
J. Fluid Mech. (2024), vol. 984, A6, doi:10.1017/jfm.2024.154

Large eddy simulation of flow over a circular
cylinder with a neural-network-based
subgrid-scale model

Myunghwa Kim1, Jonghwan Park1 and Haecheon Choi1,2,†
1Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
2Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea

(Received 5 June 2023; revised 17 November 2023; accepted 14 February 2024)

A neural-network-based large eddy simulation is performed for flow over a circular
cylinder. To predict the subgrid-scale (SGS) stresses, we train two fully connected neural
network (FCNN) architectures with and without fusing information from two separate
single-frame networks (FU and nFU, respectively), where the input variable is either the
strain rate (SR) or the velocity gradient (VG). As the input variables, only the grid-filtered
variables are considered for the SGS models of G-SR and G-VG, and both the grid- and
test-filtered variables are considered for the SGS models of T-SR and T-VG. The training
data are the filtered direct numerical simulation (fDNS) data at Red = 3900 based on the
free-stream velocity and cylinder diameter. Using the same grid resolution as that of the
training data, the performances of G-SR and G-VG (grid-filtered inputs) and T-SR-FU
and T-VG-FU (grid- and test-filtered inputs with fusion) are better than those of the
dynamic Smagorinsky model and T-SR-nFU and T-VG-nFU (grid- and test-filtered inputs
without fusion). These FCNN-based SGS models are applied to untrained flows having
different grid resolutions from that of training data. Although the performances of G-SR
and G-VG are degraded, T-SR-FU and T-VG-FU still provide good performances. Finally,
T-SR-FU and T-VG-FU trained at Red = 3900 are applied to higher-Reynolds-number
flows (Red = 5000 and 10 000) and their results are also in good agreements with those of
fDNS and previous experiment, indicating that adding the test-filtered variables and fusion
increases the prediction capability even for untrained Reynolds number flows.
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1. Introduction

Large eddy simulation (LES) is an effective tool for accurately predicting turbulent flow
by resolving large-scale eddies and modelling the effect of eddies smaller than the grid
scale. Subgrid-scale (SGS) modelling finds a relation between the resolved flow variables
and SGS stresses. So far, various SGS models have been proposed in a functional form
based on turbulence theory and hypothesis. Many traditional SGS models adopt an
eddy-viscosity approach based on the Boussinesq hypothesis (Smagorinsky 1963; Nicoud
& Ducros 1999; Vreman 2004; Verstappen et al. 2010; Nicoud et al. 2011; Rozema et al.
2015; Trias et al. 2015; Silvis, Remmerswaal & Verstappen 2017). The eddy-viscosity
model expresses a relation between the SGS stress tensor (τ ) and filtered strain rate (SR)
tensor (S̄) with a form of τ − 1

3 tr(τ )I = −2νT S̄, where I is the identity tensor, and νT is
the eddy viscosity to be modelled with resolved flow variables. One of the most popular
models based on the eddy-viscosity approach is the Smagorinsky model (Smagorinsky
1963), νT = (CsΔ)2(2S̄ijS̄ij)

1/2, where Cs is a constant and Δ is the filter width. However,
it is well known that the Smagorinsky model has a drawback in that a predetermined
model coefficient Cs cannot handle various turbulent flows because it depends on the flow
type, resolution, and local flow information. To overcome this drawback, the dynamic
Smagorinsky model (DSM) (Germano et al. 1991) was developed, where the Smagorinsky
model coefficient was dynamically determined by introducing a test filter (in addition to
the grid filter) and Germano identity. Another type of SGS models is the similarity model
(Bardina, Ferziger & Reynolds 1980; Liu, Meneveau & Katz 1994; Domaradzki & Saiki
1997), where the SGS stress tensor is assumed to be proportional to the resolved stress
tensor Lij(= ũi uj − ũi ũj). Here, the overbar and tilde denote two filtering operations, and
the latter uses a wider filter width. In addition to these SGS models, other models such
as the mixed model (Bardina et al. 1980; Zang, Street & Koseff 1993; Liu et al. 1994;
Vreman, Geurts & Kuerten 1994; Liu, Meneveau & Katz 1995; Salvetti & Banerjee 1995;
Horiuti 1997; Akhavan et al. 2000), gradient model (Clark, Ferziger & Reynolds 1979;
Liu et al. 1994) and optimal model (Langford & Moser 1999; Völker, Moser & Venugopal
2002; Langford & Moser 2004; Zandonade, Langford & Moser 2004; Moser et al. 2009)
have been also developed.

