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ON A TYPE OF MATRIX RING

MALIWAN TUNAPAN, CHITLADA SOMSUP AND SARAPEE CHAIRAT

In this note we discuss a type of matrix ring that has nice properties concerning the
injectivity and quasi-injectivity of one-sided ideals.

1. PRELIMINARIES

We consider associative rings with identity, and all modules are unitary. A module
is said to be uniserial if its submodules are linearly ordered by inclusion. The uniserial
modules encountered here will also be both Artinian and Noetherian and so have a
(composition) length. A ring R is called serial if both RR and RR are direct sums of
finitely many uniserial modules.

Recall that a ring R is called a right V-ring if all simple right fl-modules are injective.
If all right ideals of the ring R are actually two-sided then R is called a right duo ring.

For other undefined terminology, we refer the reader to the text [2] by Dung, Huynh,
Smith and Wisbauer.

2. T H E MATRIX RING

Here we define a type of matrix ring which was introduced first by Ivanov [4] in his

study of the structure of non-local rings whose right ideals are quasi-injective. Since then

these rings have proven to be very useful for finding examples or counter-examples of

certain classes of rings (see, for example, Beidar, Fong, Ke and Jain[l], Huynh and Rizvi

[3])-
Let T be a ring having a two-sided ideal M such that D = T/M is a division ring.

Let

Then V is a D-bimodule with dim(oV) = dim(VD) = 1 and V • V = 0. Moreover,
VT = TV = V.
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Let n € N, with n ^ 3. We consider the nx n matrix ring R of the form:

(D V 0 ••• 0 (

R =

0

0

D

0
0

v ...

0 •••

o ...

0

D
0

0

V
T)

We let Ri (respectively d) denote the right (respectively left) ideal of R which has
the same ith row (respively ith column) as R, but all other rows (respectively columns)
are zero. Then each Ri is a uniserial right /^-module of length 2 f o r l < i ^ n — 1, each
d is a uniserial left R-module of length 2 f o r l < i ^ n - l , while C\ is a simple left
.R-module.

Part (1) of Theorem 1 below was obtained also in [1], where this type of ring was
used to describe rings in which all right ideals are quasi-injective. However the proofs
in [1] involve complicated computation using elements. One might hope that the simple
arguments we use here can streamline parts of [1] as well as provide a better understanding
of this type of matrix ring.

THEOREM 1. LetT and R be as above. Then

(1) R is never left self-injective.

(2) Q := Ri® ••• ® Rn-i is a quasi-injective right R-module and P := C2

© • • • © Cn-i is a quasi-injective left R-module.

(3) If T is a right nonsingular, right self-injective, right V-ring, and M is
essential in TT, then R is a right self-injective ring.

(4) T is indecomposable as a ring if and only ifR is indecomposable as a ring.

(5) The ring R is never indecomposable ifT is a von Neumann regular right
duo ring which is not a division ring.

PROOF: (1) Write RR = Ci©C2©--©Cn. If RR is injective, then RCX is injective.
However C2 is a local left .R-module of length 2 and Soc(C2) = C\. Hence Soc(C2) splits
in C2, a contradiction. This proves (1).

(2) Let M* be the subset of Cn consisting of those matrices where the (n, n)th
entry is in M. Since VM = 0, M* is a two-sided ideal of R. Using the decomposition

RR = Cx © • • • © Cn, we get R/M* = Ct © • • • © Cn_i © {Cn/M*)t a direct sum of
uniserial left .R/AP-modules of length at most 2. (Clearly Cn/M* is uniserial of length
2.) Similarly we have R/M* = /?!©•••© #,,-1 © (Rn/M*), a direct sum of uniserial right
(R/M*)-modu\es of length at most 2. (Note that Rn/M* is a simple right .R-module.)
Hence R/M* is an Artinian serial ring with Jacobson radical square zero. This implies
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that every uniform right (or left) (R/M*)-module of length 2 is injective (see [2, 13.5]).
Thus QR and RP are quasi-injective, proving (2).

(3) Assume that T is a right nonsingular, right self-injective, and right V-ring, such
that M is essential in TT- Then, by (2), we have RR — Q @ Rn, a direct sum of two
quasi-injective right /^-modules. Thus to prove the right self-injectivity of R we need
only to show that Q is .Rn-injective and Rn is Q-injective.

First note that the right i?-module Soc(Q) © M* is essential in RR and moreover
Soc(Q) • (Soc(Q) © M') = 0. This shows that Soc(Q) is a singular right .R-module.
Then, since Rn is a nonsingular right R-module, there are no nonzero homomorphisms
QR -* Rn and so, trivially, Rn is Q-injective.

Next note that, as a right .R-module, Rn is a V-module, that is, every Rn-
subgenerated simple module is fln-injective. Now let U be a submodule of Rn and
let <p be a homomorphism of U to Q. Since U/Keup is isomorphic to a submodule
of Q, Soc(U/Kerip) is finitely generated, and hence (Rn/ Ker y>)-injective. Therefore
Soc(U/ Ker ip) splits in Rn/ Ker<p. Since Soc(C// Kery?) is essential in U/ Kery>, it follows
that U/Kerif = Soc(U/ Ker <p). Thus there is a submodule W C R^ containing Kenp
such that Rn/Kerip = (U/Kerip) © (W/Kenp). This implies that we can extend ip to
a homomorphism of R^ to Q, proving that Q is .Rn-injective. This establishes the right
self-injectivity of R.

(4) Assume that T is indecomposable as a ring. Since D = T/M, we have

R/M' 3£

(D

0

0

V
D

0
0

0 ••

V ••

0 ••
o •••

• 0
• 0

• D
• 0

0

V

It is easy to see that this matrix ring is right and left Artinian and indecomposable as a
ring. Hence the ring R/M* is also indecomposable.

Now, if R = A © B is a ring decomposition with A and B both nonzero, then, since
AT = (A n AT) © (B n M•), we have fl/M* =« [yi/(yl <~l M*)] © [B/{B n M*)]. Hence
one of these latter direct summands of R/M* must be zero, say A/(A Pi A/*) = 0. Then
A = AnM*, and so /I C M* c Rn- Thus i2n = .A©(.Bn.Rn), a ring direct decomposition
of Rn with BnRn^O. This is a contradiction, because T = Rn and, by our assumption,
T is an indecomposable ring.

Conversely, suppose that R is ring-indecomposable. Let's assume that T = U (B W,
a ring-direct sum with U and W both nonzero. Then, adapting our definition of Af*,
we can define corresponding right ideals U* and W* in R to give a ring-direct sum
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Rn = U'@W for Rn. It follows that R^/M' S [U*/(U* n M')] ® [W/(W* n Af)].
Since Rn/M* S T/M, a division ring, one of the two summands of Rn/M' must be
zero, say U*/(U' D M') = 0. Then U* C M',and so U C M. It follows that VU = 0.
Hence V = VT = V(U @W) = VU®VW = VW. Consequently, we get the following
ring-direct decomposition of R in which the first summand is [/*:

R =

/o o o
0 0 0

o\
0

0 0 0
0 0 0

(D V 0
0 D V

0
0

°
0
0

0
0

D

0 w
This contradiction establishes (3).

(4) This is clear from (3), because every von Neumann regular right duo ring is
decomposable if and only if it is not a division ring. D

We remark that in Theorem 1, statement (3) is not true if M is not essential in TT.
Moreover, if M is not essential in TT, then the ring R is right nonsingular if T is right
nonsingular.

Prom the proof of (3) we see that if M is essential in TT, then R contains an in-
decomposable ring-direct summand if and only if T has an indecomposable ring-direct
summand.
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