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A GENERAL CONSTRUCTION OF SPACES OF 
THE TYPE OF R. C. JAMES 

ROBERT H. LOHMAN AND P E T E R G. CASAZZA 

In 1950, R. C. James [7] exhibited a nonreflexive Banach space with a basis 
t h a t is of finite codimension in its second dual. This space is the first example 
of a quasi-reflexive space. General results on quasi-reflexive spaces have been 
obtained by P. Civin and B. Yood [3], and quasi-reflexive spaces with bases 
have been studied by D. Dean, B. L. Lin, and I. Singer [4 ; 12]. More recently, 
L. Sternbach [14] has shown tha t if a Banach space X is quasi-reflexive of 
order n, there exist subspacesX^ of X, 1 ^ k ^ n, such tha t Xi C • • • C Xn = 
X and Xjc is quasi-reflexive of order k. I t follows tha t Xk+X/Xk is quasi-reflexive 
of order 1. T h u s quasi-reflexive spaces of order 1 are rather fundamental and 
are impor tan t from the structural point of view just described. Moreover, they 
are generally useful in exhibiting pathological properties not usually found in 
the s tandard classical spaces. 

J . Lindenstrauss [9] generalized James ' example in one direction by showing 
that , given any separable Banach space X, there is a Banach space Y with a 
basis such t ha t F** / Y is isomorphic to X. The purpose of this paper is some­
wha t different. Our aim is to examine James ' original example and show tha t 
there is a general procedure underlying his construction, thus permit t ing a 
general construction of quasi-reflexive spaces of order 1 relative to a whole 
family of Banach spaces. 

James ' original example is obtained by introducing an interesting norm on 
a space of scalar sequences. One can, however, think of this norm as a norm 
t h a t is constructed, using a certain procedure, with respect to h with its usual 
uni t vector basis. In this paper, we generalize James ' construction by con­
sidering norms determined by Banach spaces with bases. We define norms of 
this type with respect to a Banach space X with a basis and discuss several 
properties of the generalized James ' space of scalar sequences. I t is shown, for 
instance, t ha t this construction yields a Banach space [Theorem 1] which 
has a basis when the basis for X is symmetric and boundedly complete 
[Theorem 3]. If X is a reflexive Banach space with a symmetric, block p-
Hilbert ian basis, then the generalized James ' space has a shrinking basis 
[Theorem 9] and is of codimension one in its second dual [Theorem 10], thus 
giving a general method for manufacturing quasi-reflexive spaces of order one. 
Under the same hypotheses, it is shown tha t the generalized James ' space is 
topologically isomorphic to its second dual [Theorem 12]. 
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1. Preliminaries. Throughout the paper, X will denote a Banach space, 
over the reals or complexes, with a normalized, monotone Schauder basis {xt). 
For basic definitions concerning Schauder bases, we refer the reader to [13]. 
If {xt) is a symmetr ic basis, we assume t h a t X is equipped with a symmetr ic 
norm || • | |; t ha t is, || • || is symmetr ic in the sense t h a t if Y^i^aixi converges 
and 7, 5 are permuta t ions of the set of positive integers, then ^CT^I^TCO^O) 
converges and 

I I I I oo 

Z2 <Xy(i)XKi) 

We let S denote the space of all scalar sequences and Pn : S —•» S denote the 
nth section mapping; t ha t is, if a — (at) Ç S, then Pn(a) = YTx=\axeu where 
et is the sequence with 1 in the i th place and 0 elsewhere. For any Banach 
space X with norm || • ||, X* denotes the dual of X and || • ||* denotes the dual 
norm. T h e mapping j : X —•» X** is defined by j(x)(f ) = fix) for all x 6 X 
a n d / £ X*. X is quasi-reflexive of order nin finite) if X**/j(X) is of dimen­
sion n. 

CO 

Zl ai%i = 

2. A f a m i l y of J a m e s t y p e spaces . Le t 0> denote the family of all finite, 
increasing sequences P = {pi, p2, . . . , p2n+i\ of positive integers, where n is 
a positive integer. Let X be a Banach space with a (normalized, monotone) 
basis (xt). For a = (at) £ S and P ^_ SP define 

m (<*p )xt + Otp^Xn+i 

T h e generalized James space Jixt) is defined by 

Jixt) = {a = (a*) :sup | | a | | p < oo and lim at {a = iptt): sup - . } • 
Define the function N by 

(1) 7V(a) = sup | | a | | p , a Ç 5 . 

T H E O R E M 1. The function N satisfies 

(i) N(et) = I for all i, 
(ii) supw |an | ^ Nia) for alia = (an) G J(xt), 

(iii) iV(a) = sup , 7 V ( P , ( Û O ) /o r a// a G / ( * , ) • 

Furthermore, ( / (#*), N) is a Banach space. 

