ON SELF-INJECTIVE PERFECT RINGS

DOLORS HERBERA AND AHMAD SHAMSUDDIN

ABSTRACT. Let R be a left and right perfect right self-injective ring. It is shown that if the radical of R is countably generated as a left ideal then R is quasi-Frobenius. It is also shown that the same conclusion can be drawn if $r(A \cap B) = r(A) + r(B)$ for all left ideals A and B of R.

1. Introduction. Let R be a right perfect ring with Jacobson radical J. Osofsky in [7, Lemma 11] (see also Faith [3, Lemma 23.19]) showed that if J/J^2 is finitely generated as a right or left R-module then R is right artinian. If R is also right and left self-injective, then R is quasi-Frobenius (QF). It is an open problem whether a right or left perfect right self-injective ring is QF. Clark and Van Huynh in [2] show that a right and left perfect right self-injective ring is QF if $R/\operatorname{soc}_r(R)$ has a finitely generated right socle. We, in this article, use this result to show that a right and left perfect right self-injective ring is QF if J/J^2 is countably generated as a left R-module. We also prove that if R is a right self-injective left or right perfect ring for which the condition $r(A \cap B) = r(A) + r(B)$ for all left ideals A and B of R is satisfied, then R is QF. The methods we originally followed were adapted from an argument (basically due to Skornjakov) used by Hajarnavis and Norton in [4], but simpler proofs were given afterwards, upon the suggestions of the second author and the referee.

2. **Main result.** If A is a subset of a ring R, then we write r(A) (resp. $\ell(A)$) for the right (resp. left) annihilator of the set A. We also write $\operatorname{soc}_r(R)$ (resp. $\operatorname{soc}_\ell(R)$) for the right (resp. left) socle of the ring R. The injective envelope of a module M is denoted by E(M) and its dual will be denoted by $M^* = \operatorname{Hom}_R(M, R)$. Following is a list of properties of a right perfect right self-injective ring R. These are taken from Utumi [8], Osofsky [7], and Kato [5].

- (2.1) R is right pseudo-Frobenius (PF) (that is, R_R is an injective cogenerator of mod-R).
- (2.2) $\operatorname{soc}_{\ell}(R) = \operatorname{soc}_{r}(R)$; we denote the common ideal by *P*.
- (2.3) P is essential and finitely generated in R, both as a left and right ideal.
- (2.4) If A is a right ideal of R then $r\ell(A) = A$.

The work of the second author was partially supported by a grant from the University Research Board at the American University of Beirut.

Received by the editors December 6, 1995.

AMS subject classification: 16D50, 16L30.

Key words and phrases: Perfect rings, Self-injective rings, Quasi-Frobenius rings, Injective Envelope, Semi-local rings.

[©] Canadian Mathematical Society 1996.

(2.5) $\ell(P) = r(P) = J$.

- (2.6) If *R* is also left perfect then $\ell(J) = r(J) = P$.
- (2.7) For every simple right (resp. left) module A, there exists a primitive idempotent e such that $A \cong eP$ (resp. $A \cong Pe$).

We also consider the following condition, which we shall subsequently refer to as the *right HN condition*: Every homomorphism from a right ideal I into R with finitely generated image is multiplication by an element of R.

LEMMA 1. Let R be a semi-local ring and let M_R be a semi-simple module of dimension $\aleph \ge \aleph_0$. Suppose that $S^* \ne 0$ for every simple right R-module S. Then M^* is semi-simple of dimension greater than \aleph .

PROOF. Suppose that $M = \bigotimes_{i \in I} S_i$, where each S_i is simple. Then $M^* \cong \prod_{i \in I} S_i^*$. Because *R* is semi-local and $S_i^* \neq 0$ for each *i*, there is a simple module *A* such that A^I embeds in M^* . But A^I is semi-simple, so $A^I \cong A^{(J)}$, and it is well-known that this implies $|J| > |I| = \aleph$.

LEMMA 2. Let R be a ring satisfying the right HN condition, and with finitely generated right socle. If $K \subset I$ is a pair of right ideals such that I/K is semi-simple, then

$$\ell(K)/\ell(I) \cong \operatorname{Hom}_{R}(I/K, R).$$

PROOF. Let

$$\varphi: \ell(K)/\ell(I) \to \operatorname{Hom}_{R}(I/K, R)$$

be the canonical map given by

$$\varphi(r+\ell(I))(x+K)=rx, \quad r\in\ell(K), x\in I.$$

Then φ is injective. To show that φ is surjective, let $f \in \text{Hom}_R(I/K, R)$. Then Im(f) is a direct summand of P, whence finitely generated. If $\pi: I \to I/K$ is the canonical map, then by hypothesis, $f \circ \pi: I \to R$ is given by left multiplication by $r \in R$. Hence f(x+K) = rx for all $x \in I$. But then $r \in \ell(K)$ and easily $\varphi(r + \ell(I)) = f$, so φ is an isomorphism.

LEMMA 3. Let R be a right self-injective left and right perfect ring R. Let

$$\operatorname{soc}_2(R)/P = \operatorname{soc}_r(R/P).$$

Then $J^2 \operatorname{soc}_2(R) = 0$.

PROOF. Suppose first that for $x \in R$, (xR+P)/P is simple. Then $(xR+P)/P \cong R/M$, where *M* is a maximal right ideal of *R* such that $xM \subseteq P$. Now (2.5) implies that JxM = 0, so $Jx \subseteq \ell(M) \subseteq \ell(J) = P$, by (2.6).

Now if $x \in \text{soc}_2(R)$, then $x = x_1 + \cdots + x_n + y$ where each $(x_iR + P)/P$ is simple and $y \in P$. Thus, by the previous paragraph, $Jx \subseteq P$ and so $J \operatorname{soc}_2(R) \subseteq P$. This implies, by (2.5) again, that $J^2 \subseteq \operatorname{soc}_2(R) = 0$.

THEOREM 1. Let R be a right self-injective left and right perfect ring. If J/J^2 is a countably generated left R-module then R is quasi-Frobenius.

PROOF. It is sufficient, by [2], to prove that R/P has finite dimensional right socle. Condition (2.3) stipulates that P_R is finitely generated, and condition (2.7) implies that $S^* \neq 0$ for every simple right *R*-module *S*. Clearly, *R* is right HN. Thus we can use Lemma 1 and Lemma 2 to deduce that if $\operatorname{soc}_2(R)/P$ is infinite dimensional, then $\ell(P)/\ell(\operatorname{soc}_2(R))$ is of uncountable dimension as a left R/J-module. However, using Lemma 3, $J^2 \subseteq \ell(\operatorname{soc}_2(R)) \subseteq \ell(P) = J$, so J/J^2 has uncountable dimension as a left R/J-module.

The proof of the following Lemma can be found in [4, Proposition 2].

LEMMA 4. Let R be a ring for which $r\ell(xR) = xR$ for every $x \in R$. If also $r(A \cap B) = r(A) + r(B)$ for every pair of left ideals A and B, then R is left HN.

The following Lemma is an immediate consequence of Camillo [1].

LEMMA 5. Let M be a right R-module over a right perfect ring R. If every quotient module of M has finite Goldie dimension, then M is nötherian.

PROOF. It follows from [1] that for every submodule N of M, there exists a finitely generated submodule T of N such that N/T has no maximal submodules. This can not occur with non-zero right modules over right perfect rings; see, *e.g.*, Faith[3]. Hence N = T is finitely generated.

THEOREM 2. Let R be a right self-injective left and right perfect ring. If R is also left HN, then R is quasi-Frobenius.