However, these traditional SGS models have some limitations. For example, the eddy
viscosity models have low correlation coefficients between the actual and modelled SGS
stresses even in a priori test (Clark et al. 1979; Liu et al. 1994). Moreover, the inverse
energy transfer from the subgrid scales to the resolved ones (i.e. backscatter) cannot be
predicted by this eddy viscosity model (Zang et al. 1993). This weakness can be overcome
in DSM by dynamically determining the Smagorinsky model coefficient. However, the
dynamic procedure may induce numerical instabilities in actual LES, and thus additional
procedures like averaging in homogeneous directions or ad hoc clipping on negative eddy
viscosity are required (Zang et al. 1993; Ghosal et al. 1995; Salvetti & Banerjee 1995;
Lee, Choi & Park 2010). On the other hand, the scale-similarity model (SSM) provides
relatively accurate backscatter and high correlation coefficients between the actual and
modelled SGS stresses. However, when this model is applied to actual LES, dissipation
is insufficient and simulations often diverge or inaccurately predict turbulence statistics
(Bardina et al. 1980; Liu et al. 1994). Despite these limitations, the traditional SGS
models still provide reasonable predictions for various turbulent flows, and many studies
(Porté-Agel, Meneveau & Parlange 2000; Cui et al. 2004; Burton & Dahm 2005; Park
et al. 2006; Lee et al. 2010; Rasthofer & Gravemeier 2013; Samiee, Akhavan-Safaei &
Zayernouri 2020) have been conducted with this traditional approach to overcome the
limitations mentioned above.
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A neural-network-based LES of flow over a circular cylinder

Recently, machine learning (ML) algorithms have been applied to the SGS modelling
for LES as an another way to predict the SGS stresses using filtered flow variables. More
specifically, fully connected neural network (FCNN, also called a multilayer perceptron;
Gamahara & Hattori 2017; Zhou et al. 2019; Xie et al. 2020a; Xie, Wang & Weinan
2020b; Xie, Yuan & Wang 2020c; Yuan, Xie & Wang 2020; MacArt, Sirignano & Freund
2021; Park & Choi 2021; Subel et al. 2021; Wang et al. 2021; Kang, Jeon & You 2023),
convolutional neural network (CNN; Beck, Flad & Munz 2019; Pawar et al. 2020; Zanna &
Bolton 2020; Guan et al. 2022; Liu et al. 2022), and reinforcement learning (RL; Novati,
de Laroussilhe & Koumoutsakos 2021; Kim et al. 2022; Kurz, Offenhäuser & Beck 2023)
have been adopted. The FCNN is the simplest ML algorithm inspired by the biological
neural networks that constitute animal brains. As the brains are trained by strengthening
or weakening the synapses which are the connections between the nodes, the FCNN
finds the optimised weight parameters which represent the connection strengths between
the nodes to minimise a loss function such as the mean-square error. Many previous
studies have adopted simple FCNN architectures which have two to six consecutive layers
with many nodes. For instance, Wang et al. (2021) used two hidden layers and twenty
nodes with invariants of the local velocity gradient (VG) tensor as inputs for forced
incompressible isotropic turbulence. They showed that the FCNN-based LES was better
than the traditional SGS models (DSM and dynamic mixed model [DMM]) both in trained
and untrained (coarser than the trained) grid resolutions. Subel et al. (2021) applied an
FCNN-based SGS model with six hidden layers with 250 nodes to a Burgers turbulence
at untrained higher-Reynolds-number flows. Yuan et al. (2020) used an FCNN with four
hidden layers and 128 or 64 nodes for forced incompressible isotropic turbulence, and
showed that the FCNN-based LES outperformed the traditional SGS models such as
DSM and DMM even for untrained filter widths. Park & Choi (2021) used an FCNN
with two hidden layers and 128 nodes to predict the SGS stress for turbulent channel
flow, and their FCNN-based SGS model performed better than DSM in actual LES, both
for trained and untrained (grid resolution and Reynolds number) conditions. Meanwhile,
Sirignano, MacArt & Freund (2020) and MacArt et al. (2021) adopted relatively complex
FCNN architectures to predict isotropic turbulence and turbulent plane jet, respectively.
As for more complex ML algorithms, people have suggested to use CNNs to learn flow
structures even with fewer weight parameters than those of FCNNs. Pawar et al. (2020)
compared the performances of FCNN- and CNN-based SGS models in a two-dimensional
turbulence by conducting a priori test and showed that a CNN provided more accurate
predictions than an FCNN did. However, they did not perform actual LES with the
CNN. Liu et al. (2022) conducted actual LESs with both FCNN- and CNN-based SGS
models for turbulent channel flow, and showed that, for untrained flow, a CNN-based
SGS model performed well but LES with an FCNN-based SGS model diverged. Apart
from SGS modelling, Font et al. (2021) developed a CNN-based closure model for
the spanwise-averaged Navier–Stokes (SANS) equations, where the closure term of the
SANS equations accounted for the three-dimensional effects that was not considered in
two-dimensional formulations. They showed that this CNN-based closure model provided
better predictions of flow over a circular cylinder than the two-dimensional formulations.
On the other hand, RL can train the model with only limited target statistics, and training
and simulation are carried out simultaneously in RL. For instance, Kim et al. (2022)
proposed a physics-constrained deep RL for LES of turbulent channel flow for the purpose
of finding an SGS model that maximises the statistical accuracy of turbulence quantities
such as the mean viscous and Reynolds shear stresses. They showed that the results from
the SGS models were in good agreements with the filtered DNS data. However, RL has a
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difficulty for the prediction of turbulent flow over/inside a complex geometry, in that target
statistics may not be available a priori for the complex flow.

