BOUNDED P.S.H. FUNCTIONS AND PSEUDOCONVEXITY IN KÄHLER MANIFOLD

TAKEO OHSAWA AND NESSIM SIBONY

Abstract. It is proved that the C^2 -smoothly bounded pseudoconvex domains in \mathbb{P}^n admit bounded plurisubharmonic exhaustion functions. Further arguments are given concerning the question of existence of strictly plurisubharmonic functions on neighbourhoods of real hypersurfaces in \mathbb{P}^n .

Let $\Omega \in M$ be a pseudoconvex domain in a Kähler manifold M. When M is \mathbb{P}^k , Takeuchi [T], showed that the function $-\log \delta_{\Omega}$ is strictly plurisubharmonic (p.s.h.) in Ω . Here δ_{Ω} denotes the distance to the boundary for the standard Kähler metric on \mathbb{P}^k .

The result was extended by Elencwajg [E] to the case where M is Kähler with strictly positive holomorphic bisectional curvature. See also Suzuki [Su] and Green-Wu [G.W].

Based on their result we show that if $\Omega \in M$ is pseudoconvex with \mathcal{C}^2 boundary, then there is a bounded strictly p.s.h. function on Ω . When $M = \mathbb{C}^k$ the question was solved by Diedrich-Fornaess [D.F]. For a survey in this case see [S].

We give an example of a compact Kähler manifold M, containing a Stein domain $\Omega \in M$, with smooth boundary, however given any neighborhood U of $\partial\Omega$, there is no nonconstant bounded p.s.h. function on $U \cap \Omega$.

We show next that the existence of a strictly p.s.h. function near $\partial\Omega$ is equivalent to the nonexistence of a positive current T of bidimension (1,1) supported on $\partial\Omega$ and satisfying the equation $\partial\overline{\partial}T=0$. This result is inspired by a duality argument due to Sullivan [Su].

§1. Plurisubharmonic exhaustion function on smoothly bounded domains

Let (M,ω) be a Kähler manifold. Let $\Omega \in M$ be a pseudoconvex domain with smooth boundary. We consider first the question of existence of a strictly plurisubharmonic bounded exhaustion function for Ω .

Received September 27, 1996.

THEOREM 1.1. Let $\Omega \in M$ be a pseudoconvex domain with C^2 boundary in a complete Kähler manifold M. Assume the holomorphic bisectional curvature of M is strictly positive. Let $r(z) = -\text{dist}(z, \partial\Omega) =: \delta(z)$ where δ is computed with respect to the Kähler metric. Then there exists $\varepsilon > 0$ such that $\varphi = -(-r)^{\varepsilon}$ is strictly plurisubharmonic in Ω . More precisely there is a constant c_{ε} such that

$$i\partial \overline{\partial} \varphi \ge c_{\varepsilon} |\varphi| \omega.$$

Proof. Under the above assumption on the curvature, Takeuchi [T] for the projective space, Elencwajg [E], in general, proved that $-\log \delta$ is strictly plurisubharmonic. More precisely there is a constant C depending on the lower bound for the curvature, such that

$$i\partial \overline{\partial}(-\log \delta) \ge C\omega.$$

So if $r = -\delta$ we get

$$(1) -ri\partial \overline{\partial}r + i\partial r \wedge \overline{\partial}r \ge Cr^2\omega.$$

We can choose local coordinates near $p \in \partial\Omega$, such that $x_{2n} = r$, $e_i(r) = 0$, i = 1, ..., n-1, where (e_i) is an orthonormal basis for the complex tangent space to $\partial\Omega$ near p. Let (a_{ij}) denote the hermitian form corresponding to $i\partial\overline{\partial}r$. Inequality (1) gives in coordinates

(2)
$$-r \sum_{i,j=1}^{n} a_{ij} v_i \overline{v}_j + |\partial r|^2 |v_n|^2 \ge Cr^2 \sum_{j=1}^{n} |v_j|^2.$$

If $v_n = 0$ we obtain the estimate

$$\sum_{i,j=1}^{n-1} a_{ij} v_i \overline{v}_j \ge C|r| \sum_{j=1}^{n-1} |v_j|^2.$$