Proof. Properties (i)-(i i i) follow easily from (1) and the fact t ha t ixt) is a 
normalized, monotone basis. 

In order to prove the last assertion, note t ha t each of the func t iona l || • | | P 

is a semi-norm on S. T h u s \\a + p\\P S \\a\\P + \\/3\\P S Nia) + Ni/3) for all 
a,@£S and P £ SP. Tak ing the supremum over all P Ç ̂ , we have Nia + 0) 
^ Nia) + Ni/3). From this it follows t ha t J(Xi) is a linear space and tha t N 
is semi-norm on J(xt). Since (ii) holds, N is a norm on Jix{). 
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Now let (a(r))T=i be a Cauchy sequence in J{xt), where a(r) = (a^T))%i. 
I t follows from (ii) t ha t there exists a = (at) G c0 such t ha t a(r) —> a co-
ordinatewise. Given P = {pi, p2, . . . , £2^+1} £ ^ and any r, we have 

(2) £ K,.'"-^/")^!^,/^ N(air)) ^ sup N(a(r)). 

Lett ing r —> oo in (2) shows tha t \\a\\P :2 sup r N(a{n) so tha t a 6 J(xt). 
Given e > 0, there exists an integer r0 such tha t for all r, s 3: ra and P = 
{/>i, pt, . . . , pin+\\ € ^ \ we have 

(3) Z [K,._,(r) - ^,_/ s )) - K,(r) - «P,/*')]*. 

+ («»,„„ ' " « I - , . * , S)X"+ 2 n + l 

Fixing s ^ r0 and P and letting r —> oo in (3) shows tha t ||Û! — a{s)\\P ^ e. 
Consequently, iV(a — a ( s )) ^ e for all 5 ^ r0, completing the proof. 

Remark 2. Throughout the rest of the paper, it is assumed tha t N is the 
norm on J(xt). T h e function N almost satisfies the properties of a proper 
sequential norm as defined by W. Ruckle [11]. However, if a = (an) £ S, 
property (iii) of Theorem 1 may fail, unless we require limn an = 0. For 
example, if X = l2 and (xz) is the usual unit vector basis of /2, then for a = 
(2, 1, 1, . . . ) , we have N(a) = V 2 and N(Pka) = 2 for all k. 

T H E O R E M 3. The sequence (ez) is a monotone basic sequence in J(xt). If (xt) 
is a boundedly complete, symmetric basis, then (et) is a basis for J{xt). 

Proof. Let n, m be positive integers and let «i, . . . , an+m be scalars. I t 
follows from Theorem 1 tha t 

( n \ / / n+m \ \ / n+m \ 

g atet j = N[Pn[ g aiet) J S N[ g ««g, j . By Nikol'skiï 's theorem [13, p. 58], {et) is a monotone basis for its closed 
linear span. Assume tha t (xt) is a boundedly complete, symmetric basis. 
Then (e^ will be a basis for J(Xi), provided the linear span of the e / s is dense 
in J(xi). Suppose this is not the case. Then there exists a £ J(xt) and e > 0 
such tha t N(a — Pka) > e for all k. Choose ki such tha t \ak\ < e/12 for all 
k ^ k\. Let a (1) = a — Pkla = (aj ( 1 )). A simple inductive argument shows 
tha t we obtain a sequence 

kl ^ pltl < . . . < £1,271! + ! ^ ^2 ,1 < • •• < p2,2n2 + l ^ £3 ,1 < • • • 

with the property t ha t for each integer r, 

(r) / (r)x (r+l) (r) p (r) 
a = [pu ),a =a — PP r ,2 n +la 
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and 

V*) 2-~l \aPr,2i-l aPr,2i ) X i I apr,2nr+l Xnr+1 

For notat ional convenience we denote the sequence 

pl,U • • • > Pl,2niy Pt.li ' ' * ' P2,2n2i P*,U • • • > ^3 ,2n g 

by gi, ^2, • • • • For any positive integer w, we have 

> €. 

(5) S K M " a*2>< ^ iV(«). 

I t follows from (5) and the bounded completeness of (x{) t h a t the series 
2Z?=i (ag ._ — otq )xt converges. Choose an integer i0 such t ha t for all j 

io+j 

i=io 
- aQ<,)Xi < e/3. 

We may assume t h a t <?2*0-i is the first term in a block of pr,k$', t h a t is, C2*0-i
 = 

£ r , i- Choosing jo so t ha t g2(î0+y0)
 = PrMn w e s e e t h a t 

E / (r) _ ( r ) \ 

\aPr,2i-l aPr,2i ) X i 
(<*Pr,l 

(D CO ) x i 

"I ^ / \°^r.2i'-l (XPr,2i)Xi 

I t now follows from (4) t ha t 

I (r)\ _ n (r)„ 

^e/3 + 

> e/3 

i=io 
S (^2^! ~ ^Jx, < 2e/3. 