PROOF. We have to show that R is right notherian. Since R is right perfect, Lemma 5 makes it clear that it is sufficient to show that R/K has finite Goldie dimension for every right ideal K of R. Since R is left perfect, it suffices to show that R/K has finitely generated socle I/K. Suppose, then, that I/K has dimension $\aleph \ge \aleph_0$. Then Lemma 1 and Lemma 2 imply that $\ell(K)/\ell(I)$ has dimension greater than \aleph . Now R is a left HN ring and (2.2) and (2.3) imply that $\operatorname{soc}_I(R)$ is finitely generated. Hence we can use the left-sided version of Lemma 1 and Lemma 2 to deduce that $r\ell(I)/r\ell(K) = I/K$ (by (2.4)) has dimension greater than that of $\ell(K)/\ell(I)$. This contradiction concludes the proof of the theorem.

COROLLARY. Let R be a right self-injective left and right perfect ring. If also $r(A \cap B) = r(A) + r(B)$ for every pair of left ideals A and B, then R is quasi-Frobenius.

3. Remarks and a question. Morita and Tachikawa consider in [6] the following condition imposed on a module M.

(3.1) If A and B are submodules of M such that $M/A \cong M/B$ then $A \cong B$, and its converse

(3.2) If A and B are submodules of M such that $A \cong B$ then $M/A \cong M/B$.

Morita and Tachikawa in [6, Theorem 3.1] show that $R^{(n)}$ satisfies condition (3.1) for artinian rings. We generalize this for semi-local rings in the following Proposition, whose proof is simple and is therefore omitted.

PROPOSITION. Let M be a quasi-projective module for which every epimorphism is an isomorphism. Then M satisfies (3.1).

COROLLARY. If R is a semi-local ring then $R^{(n)}$ satisfies (3.1).

Morita and Tachikawa prove in [6, Theorems 4.1 and 4.4] that a right and left artinian ring is QF if and only if $R^{(n)}$ satisfies (3.2) both as a left and as a right *R*-module. We show that if *R* is a right self-injective semi-local ring then $R^{(n)}$ satisfies (3.2) as a right *R*-module. This follows as a corollary of the following

PROPOSITION. Let M be a quasi-injective module for which every monomorphism is an isomorphism. Then M satisfies (3.2).

PROOF. Let A and B be submodules of M such that $\alpha: A \cong B$ is an isomorphism. Then α induces an isomorphism $\bar{\alpha}: E(A) \to E(B)$, and this in turn induces an isomorphism $\bar{\bar{\alpha}}: E(M) \to E(M)$. Since M is quasi-injective, $\bar{\bar{\alpha}}$ induces a monomorphism $\beta: M \to M$. The hypothesis implies that β is an isomorphism, and this induces an isomorphism $M/A \to M/B$.

COROLLARY. If R is a semi-local right self-injective ring then the right R-module $R^{(n)}$ satisfies condition (3.2).

Osofsky gives in [7] an example of a commutative semi-perfect self-injective ring which is not QF. Thus Theorem 4.4 of Morita and Tachikawa referred to above cannot in general hold true for non-artinian rings. We end this note with the following question:

Suppose that R is a right or left perfect ring such that $R^{(n)}$ satisfies (3.2) on both sides. Is R QF?

REFERENCES

- 1. V. Camillo, Modules whose quotients have finite Goldie dimension, Pac. J. Math. 69(1977), 337-338.
- 2. John Clark and Dinh Van Huynh, A note on perfect self-injective rings, Quart. J. Math. Oxford 45(1994), 13–17.
- 3. Carl Faith, Algebra II, Ring Theory, Springer-Verlag, Berlin-Heidleberg, New York, 1976.
- 4. C. R. Hajarnavis and N. C. Norton, On Dual Rings and Their Modules, J. Alg. 93(1985), 253-266.
- 5. T. Kato, Self-injective rings, Tôhku Math. J. 93(1985), 253-266.
- 6. Kitti Morita and Hiroyuki Tachikawa, Character modules, submodules of free modules and quasi-Frobenius rings, Math. Z. 65(1956), 414–428.
- 7. B. L. Osofsky, A Generalization of Quasi-Frobenius Rings, J. Alg. 4(1966), 373-387.
- 8. Y. Utumi, Self-injective Rings, J. Alg. 6(1967), 56-64.

Department of Mathematics American University of Beirut Beirut, Lebanon Department de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellatera (Barcelona) Spain