Expanding (2) we get

$$-r\sum_{i,j=1}^{n-1} a_{ij}v_i\overline{v}_j + 2\operatorname{Re}(-r)\sum_{k=1}^{n-1} a_{nk}v_n\overline{v}_k - ra_{nn}|v_n|^2 + |\partial r|^2|v_n|^2$$

$$\geq Cr^2\sum_{i=1}^{n} |v_i|^2.$$

Replacing v, by $v_j/(-r)$ for $j \leq n-1$ we obtain

(3)
$$\sum_{i,j=1}^{n-1} \frac{a_{ij}}{(-r)} v_i \overline{v}_j + 2 \operatorname{Re} \sum_{k=1}^{n-1} a_{nk} v_n \overline{v}_k - r a_{nn} |v_n|^2 + |\partial r|^2 |v_n|^2$$

$$\geq C \sum_{j=1}^{n-1} |v_j|^2.$$

We write the left hand side of this inequality as

$$Q(z,v) + |\partial r|^2 |v_n|^2.$$

Let $\tilde{Q}(\zeta, v) := \liminf_{\substack{z \to \zeta \\ z \in \Omega}} Q(z, v) = \lim_{\substack{s \to 0 \text{ inf } |z = \zeta| < s \\ z \in \Omega}} Q(z, v)$. From (3) we obtain

(4)
$$\tilde{Q}(\zeta, v) + |\partial r|^2(\zeta)|v_n|^2 \ge C \sum_{j=1}^{n-1} |v_j|^2.$$

Observe that $\tilde{Q}(p,(0,v_n)) \geq 0$. So by the lower semicontinuity of \tilde{Q} , for c small enough

(5)
$$\tilde{Q}(\zeta, v) + |\partial r|^2(\zeta)|v_n|^2 > c|v_n|^2$$

in a neighborhood of p. Inequality (5) remains valid in a neighborhood of v' = 0, i.e. for $|v'| \le \alpha$, on the sphere |v| = 1, where $v = (v', v_n)$.

We get then that

$$Q(z, v) + |\partial r|^2(z)|v_n|^2 \ge \frac{c}{2}|v_n|^2$$

for $\delta(z) < \beta$, $|v'| \le \alpha$. But, when $|v'| > \alpha$ and |v| = 1 we have $|v'|^2 \ge \varepsilon_0 |v_n|^2$, where $\varepsilon_0 = \alpha^2 (1 - \alpha^2)^{-1}$.

So using (4) we get that

$$Q(z, v) + |\partial r|^2 |v_n|^2 \ge \varepsilon' |v_n|^2$$
 for some $\varepsilon' > 0$

and for $\delta(z) < \beta$. This implies

$$Q(z,v) + |\partial r|^2 |v_n|^2 \ge \frac{\varepsilon'}{2} |v_n|^2 + \frac{c}{2} \sum_{i=1}^{n-1} |v_i|^2.$$

Rescaling this we obtain

$$-r\sum_{i,j=1}^{n} a_{ij}v_{i}\overline{v}_{j} + |\partial r|^{2}|v_{n}|^{2} \ge \frac{\varepsilon}{2}|v_{n}|^{2} + \frac{c}{2}\sum_{j=1}^{n-1}|v_{j}|^{2}$$

which can be read as

$$-i\partial\overline{\partial}(-r)^{\varepsilon}=i\varepsilon(-r)^{\varepsilon}\left(\frac{\partial\overline{\partial}r}{-r}+(1-\varepsilon)\frac{\partial r\wedge\overline{\partial}r}{r^{2}}\right)\geq\frac{c}{2}\varepsilon|r|^{\varepsilon}\omega.$$

The condition of positivity of holomorphic sectional curvature in order to construct a strictly p.s.h. bounded exhaustion function seems quite sharp. Indeed we have the following result.

Theorem 1.2. There is a compact Kähler surface M which has the following property. There is $\Omega \in M$ a Stein domain with real analytic boundary with $\partial \Omega$ Levi-flat, such that for every neighborhood U of $\partial \Omega$ there is no nonconstant bounded p.s.h. function on $U \cap \Omega$.