For the simple flows such as isotropic turbulence and turbulent channel flow,
FCNN-based SGS models have performed quite well even with a point-by-point learning
process, which makes it possible to generalise the SGS models from one flow to another.
Therefore, in the present study, we adopt an FCNN to construct an SGS model with a
long-term goal of its application to flow over/inside a complex geometry. For the purpose
of predicting such flow, various flow phenomena should be trained. The flow over a circular
cylinder contains boundary layer development, flow separation, shear layer roll-up and
turbulent wake. Therefore, the flow over a circular cylinder is a good starting point for
constructing an FCNN-based SGS model for complex flows. The output variable from
FCNN is the SGS stress tensor. As for the input variable, we consider the SR and VG
tensors which provide good predictions for turbulent channel flow (Park & Choi 2021).
The training data are the filtered flow variables from direct numerical simulation (DNS)
of flow over a circular cylinder at Red(= Ud/ν) = 3900, where U is the free-stream
velocity, d is the cylinder diameter, and ν is the kinematic viscosity. With trained FCNNs,
we perform a priori test and examine the prediction capability for the SGS shear stress,
SGS dissipation and backscatter. In a posteriori test (actual LES), we perform LESs with
FCNN-based SGS models at the trained flow condition, and compare the flow parameters,
mean velocity and root-mean-square (r.m.s.) velocity fluctuations with those from filtered
DNS, DSM and without SGS model. We finally conduct LESs with grid resolution and
Reynolds numbers (Red = 5000 and 10 000) different from those of the trained condition,
and discuss the prediction results. The details of the DNS and training data are given in
§ 2, and the training methods for the FCNN are described in § 3. The results of a priori and
a posteriori tests for trained and untrained flows are given and discussed in § 4, followed
by the conclusions in § 5.

2. Numerical details and training data

2.1. Numerical details
The governing equations for LES are the spatially filtered continuity and Navier–Stokes
equations in the Cartesian coordinate using an immersed boundary method (Kim, Kim &
Choi 2001),

∂ ūi

∂xi
− q = 0, (2.1)

∂ ūi

∂t
+ ∂ ūiūj

∂xj
= − ∂ p̄

∂xi
+ 1

Red

∂2ūi

∂xj∂xj
− ∂τij

∂xj
+ fi, (2.2)

where x1 (= x), x2 (= y) and x3 (= z) are the streamwise, transverse and spanwise
directions, respectively, ui (= (u, v, w)) are the corresponding velocity components, p is
the pressure, t is time, τij(= uiuj − ūiūj) is the SGS stress tensor, the overbar denotes the
filtering operation and q and fi are the mass source/sink and momentum forcing to satisfy
the mass conservation and no-slip condition on the immersed boundary, respectively.

DNS of the flow over a circular cylinder is conducted at Red = 3900. The unfiltered
continuity and Navier–Stokes equations ((2.1) and (2.2) with τij = 0) are solved using the
second-order central difference scheme for all the spatial derivative terms on a staggered
mesh, and a fractional step method with third-order Runge–Kutta and second-order
Crank–Nicolson methods for the convection and diffusion terms, respectively.
A computational domain and coordinate system are shown in figure 1(a), where the
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Figure 1. Computational domain, coordinate system and grid distributions for DNS and LES:
(a) computational domain and coordinate system; (b) grid distributions near the circular cylinder. In (b),
---- (black), DNS3900; ---- (red), DNS5000; —— (black), LES3900; —— (blue), LES3900c; —— (red),
LES3900f and LES5000; —— (green), LES10000.

cylinder centre is located at (x, y) = (0, 0). The size of the computational domain is
Lx × Ly × Lz = 30d × 50d × 3.14d. Note that this spanwise domain size has been adopted
for DNS and LES by many previous studies (Beaudan & Moin 1994; Mittal 1995; Breuer
1998; Kravchenko & Moin 1998; Ma, Karamanos & Karniadakis 2000; Franke & Frank
2002; Dong et al. 2006; Park et al. 2006; Parnaudeau et al. 2008; Mani, Moin & Wang
2009; Lee 2010; Lehmkuhl et al. 2013; Li et al. 2020) and provides fully three-dimensional
vortical structures in the wake (see, for example, figure 11). Moreover, the spanwise
energy spectra fall off more than three decades at high spanwise wavenumbers (not shown
here). A Dirichlet condition is used at the inlet, and a convective boundary condition,
∂ui/∂t + c∂ui/∂x = 0, is used at the exit, where c is the plane-averaged streamwise
velocity at the exit. The Neumann condition (∂u/∂y = ∂w/∂y = 0, v = 0) is used at
the far-field boundary, and the periodic condition is imposed in the spanwise direction.
A no-slip boundary condition on the cylinder surface is satisfied with an immersed
boundary method (Kim et al. 2001). The number of grid points for DNS is Nx ×
Ny × Nz = 1025 × 501 × 128. The grids are uniformly distributed in z direction (�z =
0.02453d) and non-uniformly distributed in x and y directions, respectively, and they are
densely allocated near the cylinder surface and separating shear layer region (figure 1b):
e.g. the smallest grid sizes are �xmin = 0.004d and �ymin = 0.002d, respectively.

The data from the present DNS are validated by comparing them with those from
the previous experiment (Parnaudeau et al. 2008) and DNS (Ma et al. 2000). Figure 2
shows the transverse profiles of the mean streamwise velocity and r.m.s. streamwise
velocity fluctuations at three streamwise locations in the wake (x/d = 1.06, 1.54 and
2.02), respectively. As shown, the present results are in excellent agreements with those
of previous experiment and DNS, indicating that the choices of grids and computational
domain for DNS are appropriate.

To estimate the prediction capabilities of the FCNN-based SGS models at untrained
Reynolds numbers, another DNS is performed at Red = 5000. The computational domain
size and boundary conditions are the same as those of Red = 3900, as described
previously. We consider three different grid distributions for the convergence of solution:
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Figure 2. Turbulence statistics from DNS (Red = 3900): (a) mean streamwise velocity; (b) r.m.s. streamwise
velocity fluctuations. —— (red), Present DNS; •, experiment (Parnaudeau et al. 2008); —— (blue), DNS
(Ma et al. 2000). Here, the bracket 〈·〉 denotes the averaging over the spanwise direction and in time.

Cases (Nx, Ny, Nz) (�xmin/d, �ymin/d) Lr/d 〈Cpb 〉 Umin/U 〈CD〉
Present DNS (2049, 1001, 128) (0.002, 0.001) 1.39 −0.91 −0.30 1.01

(2049, 1001, 192) (0.002, 0.001) 1.41 −0.89 −0.29 1.00
(3073, 1281, 128) (0.00133, 0.0008) 1.37 −0.91 −0.33 1.01

Experiment — — 1.40c −0.93b −0.45c 1.02a

DNSd — — 1.14 −1.02 −0.24 1.12

Table 1. Flow quantities at Red = 5000 from present DNSs, together with those from previous experiments
and DNS. Here, Lr is the mean recirculation length measured from the base point of the cylinder, 〈Cpb 〉 is the
mean base pressure coefficient, Umin is the maximum mean negative velocity along the centreline and 〈CD〉 is
the mean drag coefficient.

aNorberg (1993).
bNorberg (1994).
cNorberg (1998).

dAljure et al. (2017).

(Nx, Ny, Nz) = (2049, 1001, 128), (2049, 1001, 192) and (3073, 1281, 128), respectively.
The second simulation has 1.5 times as many grid points in the spanwise direction as
the first, and the third simulation uses about 1.5 times and 1.3 times as many grid points
in x and y directions as the first, respectively (see table 1). The results from these three
simulations at Red = 5000 are compared with those from previous experiment and DNS
in table 1 and figure 3. As shown, the results from three simulations are very similar
among themselves, demonstrating the grid convergence of the present DNS. Although the
mean streamwise velocity and r.m.s. streamwise velocity fluctuations along the centreline
from the DNSs and experiment show some differences at x/d < 2 (within recirculation
zone), they overall agree very well with those from the previous experiments (Norberg
1993, 1994, 1998), validating the accuracy of the present DNS.

LESs of turbulent flow over a circular cylinder are performed at Red = 3900, 5000
and 10 000, respectively, with the FCNN-based SGS models developed during the present
study and DSM. Numerical methods for solving the filtered continuity and Navier–Stokes
equations ((2.1) and (2.2)) are the same as those of DNS. The second-order finite difference
method applied to all the spatial derivative terms on a staggered mesh conserves kinetic
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Figure 3. Turbulence statistics from present DNSs (Red = 5000): (a) mean streamwise velocity along the
centreline; (b) r.m.s. streamwise velocity fluctuations along the centreline; (c) mean streamwise velocity in
the wake; (d) r.m.s. streamwise velocity fluctuations in the wake. Present DNSs (—— (red), Nx × Ny × Nz =
2049 × 1001 × 128; • (red), 2049 × 1001 × 192; + (red), 3073 × 1281 × 128); • (black), experiment (Norberg
1998); —— (blue), DNS (Aljure et al. 2017).

energy as well as continuity and momentum, and does not exhibit numerical dissipation.
These features make the scheme suitable for use in LES, and various complex flows have
been successfully simulated using it (Mittal & Moin 1997). During simulation, kinetic
energy is dissipated by viscous and SGS dissipation. LES without SGS dissipation can
be stable when viscous dissipation alone is sufficient to maintain stability, but provides
an inaccurate result. However, it becomes unstable on very coarse grids due to lack of
dissipation. For DSM, a box filter of Δ̃z = 2Δ̄z is used as the test filter, where Δ̄z is
the grid size in the homogeneous direction (z). The domain size for LES is the same as
that for DNS, but the number of grid points for LES at Red = 3900 is Nx × Ny × Nz =
449 × 271 × 64 (same number of grid points used in Lee 2010) whose resolution is
the same as that of training data. We also conduct LESs with coarser and finer grid
resolutions at Red = 3900, respectively. For Red = 5000 and 10 000, we use finer grid
resolutions (see table 3 later in this paper). The present computations are performed at
the computational time steps of �tU/d = 0.004, 0.003 and 0.0025 for Red = 3900, 5000
and 10 000, respectively. After reaching a statistically equilibrium state, the turbulence
statistics at these Reynolds numbers are obtained by averaging over TU/d = 200, 150 and
125, respectively.
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2.2. Training data
As shown in Park & Choi (2021), an FCNN trained with two databases obtained from
two different grid sets predicted turbulent channel flow in LES better than an FCNN
trained with a database obtained from one grid set, when LES is performed with a grid
set different from those used for training. In the present study, we do not pursue the same
approach as done in Park & