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Abstract. A q-discrete analog of the Toda molecule equation and its N-soliton
solution are constructed by using the bilinear method. The solution is expressed in
the Casorati determinant form whose elements are given in terms of the q-orthogonal
polynomials.
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1. Introduction. Recently the discrete integrable systems have attracted lots of
interest since their deep relations with various physical problems and numerical
schemes have been found. For example, the discrete Toda equation is nothing but the
scheme of qd-algorithm for computing poles of meromorphic functions [1, 2]. One of
the interesting features of a Toda equation is that it allows several types of determinant
expressions of solutions according to the boundary conditions. The infinite Toda lattice
has the soliton solutions which are expressed by Wronski or Gram determinant, while
in the finite or semi-infinite lattice case, i.e., the so-called Toda molecule case, the
general solution is given in terms of a Wronski determinant. In 1998, Nakamura [3]
showed that even in the molecule case, the soliton solutions do exist and he obtained
their Gram and Casorati determinant expressions whose elements are given by the
Gauss hypergeometric functions. The nontrivial vacuum solution plays the essential
role for the soliton solutions to satisfy the boundary condition. It is known that
the nontrivial vacuum is also crucial for the similarity reduction to nonautonomous
systems. In the case of discrete soliton equations, such vacuum solutions and soliton
solutions constructed from the vacuum have not yet been studied in depth. So far only
a few examples of solutions of nonautonomous partial difference equations are known
[4, 5].

The purpose of this article is to construct a discrete analog of the N-soliton
solution for the Toda molecule equation. We take an appropriate vacuum and show
how the vacuum solution works to satisfy the boundary condition and which type of
special function appears to express the soliton solution. There are many possibilities
for the choice of vacuum solution. In this paper we consider the q-discrete case by
choosing a trigonometric vacuum and give the Casorati determinant expression of
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soliton solutions. We should comment that very recently Nakamura obtained the same
results independently and he derived the Gram determinant expression in [6]. In Section
2, we briefly summarize the known results about the Wronski and Casorati determi-
nant solutions for Toda equations. The main results are given in Section 3. By a suitable
choice of the vacuum solution, a natural q-analog of the soliton solution of the Toda
molecule equation comes out. In Section 4, we give a proof of the results based on the
bilinear technique of soliton theory. Concluding remarks are given in Section 5.

2. Toda lattice and Toda molecule. It is well known that the Toda lattice equation

(log Vn)tt = Vn+1 − 2Vn + Vn−1

is transformed into the bilinear form

D2
t τn · τn = 2

(
τn+1τn−1 − τn

2) (1)

through the dependent variable transformation

Vn = 1 + (log τn)tt.

Also the N-soliton solution is given in terms of the Wronski determinant

τn = det

(
pn+j

i epit+ξi + 1

pn+j
i

e
t

pi

)N

i,j=1

,

where pi and ξi are the wave number and phase constant of i-th soliton, respectively
[7]. In this determinant expression, the determinant size N stands for the number of
solitons and the lattice site number n appears as a parameter in the elements of the
determinant.

On the other hand, the Toda molecule equation is written as

(log Vn)tt = Vn+1 − 2Vn + Vn−1 (n ≥ 2),

(log V1)tt = V2 − 2V1,

which is in fact the simultaneous equation of the Toda lattice equation and boundary
condition V0 = 0. The variable transformation

Vn = (log τn)tt (n ≥ 0)

leads to the bilinear equation

D2
t τn · τn = 2τn+1τn−1 (n ≥ 1)

with the boundary condition τ0 = 1. In this case the general solution is given in the
form of the Wronski determinant

τn = det
(
∂ i+j−2

t w
)n

i,j=1 (n ≥ 0),

where w is an arbitrary function of t [7, 8]. Here the determinant size n stands for the
lattice site number.