I ^ P r , 2 n r + l I — I | " P r , 2 n r + 1 X f t r + 1 I 

which contradicts the fact t ha t \ak\ < e/12 for all k ̂  &i. 

In James ' space there are two copies of h whose algebraic direct sum is dense. 
T h e next result is the analogue of this proper ty for the spaces J{xi) we have 
constructed. T h e straightforward proof is omit ted. 

T H E O R E M 4. Let {xt) be a symmetric basis for X. Then 
(i) (xt) dominates (et), 

(ii) (xt) is equivalent to (e2i) and (e2*-i). 

Remark 5. Since {Y^\=iei) is a bounded, non-convergent sequence in J(xi), 
(et) is never a boundedly complete basic sequence. This means t ha t J(xt) is 
never reflexive. When X is reflexive and (xt) is a symmetr ic basis for X, 
Theorem 4 shows t ha t J(Xi) contains two isomorphic copies of X whose 
algebraic direct sum is dense in J(xi). Since J(xt) is not reflexive, this sum is 
not a topological direct sum. 

We close this section with a characterization of equivalence of unit vector 
bases in the sequence spaces we have introduced. T h e proof is a simple applica­
tion of Theorem 4 and is left to the reader. 
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COROLLARY 6. Let (xt), (yt) be symmetric bases for the Banach spaces X and Y, 
respectively, and let N, M be the norms defined by (I) for (x*) and (yt), respective­
ly. Then (e^ in (J(xi), N) is equivalent to (et) in (J(yt), M) if and only if 
(%i) is equivalent to (yt). 

3. Quasi-reflexive spaces genera ted by s y m m e t r i c spaces . In this sec­
tion we consider quasi-reflexive properties of the spaces J(xf) generated by 
certain spaces X. Before proceeding to these results, the following definition 
will prove useful. 

Definition 7. Let 1 S p < co. The basis (xf) for X is block ^-Hilbert ian if 
there exists a constant K such tha t for each norm-bounded block basic se­
quence (zk) with respect to (xt) and each sequence (ak) of scalars 

akzk 
^ (Ksup \\zk\\) z 

*=1 

\ak\ 

1/P 

m = 1, 2, 

Remark 8. The family of Banach spaces with block ^-Hilbert ian bases 
includes many of the well-known spaces with symmetric bases. For instance, 
the uni t vector basis of the Lorentz sequence spaces [1 ; 2] is a block p-Hi\ber-
t ian basis. Also, let M(x) be an Orlicz function satisfying the A2 condition 
(cf. [10]). Then (^) is a symmetric basis for the Orlicz sequence space lM. 
If 1 ^ p < °o and M(x) ^ xv for all x ^ 0, then (et) is a block ^-Hilbert ian 
basis for lM. If X is a super-reflexive Banach space, then by the results of [8, 
Theorem 2], there is a number p for which 1 < p < GO and (xt) is block 
^-Hilbert ian. Each block Hilbertian basis, as introduced in [5], is block 
2-Hilbertian. Finally, note tha t if 1 < p < oo and (xt) is a block ^-Hilbert ian 
basis for X, then (xt) is a shrinking basis. 

T H E O R E M 9. If (xt) is a symmetric, block p-Hilbertian basis for X for some 
p{\ ^ p < ° ° ) , then (et) is a block p-Hilbertian basic sequence. In particular, 
if 1 < p < oo, (et) is a shrinking basic sequence. Thus if X is reflexive and 
1 < p < oo , (d) is a shrinking basis for J(xi). 

Proof. Let 0 = n\ < n2 < . . . be an increasing sequence of integers, let 

Wfc+l 

3* = Z ) aiei> 
i=nk+l 

k = 1,2, . 

be a norm-bounded sequence, and let (tk) be a sequence of scalars. K denotes 
the constant corresponding to (x t) as guaranteed by Definition 7. Let P = 
{pi, p2, . . . , p2n+i] G & and let m be a positive integer. Then 

E (ft.,,., - ^Jxt + PP2n+xn+1\ 

where X/T=ite = (Pi). We can write 
n m m 

X) (ft,2. . - &,2l>< + &>2n+1*»+i = X '*w* + X **«>*', 
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irhere each wk is either 0 or a sum of terms of the form 

£ <• V2i-l V1iJ l 

with each of the a/s coming from the same zk and each wk is either 0, of the 
form ctjXi, or (ap ._ — ap )xt with the a/s coming from different zks. Using 
the facts that (xt) is block ^-Hilbertian, that \at\ ^ N(zk) for each k = 1, . . . » 
m and i — nk + 1, . . . , nk+i, and that ||w*|| ^ N(zk), we have 

X 

Z ) <*w* 

k=l 

+ Z ) **Wfc' ^ (K sup ||WA;| 
l<fc<ra 

1/P / 

+ 2K sup LS W J 
/ \ r m ~~ll/p 

è \3K sup TVfe) £ \tt\*\ . 

