted Bergman space A%(dVg) = L%(dVg) N H (Q). Let gin L2(dVy), then

Bqg(@ = /. Ba(z. Q9(0) dVe(©).

where By(z ¢) isthe weighted Bergman kernel. We denote By by B and By(z, ¢) by B(z. ¢).
For f € A%(dV,), the big Hankel operator Hq and the small Hankel operator hg of
symbol f are defined by

(3) Hqg = By(fBq0) — fBqQ,
(4) heg = Bq(fBq@). g € L%(dVy).
Received by the editors December 2, 1996; revised October 23, 1997.

AMS subject classification: 32A37, 47B35, 47B10, 46E22.
(©Canadian Mathematical Society 1998.

658

https://doi.org/10.4153/CJM-1998-037-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-037-2

HANKEL OPERATORS ON PSEUDOCONVEX DOMAINS 659

We denote hg by h and Hg by H.

Hankel operators have been studied by many authors. A full characterization was
established in the case of the disc [AFP], [CR], [Pell], [Zhu] .... It is well known
that Hankel operators on Hardy spaces are bounded if and only if f isin BMO and
compact if and only if f isin VMO. Concerning Hankel operators in Bergman spaces,
they are bounded if and only if f isin the Bloch space and compact if and only if f
isin the little Bloch space. These results have been extended to the unit ball of C" by
R. Coifman, R. Rochberg and G. Weiss [CRW] for Hankel operators on Hardy spaces
and by Zheng [Zhe] for Hankel operatorsin Bergman spaces.

For other pseudoconvex domainsin C", the characterization of big Hankel operators
in Bergman spaces is related to the study of the commutator C;g = fBg — B(fg). For
strictly pseudoconvex domains a characterization of C; and H has been obtained by
F. Beatrousand S.-Y. Li [BL1], H. Li [L] and M. Peloso [Pelo]. For finite type domains
in C2, astudy of the commutator can be found in [BL1].

Concerning Hankel operators on Hardy spaces, S. Krantz and S.-Y. Li [KL2] proved
the theorem of factorization of H(Q) and deduced the characterization of h when Q
is a strictly pseudoconvex domain. For strictly pseudoconvex domains and finite type
domainsin C?, they studied the commutator C; = fSg — (fg).

The characterization of symbols f such that these operators belong to the Schatten
class Sy is an important question. For the unit disc, Hankel operators belong to S, if
and only if f isin the Besov space B} /P, 1 < p < +o0. For small Hankel operators on
the Hardy space, the result is still valid in the case of the unit ball of C", n > 2, [FR]
and [Zhd].

Thesituation is different for big Hankel operatorsin Bergman spaces: for p > 2n, Hg
isin S, if and only if the symbol f isin B}/ butfor 0 < p < 2n, Hyisin S, if and only
if f isconstant. The same cutoff phenomenon appearswhen Q isastrictly pseudoconvex
domainin C" [L], [Pelo].

When Q is a pseudoconvex domain of finite typein C?, it was proved in [KLR] that
the big Hankel operator H on Bergman spaceisin S, if and only if f isin some function
space Yp(Q) whenp > 4 and for 0 < p < 4, H isin S if and only if f is constant this
space Yp(Q) coincideswith the analytic Besov spaceswhen Q isastrictly pseudoconvex
domain. In this paper, the case of ellipsoidsis also considered.

The purposeif this paper isto extend the results of [S2] in which sufficient conditions
are given on the symbol f so that small Hankel operators belongs to S, when Q is a
complex ellipsoid.

Before stating our results, we recall the construction of the anisotropic pseudometric
on d Q whichwe shall useto definethe anisotropic BMO(d Q) and VM O(0 Q) spaces(see
D. Catlin [Ca] and A. Nagel, E. Stein and S. Wainger [NSW]). LetU ={z |[r(2)| < ¢} a
neighborhood of 9 Q. We consider the function 7(z é) and the biholomorphic mapping @,
defined in [Ca]. Recall that C16%/2 < 7(z.6) < C,6%/™. We denote by dy the anisotropic
pseudometric on 9 Q given by

do(z.¢) = inf {6 > 0.C € Qz.5)}.
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where Q(z.6) = ®,({(G1- &) [G1] < 7(z.6) and |G| < 6}). For zon9Q and 5 > 0, we
denote by B(z, §) the anisotropic ball {¢ € 9 Q. do(z.¢) < é}. It iswell known that

o(B(z.8)) ~ 67%(2.5).

where ¢ is the Lebesgue measure of 9 Q.
LetfinLL (9Q). ForzonaQandé > O, we consider

o
-1 _
osc(f.zé)—U(B(Zé)) /B(m)|f(<) m(f,z.6)| do(©).

A function f in L} (9 Q) isin the anisotropic space BMO(9 Q) if

| fllemo = sup osc(f, z 6) < +oo.
z 6>0

Let f € BMO@0Q) and 0 < r < 1. We note M,(f) = suposc(f,z ) where the
supremum is considered for zon 9 Q and 0 < 6 < r. The function f isin VMO(o Q) if
limr_o M;(f) =0.

Let us recall the definition of Sp. If © is a compact operator in a Hilbert space H
we can consider (s) the sequence of eigenvalues of (©*©)Y/2, Thes; are called singular
values of ©. The operator © is said to belong to Sy, if and only if (s) isin ¢P. The space
S, endowed with the norm ||©)|s, = (2%, sP)Y/P is a Banach spacewhen 1 < p < +oo.
The space S; is called the Trace Class of H and S, is the Hilbert Schmidt class [GK].
The following theorem holds:

THEOREM A. Letf inL?(0 Q) and h defined by (1).

(i) Iff € BMO(3 Q) then h isbounded,
(ii) if f € VMO(0 Q) then h is compact.
(iii) Let 1 < p < +ooand| € N suchthat Ip > 2, f € L?(0Q) N H (Q) such that
(—r()' Vit € LP(B(z 2dV(@) thenh € S,

In the part (iii) of the theorem, the condition Ip > 2 insures that the weight
(—r(z))plB(z, 2) is an integrable function. Let us remark that for I” in N, (—r({))'V'b
inLP(Q. B, OdV(Q)) if and only if (—r(©))™ V"*'bin LP(Q. B, OAV(Q)).

In Sections 2 and 3 we give the proof of the theorem A and in the section 4 we study
small Hankel operators defined on weighted Bergman spaces hg, g € N.

The author would like to thank the referee for useful suggestionsand for the proof of
the compactness of g — fSSg.
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2. Boundedness and compactness. The proof of (i) is classical. The Szegd pro-
jection isasingular integral operator with respect to the pseudometric d [CW]. We can
consider C;g = §(fg) — f Sg the commutator associated to f. Let us remark that for gin
L0 Q),

5) hg = C;Sg + fSSg.

For f in BMO(d Q), the proof of S. Janson [J] extends to this context to show that C;
is bounded. We prove now that fSLEX-) is a compact operator. We have only to prove
that adjoint operator is bounded from H(9 Q) into L?(9 Q) or fS() is bounded from
H1(0Q)inL%(0 Q). Letgy inH (0 Q) and g, in L2(0 Q). Then,

< fgggl) gZ> = <§gl 31:_92»
- ‘/m(§g1)(z)@(z) do(2).

Using a partition of the unity, we assume that ;—Zrl #0. Then

(1560 %) = [ EOTTR0-2 (=) r@ave)
JQ 0z \ -
and

|(fS(S0n). 02|
< C(/Q |§91(Z)|2<_r(z)) dV(z))l/z(/Q |S(f_gz)(2)|2(—f(2)) dV(z))

Let usremark that, for a harmonic function F, we have

1/2

(L IF@R(—r@) V@) " = [Flly sy = [Flli -
Since the operator Sis boundedin HS(0 Q) [B], we obtain
‘<f5(§91)-, 92>‘ < ||92HH*1(aQ)|| Fgl”H*l(aQ)-
LetvinH(9 Q).
o f@u@v@ do@)| < [[tvlpolglieo.
By the Sobolev theorem, the function visin L?*(0 Q) and
[Vl ey < CHIVIIHa0)-