Now a natural question arises: what is the relation between the determinant
solutions of Toda lattice and Toda molecule? The molecule can be derived as a special
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case of the lattice by imposing the boundary condition. On the other hand the lattice
can be regarded as a special case of the molecule by moving the boundary of the
molecule to −∞. However it is not clear how the determinant solutions relate to each
other. In the case of continuous Toda, Nakamura [3] gave an answer to this question by
constructing the explicit N-soliton solutions for the Toda molecule equation in terms of
the Casorati and Gram determinants whose elements are given by the hypergeometric
functions. The Casorati determinant solution for the Toda molecule of finite size is
obtained as follows. For the Toda molecule equation

(log Vn)tt = Vn+1 − 2Vn + Vn−1 (1 ≤ n ≤ M − 1),

V0 = VM = 0,

by applying the variable transformation

Vn = Un + (log τn)tt (0 ≤ n ≤ M),

we get the bilinear equation

D2
t τn · τn = 2Un

(
τn+1τn−1 − τn

2) (0 ≤ n ≤ M). (2)

Here Un is a vacuum solution of the Toda molecule equation itself; that is, Un satisfies
the same equation

(log Un)tt = Un+1 − 2Un + Un−1 (1 ≤ n ≤ M − 1),

U0 = UM = 0.

The bilinear form (2) can be regarded as the equation of the Darboux transformation of
the Toda lattice. In the case of the usual soliton solution of infinite lattice (1), we choose
the trivial vacuum Un = 1. For the nontrivial vacuum Un, we get the nonautonomous
bilinear equation for the τ function, whose solutions are normally no longer given by
the exponential polynomial. From the above bilinear equation, Vn is written as

Vn = Un
τn+1τn−1

τn
2

(0 ≤ n ≤ M).

Thus when Un satisfies the boundary condition, so does Vn. By taking the nontrivial
vacuum as

Un = n(M − n)(log(1 + et))tt = n(M − n)(
et/2 + e−t/2

)2 (0 ≤ n ≤ M), (3)

the bilinear equation (2) admits the N-soliton solution which is given in the Casorati
determinant form

τn = (1 + et)−
N(N−1)

2 det

(
2F1

(
−n − j + 1, pi

−M − N + 1
; 1 + et

))N

i,j=1

(0 ≤ n ≤ M),

where 2F1 is the Gauss hypergeometric function and pi is the wave number of i-th
soliton chosen as

pi ∈ {0,−1,−2, · · · ,−M − N + 1} (1 ≤ i ≤ N).

Here the determinant size N corresponds to the number of solitons and the lattice
site number n appears as a parameter in the elements of the determinant. In the next
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section we give a q-discrete analog of this Casorati determinant solution for the Toda
molecule equation.

3. Discrete Toda molecule and its soliton solution. A discrete analog of the Toda
molecule equation is given by

Vn(t + 1)Vn(t − 1)
Vn(t)2

= (1 + Vn+1(t))(1 + Vn−1(t))
(1 + Vn(t))2

(1 ≤ n ≤ M − 1),

V0(t) = VM(t) = 0,

which is bilinearized as

τn(t + 1)τn(t − 1) − τn(t)2 = Un(t)
1 + Un(t)

(τn+1(t)τn−1(t) − τn(t)2) (0 ≤ n ≤ M) (4)

through the dependent variable transformation

Vn(t) = (1 + Un(t))
τn(t + 1)τn(t − 1)

τn(t)2
− 1 (0 ≤ n ≤ M),

where Un(t) is the vacuum solution of the discrete Toda molecule equation satisfying

Un(t + 1)Un(t − 1)
Un(t)2

= (1 + Un+1(t))(1 + Un−1(t))
(1 + Un(t))2

(1 ≤ n ≤ M − 1),

U0(t) = UM(t) = 0.

By using the above bilinear equation (4), Vn(t) is rewritten as

Vn(t) = Un(t)
τn+1(t)τn−1(t)

τn(t)2
(0 ≤ n ≤ M).

There are many possible choices for the vacuum solution Un(t). In this article we
consider a q-discrete Toda molecule equation. By choosing

Un(t) =
(
qn/2 − q−n/2

) (
q(M−n)/2 − q−(M−n)/2

)
(
q(t+n)/2 + q−(t+n)/2

) (
q(t+M−n)/2 + q−(t+M−n)/2

) (0 ≤ n ≤ M),

the bilinear equation (4) is written as

τn(t + 1)τn(t − 1) − τn(t)2 =
(
qn/2 − q−n/2

) (
q(M−n)/2 − q−(M−n)/2

)
(
qt/2 + q−t/2

) (
q(t+M)/2 + q−(t+M)/2

)

×(τn+1(t)τn−1(t) − τn(t)2) (0 ≤ n ≤ M).