( m \ / \ r m ~|l/p 

£ ^ ^ 3X sup TVfe) Z \tk\* . 

It follows that 

TV, _ 
> /c=l / \ l<«;<m / L- k= 

Hence (et) is a block £>-Hilbertian basic sequence. 

THEOREM 10. If X is a reflexive Banach space and (xt) is a symmetric, block 
p-Hilbertian basis for X(l < p < oo), then J{xt) is of codimension one in 

Proof. The arguments are similar to those of R. C. James as presented in 
[7], but we present a proof for the sake of completeness. Let (e*) denote the 
biorthogonal sequence associated with (et). By Theorem 9, (e*) is a basis for 
J(xi)*. Let F £ J(Xi)**. Since each / Ç J(xt)* can be wrritten as / = 
J27=if(ei)ei*, a simple computation shows that 

TV** (F) ^ sup TV ( g ne?)e) 
On the other hand, for a fixed n, let a = ]Cl=i^(gt*)^ï- The linear functional 

/defined on the linear span of {a, en+i, en+2, . . .} by / (a ) = TV (a) and/(e*) = 0 
for i > n has norm one. Thus / can be extended t o / £ J(xi)* with N*(f) = 1. 
Moreover, it is easily seen that ^(f) = TV (a) = N(YTi=iF(ei*)ei)- Therefore, 

TV**(F) è s u p T v f è F{e?)eA , 

so that 

(7) N**(F) = sup TV ( É W)«<) • 
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We now claim that lim* F(e*) exists. If not, there exists e > 0 and an 
increasing sequence (pk) of positive integers such that \F{epli_*) — F(eP2i*)\ 
> e for all i. Considering sets of the form Pn = {pu p2, . . . , p2n+i}, we have 
for all n 

£ (*(*„_,*) - Ke,u*))xt L F(fif)et g N**(F) 

by (7). Since X is reflexive, (xt) is a boundedly complete basis, whence 

converges. Since ||xf | | = 1 for all i, lim^ | F ( ^ ._ *) — F(ep *)\ = 0. The con­
tradiction proves that lim* F(e*) exists. 

Write t = linii F(e*) and define Fo on the span of {ei*, e2*,. . .} by Fo(e*) = 
1 for all i. Then F0 can be extended to a linear functional F0 £ J(pCt)** with 
N**(FQ) = 1. Let a* denote the constant sequence of t's and let a = (F(e*)). 
By (7), a - at 6 / ( * , ) . Since (*F0 + j (a - «i))(e<*) = F(et*) for all i, F = 
tpQ + j(a. — at), completing the proof. 

LEMMA 11. Let (xt) be a symmetric basis for X. Then the basic sequences 
(^i)T=i and (̂ i)T=2 are equivalent. 

Proof. Let w b e a positive integer and let alt . . . , am be scalars. Write 

m m 

I f P = {/>!,£,, . . . , ^ + i } 6 ^ , then Q = {^ + l,Pi + l , . . . , £ 2 w + i + 1} G 
^ and | |aj |P = ||j3||0. Consequently, N(a) ^ iV(j8). On the other hand, let 
Q = {<?!, qtf . . . , g2n+1} Ç ^ . If qi ^ 2, then 

P = { g i - l , g 2 - 1, . . . , g 2 w + i - 1} G ^ 

and | |0 | |o = ||a||P. If gi = 1, then 

\\P\\Q£ I |0 M *I | I + ^ (0*2,-1 " P*JXi + ^n+l*»*1 ^ 27V (a). 

It follows that N(a) ^ 7V(/3) ^ 2N(a), completing the proof. 

As an immediate consequence of Theorem 10 and Lemma 11 we have the 
following. 

THEOREM 12. If X is a reflexive Banach space and (xt) is a symmetric, block 
p-Hilbertian basis for X{\ < p < GO), then J(xt) is topologically isomorphic 
to J(Xi)**. 

We conclude with some open questions. 
(1) Is there a condition, weaker than block p-Hilbertian, that can be placed 
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on (xi) in order to guarantee that (et) is a shrinking basis for J(xt)? If so, 
the proofs of Theorem 10 and Lemma 11 show that J(xt) will then be quasi-
reflexive order one and topologically isomorphic to its second dual. 

(2) Under what conditions does every subspace of J(xt) contain a subspace 
isomorphic to a subspace of X? This would lead to a generalization of a result 
R. Herman and R. Whitley [6] for James' space. 

(3) Are there conditions under which J(xt) and J(xt)* are isomorphic? It is 
not even known if James' space satisfies this property. 
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