This finishes the proof of the compactness of f S().
For the proof of the part (ii) of the theorem A, we use the relation (5). We have only
to prove that the first operator is alimit of compact operators.
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Letr > Oandf,(29d = m(f.zr) = m Ja(zn F(¢) do(¢). Thefunctionf; iscontinuous
on 4 Q, it is the uniform limit of f, in C>=(a Q). We then have

Cf = (Cf — Cfr) + (Cfr — Cfn) + Cfn.

Let (gi) in L2(9 Q) such that g — O weakly and let ¢ > 0. It follows from the theorem
of Banach Steinhaus that there exists M > O such that ||gi| ;) < M, i > 0.

For the unit ball of C", R. Coifman, R. Rochberg and G. Weiss [CRW] proved that
there exists C > 0 such that

1Cs — C)gill 20y < CMer(F)|IGillL2p0)-

Theresult isstill valid in the case of homogeneousdomains. By definition of VMO(0 Q),
there existsr > 0 such that CMc,(f) < ¢/3M. Then

ICr — Ce)aillzny < /3
Let usremark that (C;, — Cy,) = C; _¢,. For gin L?(9 Q)

1C—)dll 20y < 2 sup [ Q) — T 19l L20)-
e

Let no such that, for n > no, sup.cyq | fr(¢) — fa(Q)] < £/6M, then

H(Cfr - Cfn)giHLZ(ag) < 6/3.

ForginL?(9Q),
C9@ = [ Sz (1D —11(0) 9() dor(©)-

We use the pointwise estimates of the Szegd kernel to prove that Cs, is an operator of
order 1 in the sense of [NRSW]. Let

ar o ar o
Nz:4(—_— +—_—)
021027 0202

the complex normal direction such that N,r(2) = |[Vr(2)|?> = 1on o Q and

02021 027102
the complex tangential direction. The sequencef, isin C>(9 Q), then | (2 — fn(Q)] <
Cr(z.d(z¢)) and
—k—1
7(z d(z ¢))

\xl e (S20(10) f(g)))\ < Cr(zdz Q) (B0
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whenk of theX; areL, or L, and | are L, or L.
We recall now the definition of the anisotropic Sobolev spacesL. Define

Ly={f € LP(0Q); Uf e LP(0Q).1<j <Kk}.

It was proved in [NRSW] that an operator of order 1 mapsLP into LY, 1 < p < +oo0.
Then Cs, is bounded from L2(3 Q) into L2(9 Q) and therefore it is a compact operator in
L2(0 Q). There exists g such that, for i > io,

1C,0ill 2y < €/3.

L et us remark that the operator SScan be seen as a Friedrichs operator. It was proved
in [KLLR] that such operators are Hilbert Schmidt operators.

3. Schatten class. If (g) and (f;) are two orthonormal basis, a compact operator ©
in aHilbert space H hasthe following Schmidt decomposition

(6) ©=00) :ime,-vfj-

where (. ) isthe inner product in H. If © is given by (6), then )j = 5 [GK]. We follow
the method developed by R. Rochberg and S. Semmes [RS1] and [RS2]. We use a
generalization of the Schmidt decomposition to approximate the singular values.

In the following, we shall consider domains Q(z, é) for z € Q, so we extend dp to C2
with the euclidian distance. Let ¢y € C>(C?) suchthat ¢(z.¢) = 1when [r(9)| < ¢/2and
Q)| < e/2and(z.¢) = Owhen[r(@)| > ¢ or [r()] > e.

DEFINITION 3.1. Letzand ¢ in C2. Then,

dz Q) = ¥z Qdo(z.Q) + (1~ ¥(z.Q))[z— ¢
Let
Qz.6) = {¢ € €% d(z ¢) < 6}.

We consider a Whitney covering of Q by domains Q(w, 176(w)), 0<np<landwe
denote by Q; theball Q(w;. 6(w;)) . Wefix Co > O suchthat QN Qy = Mif j #J', where
Q = Q(wj. n6(w)/Co). Let w(Q) = B

We use the Whitney covering to define the nearly weakly orthogonal (N.W.O.) family
of elements of L%(9 Q).

DEFINITION 3.2. Thefamily (g) in L?(0 Q) isaN.W.O. family if and only if

() lellzpe) ~ 1,
(i) the maximal operator T* defined on L2(0 Q) by

T = (Bj)l/zl<f 9)l

is bounded in L2(0 Q).
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Such families allow usto prove that acompact operator belongsto the Schatten class
Spr 1 < p < +oo.

THEOREM 3.3. Let © be a compact operator on L2(d Q).
(i) If © isgiven by (6), where (g) and (f;) are two N.W.O. families and () € (P,
1 <p<+oo,then

1
lells, < (> Iy P) .
]

(i) Let@ € Sy, 1 < p < +00 and (g), (f;) two N.W.O. families. Then
(Slig.0H) )" < cllels,
|

Thefollowing proposition providesthe N.W.O. family that we shall useto study small
Hankel operators.

PropPosITION 3.4. The family (g) defined by

&(2) = 5wy (. 5(w)) Sz wy)
isaN.WO. family.

The proof of the theorem 3.3 and the proposition 3.4 can be found in [S2] in which
they are given for complex ellipsoidsin C".

We shall provethat asmall Hankel operator satisfiestherelation (6) with () in ¢P and
g asabove. This decomposition follows from atheorem of atomic decomposition of N, f

in LP((—r(z))lpB(z. z)dV(z)). The method is due to R. Coifman and R. Rochberg [CR]

(seealso[Co] and [S1]). Inthis case, the function N, is not holomorphic, but we use the
fact that f isholomorphic to prove an integral representation for NI, f. This representation
isgivenwith N)S(z, ¢) and derivativesof f. Thisis doneby Greenformulaandintegration
by parts. Then, following [CR], we use a#-lattice to approximate N, f with a Riemann
sum. The theorem follows by iteration.

Forgin L'J((—r(z))lpB(z z)dV(z)) Let
ldlho = ([, lo@PP(~1@) "Bz 2ave) "

In the following, we consider a function f in L2(9 Q) N H (Q) such that the function
NLf isin L'J((—r(z))pI B(z. z)dV(z)), Ip > 2 and a Whitney covering of Q by domains
Q(w;. 6(w) ). We have the following result.

THEOREM 3.5. Thereexists ();) in (P such that

f(2) = 30 Ao (wi)r?(w;, 6(w)) Sz w).
J
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PROOF. We begin to prove an integral representation for f.

PROPOSITION 3.6. Let 1 < g < |. Thereexistsf in LP(B(z 2)dV(2)) suchthat
(@) [[fqllip < +oo,
(i) 1) = Jo Az ) fq(Q) dVg-1(Q). z€ Q.
PROOF. Letk = (ki.kp) € N?, |k| = ky + ky and Dy = ac;lakiz
construction of S. Bell [B1] and [B2]. Since N.r(2) = 1 ona Q,

(@=43 [ 901055700

Let zin Q. Weuse a

and the Green formula gives

f(2) = /Q Sz Q(Ar(Of(Q) +N:F(Q) AV(Q).

Let g > 1. We suppose that the part (i) of the proposition is true for g — 1. Recall that
there exist two functions a(-) and b(-) in C*(Q) such that [S1]

(7 1=a(QNr(¢) +b(Q)(-r())-
Then,
f(2)

529 fq_z(ob(o(—r(o)“‘1 av(Q)

> [, 520202072 =

¢ 36 (1O VO

q 1

I1+15.

It remainsto integrate |, by part with respect ¢; and ;. By induction, we obtain functions
() inC>(Q), |k| < gsuchthat

) (@) = >~ a(QDk f(Q)
|k|<q
The part (i) of the proposition follows immediately from the preceding relation. ]

We use the integral formula to prove the theorem of atomic decomposition. We
consider aWhitney covering of Q with domains Q(W. nod (W)) , 7 > 0small enough[CR].
The sequence (w;) is called an-lattice of Q. The theorem follows from the proposition.

PROPOSITION 3.7. Thereexists G in H (Q) such that

(i)

G(2) = 2 vid(wi)r* (i, 6(w;)) Sz w).
j
with (v) isin (P,
(i)
INLGl1p <C 3 [IDkflipe
Ik|<I

(iii) INyf — NGllip < 5 X<t 1Dk [|1p-
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ProCF. It follows from the proposition 3.6 that
© Nf@ = [ NSZ OO V). zeQ.
wherefj is given by the relation (8). We consider the domains E; defined by

U 69).

k=j+1

Eo :Qo\(géi) and E=Q)\ ((jkL:J;Ek) U(

ThenQ C B C Q,UZE = Qand ENE =0 if j #J'. We use the fact that the
domains E; are mutually disjoint to approximate N, f by the function N.G, where G is

defined by
I-1
G(2) = 3_ VOI(E)(—r(w)) fi(w)S(z w).
i
In this casev; = —f'(wis)(\\,’wo)'ff(l\?vf;m?'fl

We begin to prove that (1/15 isin ¢P. Let w; be a point of the Whitney covering. By
construction Vol (Ej) ~ 82(wj)r?(wj. 6(w;)). Then

[P < Co(w)P'| fy (wg) [P < Co(wy)” |k\z| |2 (W) [P Dic f (W )|

Let usremark that Dy f is a holomorphic function, the subharmonicity of |Dy f|P gives

C
|Dk f(WJ)lp S VO|((~QJ')

If wisin Q;, Bw, w) ~ Vol(Q;)~* [Ca] and

/Q, Dy f(W)[P dV(w).

(10) D) < C [ DicfW)|PB(w. w) dV(w).
il
We use the relation (10) and the fact that 6(w) ~ 6(w;) in QJ- to obtain

TP <Y [ Y IDFQPSQOPBEQdV(Q)
] )

Q =i

< C 3 D[, < +oo.
k| <l '

For the proof of (ii) and (iii), we consider the kernel function C,_1(z ¢) defined by

Ca(zQ = (2D Q) DO ifzand¢inUNQ
C_1(z¢) =1 otherwise

and we consider the family of functionsin LP(6(2)*B(z 2dV(2))
L(2) = 6(w)7* (Wi, 5(wh)) Ci-1(2. W)

We use the auxiliary result.
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ProPosITION 3.8. Let L; asabove.
(i) Letl <p < +ooand () in (P. Thereexists C > 0 such that

HJZ AL Hl_p < c(jz I\ |p)l/p.
(ii) Thereexistsy(Q) =7 > 1suchthat, for zin Q,

@ — NiG@| < G/ ([L 3 1B FOI(~) "B 0 av)) 2.
(.

Q k|<I

where Qj = Q(w, ¥5(w))).
Notice that the domains Q,- are almost disjoint, we have the following resullt:

COROLLARY 3.9. Thereexists C > 0 such that

IN,F = N,Gllip < Cnl/m%l Dk ff1.p-
<

The proposition 3.7 follows if 1 is small enough such that Cp*/™ < 1/2.

ProoF. We follow the method of [CR] to prove the part (i) of the proposition 3.8.
We consider the function

k(2) = JZ IAilow) ' xg -
Let usremark that ||k||, ~ (= |j|P)Y/P and there exists C > 0 such that
IRUCTE WY 6(w)r(w;. 5(w)) “Croa(z. W) < CTi_1k().
where T,_; isthe integral operator associated to C,_; and defined by
T-10@ = [ G112 Q9Q) dVi-10).
We only haveto provethat T _; is bounded in LP(6(2)" B(z. 2dV(2)).
If p=1.B(z 2 ~ (2 ?(25@) ", wehavefor ¢ in Q [BCG],
|, 612 08@)'Bz 2 aV(2) < C(Q)7(¢.60)
therefore
ITi-aglha < [ 16QI( [, G-1(z 06 Bz 2 dv(@ )6 dv(©Q)

< € [ 19016 ?r(¢.60) ~ av(©)
< Cliglha.
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If 1 < p < +oo. We denote by sthe function such that s(x) = 2if x < 0and s(x) = m
if x > 0. It iswell known that T,_; is bounded in LP (5(2)“7(2. 5(z))”dV(z)) for o and 3

suchthat 0 < 1+a+ g and 1+ o+ g5 < Ip[S1]. Thechoicea = Ip—2and 3 = —2
allows usto show that Ti_; is boundedin Lp(b‘(z)'pB(z z)dV(z)). ]

For the part (ii) of the proposition 3.8, we consider zin Q. Then,
INf@ — N,G@| < SISz w)| [ 160 —fw)] dVi-2(Q)
] |
+3 [ IRQ] NSz w) — NSz ) dVi-a(0).
] ]

We use the technical result.

LEMMA 3.10. Let§ > Osuchthat Q(z 65(2)) C Q. LetzinU, w € Q(z 65(2)) and
small enough so that Q(w. n6(w)) C Q(z 65(2)). Thereexisty > 0and C > 0 suchthat
0}
sup  [NIS(z.¢) — NSz w)| < CpV/™D(z. w)~*772(z D(z w)).
CEQ(W,nd(w))
(if)
sup 1)~ iW)P < CP/™ [ 5 Dk FOIPB Q V().
CEQW,5(W)) Q=i
where Q = Q(z.75(2)).

PrROOF. The proof of the part (i) of thelemmaisgivenin [S1] for the Bergman kernel,
the method is the same for the Szego kernel.

The part (ii) follows from the subharmonicity of Dy f|P. Let ¢ in Q(w, né(w)) and w
in Q. From (8),

15O —fiw)° < Clgjl |2 (W)[°|Di F(¢) — D f(W)[?

+C > [a(Q) — aW)PIDk FQIP.

[k|<I
Let usremark that |ax () — ax(w)| < Cy*™if ¢ in Q(w. n5(w)). Then,

1) — fiw)|P < c%l Dk F(©) — D F(W)P + Cnp/“’lklzI Dk FQ)IP.

Thelemmafollows from [S1] for the first sum and from the relation (10) for the second.
|
We use the proposition 3.6 to finish the proof of the theorem by iteration. It remains

to provethat the integral formula (9) istrue whenf isreplaced by G. We denoteby T the
integral operator associated to the Kernel |NLS(z ¢)| and defined by

To@ = | INSZ QIg(0) dVi-1(0)-
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Let jo in N. We denote by G;,(2) the truncated function
Gio(2 = X (Wi )7 (W, 5(w) ) Sz, W)

1<lo
Then,
NIG;,(2) = [ NiSZ )G, () dVi-1(0).
where G, is given by the relation (8). Let us remark that there exists C > 0 such
that N, S(z¢)] < CC_1(z¢). By Proposition 3.8, the operator T is bounded in
LP(5(2'PB(z 2dV(2)), 1 < p < +oo, then the relation (9) istrue for G.
Let G' be the function associated to f — >-L_3 GX. It follows from the proposition that

N~ NG| < 27! S 1Dk
k=0 k<l

ThenNLf = 2 NIG. .
The theorem 3.3 allows us to prove that h is in Sp. Let f in L2(9Q) such that
(—r(z))|V'Zf € LP(B(z 2dV(2)). There exists ();) in (P such that

f(2) = ]Z NS (W) (W, 6(wh) ) S(Z, wh).
LetginL2(0 Q). Then,
hg@) = [ S2)FOSIQ) do()
= 2 a7 (v 50w)) /,, WSz OSHE) do(Q)
=¥ Ao (wa)r? (w. 8(w;)) Sz w)Sg(w).
Let us remark that Sgw;) = J;o S¢. W)3(C) do(C). Then
hg=3 (e ge:

where (g) isaN.W.O. family and (\;) isin ¢P. By Theorem 3.3, hisin S,. L]
4, Hankel operatorsin Bergman spaces. In this section, we study small Hankel
operators defined on weighted Bergman spaces. Recall that the Bloch space is defined

by:
B = {f € CXQ).sup[r@Vi@)| < +oo}

andB = BNH (Q). Itiswell knownthat for afunctionf in B, there existsC = C(f) > 0
suchthat | f(¢)] < Clin(—r(Q)].¢ € Q.
Thelittle Bloch spaceis the subspace of B defined by:

Bo={f € B'zﬁg}; r(Vi(2)| = 0}.

The following theorem holds:
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THEOREM B. Letqin N, f in A%(dV,) and hq defined by (3). Then,
(i) Iff € B then hg is bounded,
(i) if f € Bo then hq is compact,
(i) Let 1 < p < +oo and | € N such that Ip > 2, if f in A%(dV,) such that
(—r(2) Vif € LP(B(z 2dV(2)) then hy € Sp.

PrROOF. For the part (i), we consider f in B and g € L2(dV,). Let us remark that
¢ — Bq(z )Bqg(¢) is an antiholomorphic function, the relation (7) gives

hg(@) = [ Ba(z ) T(OBG0) dVa(c)
(12) = [ Baz OF(QBagQ) Vs ©):

where F(Q) = N.F(0) + (—b(g) + %ﬁw@) £(¢). Thefunction f isin B, then
12 (=) IFOI < pc(—r(0) (IVF©I +[In(=r(©)]) < +o0

LetG(() = (—r(g)) F(¢)Bqg(¢). Thefunction GisinL%(dVq) and || G| zav,) < Cll9llLzavs)-
We then have

109l 2@vg) < 1BaGllLzavy) < [IGllizave) < CllGllLeavey-

LetfinBo. Leté >0and Q5 = {z € Q,—6 < r(2) < 0}. Let s defined on Q by
vs(¢) = 1if ¢ € Q5 and 0 otherwise. For g in L2(dVy) and zin Q, it follows from (11)
that

hg(@) = [, Bo(z OBABOF©)2s() dVera(©)

+ [ By(z OFQBeBO(1— #5(0)) Ve )
= h(BO@ * Na(Ba0)(D.

Lete > 0and g inL%(dVg). Then,
g @] < s (=) IFO 1Bz 011g Ol aVa()

and [|hig'l|2.q < C'supsys IFQ] [|9']|2g- If & > O'is small enough, from relation (12),
SUPs (<5 IF(Q)] < e/C"and
Ihg'll2q < ellg'll2q-

It remainsto provethat h, isacompact operator. This operator is an integral operator
with kernel By(z ¢)(1 — #5(¢)) (—r(Q))F(Q)- Let usremark that for ¢ in Q,

|, Ba(Z OBal6- 2 dVa(@ = B(G. ).
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Thefunction f isin thelittle Bloch space, there exists C = C(5) > 0 such that
o o 1Ba(2 5P Ve AVe(Q) < € | Ba6.0) dVa0) < C6).

Then h; is aHilbert Schmidt type operator and hence a compact operator.
For the part (iii), we approximate h by finite rank operators defined with the sequence
5(wy)2*r(w, 5(w,—))ZBq(z. w;) which is aN.W.O. family of elements of A%(dV). n

5. Remarksand problems. Theorems A and B are still valid when Q is a strictly
pseudoconvex domainin C". Concerning the necessary conditions, the part (i) and (ii) of
the theorem A have been obtained by S. Krantz and S.-Y. Li [KL1] when Q is astrictly
pseudoconvex domain and a proof of the part (iii) can befound in [BPS1]. In this paper,
the case of some ellipsoidsis also considered and [BPS2] deals with the case of general
ellipsoids and some classes of pseudoconvex domains of finite type in €. The case of
general pseudoconvex domains of finite type in €2 remains an open problem.
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