In the limit q → 1, this recovers the continuous case (2) with (3). The above bilinear
equation is solved by the Casorati determinant

τn(t) = 1
N−2∏
k=0

(1 + qt−N+1+k)N−1−k

det

(
3φ2

(
q−n−j+1, pi,−qt−N+1

q−M−N+1, 0
; q, q

))N

i,j=1

(0 ≤ n ≤ M),
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where 3φ2 is the q-hypergeometric function [9], which is given as

3φ2

(a0, a1, a2

b1, b2
; q, x

)
=

∞∑
k=0

(a0; q)k(a1; q)k(a2; q)k

(q; q)k(b1; q)k(b2; q)k
xk,

where (a; q)k is the q-shifted factorial defined by

(a; q)k =
k−1∏
i=0

(1 − aqi) (k ≥ 0)

and pi is the wave number of i-th soliton chosen as

pi ∈ {1, q−1, q−2, . . . , q−M−N+1} (1 ≤ i ≤ N).

The determinant size N corresponds to the number of solitons. We note that this is
not the general solution of the discrete Toda molecule equation although the general
solution can be expressed in terms of another type of Casorati determinant [7].

4. Proof of results. For a positive integer m, the q-orthogonal polynomials

ϕn
i (x) = 3φ2

(q−n, pi, x
q−m, 0

; q, q
)

=
n∑

k=0

(q−n; q)k(pi; q)k(x; q)k

(q−m; q)k(q; q)k
qk (0 ≤ n ≤ m)

satisfy the contiguous relations

(1 − x)ϕ0
i (x) = (1 − x)ϕ0

i (xq),

(1 − xqn)ϕn
i (x) − (1 − qn)xϕn−1

i (x) = (1 − x)ϕn
i (xq) (1 ≤ n ≤ m),

(
1 − qn−m

x

)
ϕn

i (x) − 1 − qn−m

x
ϕn+1

i (x) = pi

(
1 − 1

x

)
ϕn

i (xq) (0 ≤ n ≤ m − 1),

(
1 − 1

x

)
ϕm

i (x) = pi

(
1 − 1

x

)
ϕm

i (xq) − (pi; q)m+1(x; q)m+1

(q; q)mx
.

Thus for 1 ≤ N ≤ m + 1, the τ function

τn(x) =

∣∣∣∣∣∣∣∣∣∣∣

ϕn
1(x) ϕn+1

1 (x) · · · ϕn+N−1
1 (x)

ϕn
2(x) ϕn+1

2 (x) · · · ϕn+N−1
2 (x)

...
...

...

ϕn
N(x) ϕn+1

N (x) · · · ϕn+N−1
N (x)

∣∣∣∣∣∣∣∣∣∣∣
(0 ≤ n ≤ m − N + 1)
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satisfies the difference formulas

(xqn+1; q)N−1

(1 − x)N−1
τn(x) = ∣∣ϕn

i (x) ϕn+1
i (xq) ϕn+2

i (xq) · · · ϕn+N−1
i (xq)

∣∣
(0 ≤ n ≤ m − N + 1)

(1 − qn)x
(xqn+1; q)N−2

(1 − x)N−1
τn−1(x) = ∣∣ϕn

i (x) ϕn
i (xq) ϕn+1

i (xq) · · · ϕn+N−2
i (xq)

∣∣
(1 ≤ n ≤ m − N + 2, N ≥ 2)(

qn−m

x
; q

)
N−1(

1 − 1
x

)N−1 N∏
i=1

pi

τn(x) =
∣∣∣∣ϕn

i (xq) ϕn+1
i (xq) · · · ϕn+N−2

i (xq)
1
pi

ϕn+N−1
i (x)

∣∣∣∣
(0 ≤ n ≤ m − N + 1)

1 − qn+N−m−1

x

(
qn−m+1

x
; q

)
N−2(

1 − 1
x

)N−1 N∏
i=1

pi

τn+1(x)

=
∣∣∣∣ϕn+1

i (xq) ϕn+2
i (xq) · · · ϕn+N−1

i (xq)
1
pi

ϕn+N−1
i (x)

∣∣∣∣
(−1 ≤ n ≤ m − N, N ≥ 2)

qn+N−1
(

1 − 1
xqm

) (xqn+1; q)N−2

(
qn−m+1

x
; q

)
N−2

(1 − x)N−2
(

1 − q
x

)N−1 N∏
i=1

pi

τn

(
x
q

)

=
∣∣∣∣ϕn

i (x) ϕn+1
i (xq) · · · ϕn+N−2

i (xq)
1
pi

ϕn+N−1
i (x)

∣∣∣∣
(0 ≤ n ≤ m − N + 1, N ≥ 2).

By using the Plücker relation, we can verify the bilinear equation for the τ function

qn
(

1 − 1
xqm

)
(1 − x)N(
1 − x

q

)N−1 τn(xq)τn

(
x
q

)
− (1 − xqn+N−1)

(
1 − qn−m

x

)
τn(x)2

=




0 (n = 0),

−(1 − qn)(1 − qn+N−m−1)τn+1(x)τn−1(x) (1 ≤ n ≤ m − N),

(1 − qm−N+1)
(x; q)m+1

(q; q)m
τm−N(x)

×∣∣ϕm−N+2
i (x) ϕm−N+3

i (x) · · · ϕm
i (x) (pi; q)m+1

∣∣ (n = m − N + 1).
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By the gauge transformation

σn(x) = τn(x)
N−2∏
k=0

(1 − xqk)N−1−k

(0 ≤ n ≤ m − N + 1)

the above bilinear equation is rewritten as

σn(xq)σn

(
x
q

)
− σn(x)2 =




0 (n = 0)
(1 − qn)(1 − qm−N+1−n)

(1 − xqm)
(

1 − 1
xqN−1

) (σn+1(x)σn−1(x) − σn(x)2)

(1 ≤ n ≤ m − N)
1 − qm−N+1

(1 − xqm)
(

1 − 1
xqN−1

) (x; q)m+1

(q; q)m

σm−N(x)
N−2∏
k=0

(1 − xqk)N−1−k

×∣∣ϕm−N+2
i (x) ϕm−N+3

i (x) · · · ϕm
i (x) (pi; q)m+1

∣∣
(n = m − N + 1).

If we choose the parameters pi as

pi ∈ {1, q−1, q−2, . . . , q−m} (1 ≤ i ≤ N),

then we get

σn(xq)σn

(
x
q

)
− σn(x)2 =




0 (n = 0)

(1 − qn)(1 − qm−N+1−n)

(1 − xqm)
(

1 − 1
xqN−1

) (σn+1(x)σn−1(x) − σn(x)2)

(1 ≤ n ≤ m − N)

0 (n = m − N + 1).

Defining the vacuum solution by

Un(x) = (1 − qn)(1 − qm−N+1−n)

qn(1 − xqm−n)
(

1 − 1
xqN+n−1

) (0 ≤ n ≤ m − N + 1)

which satisfies the q-discrete Toda molecule equation

Un(xq)Un

(
x
q

)
Un(x)2

= (1 + Un+1(x))(1 + Un−1(x))
(1 + Un(x))2

(1 ≤ n ≤ m − N)

U0(x) = Um−N+1(x) = 0
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we finally obtain

σn(xq)σn

(
x
q

)
− σn(x)2 =




0 (n = 0)
Un(x)

1 + Un(x)
(σn+1(x)σn−1(x) − σn(x)2) (1 ≤ n ≤ m − N)

0 (n = m − N + 1).

By rewriting m = M + N − 1, x = −qt−N+1, σn(x) → τn(t) and Un(x) → Un(t), we
recover the results in the previous section.

5. Concluding remarks. The Bäcklund and Darboux transformations enable us
to construct a class of solutions starting from a vacuum solution. In order to satisfy
some extra conditions such as the boundary condition and the condition of similarity
reduction, the choice of vacuum solution is crucial. Investigating the solutions
of nonautonomous discrete nonlinear integrable systems by choosing appropriate
vacuum solutions would be an interesting subject. In this article we considered only the
q-discrete analog of the Toda molecule equation by using the trigonometric vacuum
solution. Recently the elliptic discrete equations and their solutions have been studied
from several view points [10, 11, 12]. The method of vacuum solution is applicable
to various types of discretization, and the elliptic function type vacuum is a future
subject to be studied. It is known that the hypergeometric functions appear in the τ

function of KP hierarchy [13]. Investigating the relation between the solutions derived
from vacuum and the theories of matrix integral and fermionic representation of the
solutions is also another direction of future study.
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