Proof. M will be given as the quotient of $\mathbb{C} \times \mathbb{P}^1$ under a \mathbb{Z}^2 action. For $(a,b) \in \mathbb{Z}^2$ let $f_{a,b}(z,\omega) = (z+a+b\omega,w+a+\alpha b)$ where $\omega \in \mathbb{C}$ Im $\omega > 0$, and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ are fixed. Here w denotes an inhomogeneous coordinate on \mathbb{P}^1 . It is clear that M is a compact surface. M is also a \mathbb{P}^1 -bundle on the torus $A = \mathbb{C}/\mathbb{Z}^2$. Hence M is Kähler. We can also observe that M is homogeneous in the sense that the tangent bundle is generated by global holomorphic vector fields.

We observe that M is foliated by complex leaves. Let $\pi: \mathbb{C} \times \mathbb{P}^1 \to M$ be the canonical projection. For w_0 fixed π is injective on $\mathbb{C} \times w_0$, because $\alpha \notin \mathbb{Q}$. We also have that $\pi(\mathbb{C} \times w_0) = \pi(\mathbb{C} \times w_1)$ iff $w_1 = w_0 + a_0 + \alpha b_0$. It follows that for any $y_0 \in \mathbb{R}$ $L_{y_0} := \pi(\mathbb{C} \times y_0) \supset \pi(\mathbb{C} \times \mathrm{Im} w = y_0) \cup A_1$, where A_1 denote the torus $\pi(\mathbb{C}\times\infty)$. It is then clear that the closure of each leaf (except for A_1) contains a Levi-flat hypersurface which is a real analytic three dimensional torus. Define $\Omega := \pi(\text{Im} w > 0)$. Then $\partial \Omega$ is real analytic and Levi-flat. Let U be a neighborhood of $\partial\Omega$. Assume $\varphi U \cap \Omega \to [-c_1, 0]$ is p.s.h. For $0 < y_0 < \varepsilon_0$, $\varepsilon_0 \ll 1$ L_{y_0} is contained in U. Since φ is bounded above it is constant on $L_{y_0} = \pi(\operatorname{Im} w = y_0)$. Fix $p \in \overline{L_{y_0}} \cap U$. Choose $\varepsilon > 0$ small enough so that $B(p,\varepsilon)\subset U$. Let $c:=\max \varphi_{\overline{B}(p,\varepsilon)\cap \overline{L_{y_0}}}$. The closed set $(\varphi \geq c)$ is invariant under the foliation. So $\varphi = c$ on $\overline{L_{y_0}}$. As a consequence φ is just a function of y, i.e. $\varphi = h(y)$, h defined for $0 < y < \varepsilon_0$. The plurisubharmonicity of φ implies that $w \to h(y)$ is subharmonic so h is convex with respect to y. The function is defined for y > 0 bounded hence constant.

The domain Ω is Stein. Indeed the function $\pi(z, w) \to \sup(-\operatorname{Log}|y|, |y|)$ is a p.s.h. exhaustion function on Ω . Since M is homogeneous and Ω does not contain a relatively compact leaf, it follows form a theorem of Hirshowitz [H] that Ω is Stein.

§2. Strictly p.s.h. functions near $\partial\Omega$

Let $\Omega \in M$ be a pseudoconvex domain with \mathcal{C}^2 boundary in the complex manifold M. We are interested in the existence of a strictly p.s.h. function in a neighborhood of $\partial\Omega$. The examples of in the previous paragraph show that this is not always the case, even when Ω is Stein. Our result is inspired by the duality principle from Sullivan [Su]. Recall that currents of bidimension (1,1) act on forms of bidegree (1,1). Let X be a closed subset of M. Assume $x \to \alpha_x$ is a continuous map on X with values in complex linear maps, α_x is allowed to be zero on some subset of X.

DEFINITION 2.1. A positive current T, of bidimension (1,1), is directed by $\ker \alpha_X$ iff $T \wedge i\alpha_x \wedge \overline{\alpha}_x = 0$ on X.

The positivity of T implies that $T \wedge i\alpha_x \wedge \overline{\alpha}_x$ is a positive measure, so we are asking that this measure vanishes on X.

If we assume that T is supported on X, this is equivalent to the fact that T belongs to the closure of the convex cone generated by the currents $\varepsilon_x(i\xi_n\otimes\overline{\xi}_n)$ where $\alpha_x(\xi_x)=0$ and ε_x denote the Dirac mass at x. We will consider M as a hermitian manifold, which allows one to give a norm T to positive currents, i.e. $||T||=\langle T,\omega\rangle$ where ω is a fixed strictly positive (1,1)-form.

THEOREM 2.2. Let $\Omega \in M$ be a pseudoconvex domain with C^2 boundary. The following are equivalent.

- i) There is a smooth strictly plurisubharmonic function near $\partial\Omega$.
- ii) There is no, nontrivial, positive current T, of bidimension (1,1) supported on $\partial\Omega$ and directed by the complex tangent spaces to $\partial\Omega$, satisfying the equation $i\partial\overline{\partial}T=0$.

Proof. Assume i). Let T be positive (1,1) and supported on $\partial\Omega$. Let φ be a strictly p.s.h. function near $\partial\Omega$. Then if T is non-zero,

$$0 < \langle T, i \partial \overline{\partial} \varphi \rangle = \langle i \partial \overline{\partial} T, \varphi \rangle = 0,$$

a contradiction. We now show ii) implies i). Let ρ be a C^2 defining function for $\partial\Omega$. Define $C=\{T\mid T\geq 0,(1,1),\|T\|=1,T \text{ directed by ker }\partial\rho.\}$ The set is convex and compact for the topology of currents. If i) does not hold then $C\cap\{i\partial\overline{\partial}u\}^{\perp}=\emptyset$, here $\{i\partial\overline{\partial}u\}^{\perp}$ denote the orthogonal space of $\{i\partial\overline{\partial}u\}$ when u is a test function on M, i.e. a smooth function on M, so the space is closed. Using Hahn-Banach and reflexivity for the space of test functions we get the existence of $\psi\in \text{closure}\{i\partial\overline{\partial}u\}$ such that $\langle T,\psi\rangle>0$ for every T in C. Since C is compact we can assume that $\psi=i\partial\overline{\partial}u$.

If $T = \varepsilon_x i \xi \otimes \overline{\xi}$ we get that $\langle i \partial \overline{\partial} u(x) \xi \wedge \overline{\xi} \rangle > 0$, for $x \in \partial \Omega$ and ξ complex tangent.

Define $\varphi_{\lambda} = u + \frac{e^{\lambda \rho} - 1}{\lambda}$. For $\lambda \gg 1$, the pseudoconvexity of $\partial \Omega$ implies that φ_{λ} is strictly p.s.h. near $\partial \Omega$.

Without assuming $\partial\Omega$ smooth we get easily the following.

Theorem 2.3. Let $\Omega \in M$. The following are equivalent.

- i) There is a smooth strictly p.s.h. function near $\partial\Omega$.
- ii) There is no, nontrivial, positive (1,1) current T supported on $\partial\Omega$ such that $i\partial\overline{\partial}T=0$.

It is of interest to localize the support of such pluriharmonic currents i.e. positive currents satisfying $i\partial\overline{\partial}T=0$. Assume $\Omega\in M$. We define $J\subset\partial\Omega$ as the set of $x\in\partial\Omega$ such that there exists a Stein neighborhood $U\ni x$, and a p.s.h. function φ_x defined near \overline{U} with $\varphi_x(x)>0$ and $\sup_{\partial\Omega\cap\partial U}\varphi_x<0$.

Shrinking U we can assume the existence of a strictly p.s.h. function ρ , on neighborhood of \overline{U} , $\varphi_x + \varepsilon \rho$, with $0 < \varepsilon \ll 1$, will be strictly p.s.h. near x and will have the same properties as φ_x otherwise. Composing with a convex increasing function, we can assume φ_x vanishes identically in a neighborhood of $\partial \Omega \cap \partial U$, with respect to $\partial \Omega$. We call J the weak Jensen boundary of $\partial \Omega$. Clearly J is open and contains the points of strict pseudoconvexity of $\partial \Omega$, when $\partial \Omega$ is of class \mathcal{C}^2 .

THEOREM 2.4. Assume $\Omega \in M$ is pseudoconvex with C^2 boundary. Let T be a pluriharmonic positive current directed by the complex tangent space to $\partial\Omega$. Then the support of T is contained in the complement of J, the weak-Jensen boundary of $\partial\Omega$.

Proof. Let $x \in J$. Choose φ a p.s.h. function in U, strictly p.s.h. near x, vanishing on a neighborhood in $\partial\Omega$, of $\partial U \cap \partial\Omega$. If T is a positive (1,1) current directed by the complex tangent space to $\partial\Omega$ we get

$$\langle T, i\partial \overline{\partial} \varphi \rangle = \langle i\partial \overline{\partial} T, \varphi \rangle.$$

The integration by part is possible because we consider T as a current on $\partial\Omega$, and φ as a function with compact support on $U\cap\partial\Omega$.

It is of interest to consider the possibility of existence of positive closed currents with support on the boundary of a pseudoconvex domain $\Omega \in M$. This is possible for domains in a \mathbb{P}^1 bundle over a Riemann surface or in a complex torus. However in \mathbb{P}^2 , this is not possible.

THEOREM 2.5. Let Σ be a hypersurface of class C^2 in \mathbb{P}^2 . Then there is no positive (1,1) closed current T supported on Σ .

Proof. Let Ω_1 , Ω_2 be the components of $\mathbb{P}^2 \setminus \Sigma$. Let ω be the standard Kähler form in \mathbb{P}^2 . Suppose there are 2-cycles $\sigma_1 \subset \Omega_1$, $\sigma_2 \subset \Omega_2$ such that $\langle \sigma_j, \omega \rangle = a_j \neq 0$. Since the second Betti number of \mathbb{P}^2 is 1, by Poincaré duality $\sigma_j \sim a_j \omega$. But $\sigma_1 \wedge \sigma_2 = 0$ and $a_1 a_2 \omega \wedge \omega \neq 0$ a contradiction. So we can assume that for every 2 cycle σ in a neighborhood of $\overline{\Omega}_1$ we have $\langle \sigma, \omega \rangle = 0$. We are using here that Ω_1 is smoothly bounded. By De Rham Theorem there is a smooth form φ such that $d\varphi = \omega$ in a neighborhood of Ω_1 . Let T be a positive closed current of bidimension (1, 1) supported on Σ . Then if T is nonzero

$$0 < \langle T, \omega \rangle = \langle T, d\varphi \rangle = \langle dT, \varphi \rangle = 0.$$

So
$$T = 0$$
.

Remark. Let Σ be a real hypersurface in \mathbb{P}^k . We prove similarly that there is no non-zero positive closed current of bidimension (1,1) supported on Σ . We get

$$\langle T, \omega^{k-1} \rangle = \langle T, d(\varphi \wedge \omega^{k-2}) \rangle = 0.$$

In particular there is no one dimensional complex curve on Σ .

Acknowledgements. The second author thanks Ngaiming Mok for pointing out that the manifold M in Theorem 1.2 is not a manifold with nonnegative holomorphic bisectional curvature (see [M]).

References

- [D.F] Diederich, K., Fornaess, J. E., Pseudoconvex domains: Bounded strictly plurisubharmonic functions, Invent. Math., 39 (1977), 129–141.
- [E] Elencwajg, G., Pseudoconvexité locale dans les variétés kähleriennes, Ann. Inst. Fourier, **25** (1975), 295–314.
- [G.W] Greene, R. E. and Wu, H., On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs, Abh. Math. Sem. Univ. Hamburg, 47 (1978), 171–185.
- [H] Hirshowitz, A., Pseudoconvexité au dessus d'espaces plus ou moins homogenes, Invent. Math., **26** (1974), 303–322.
- [M] Mok, N., The uniformization theorem for compact Kähler manifolds of monnegative holomorphic bisectional curvature, J. Differential Geom., 27 (1988), 179–214.
- [S] Sibony, N., some aspects of weakly pseudoconvex domains in several complex variables and complex geometry, Proceedings of symposia in Pure Math., 62 part 1 (1991), 199-231.
- [Suz] Suzuki, O., Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature, Pubk. Res. Inst. Math. Sci., 12 (1976), 191–214.
- [Su] Sullivan, D., Cycles for dynamical study of foliated manifolds and complex manifolds, Invent. Math., **36** (1976), 225–255.
- [T] Takeuchi, A., Domains pseudoconvexes infinis et la metrique riemannienne daus un espace projectif, J. Math. Soc. Japan, 16 (1964), 159–181.

Takeo Ohsawa Graduate School of Mathematics Nagoya University Chikusa-ku, Nagoya 464-8602 Japan

Nessim Sibony Univ. Paris Sud Mathématiques, Bât 425 91405 Orsay France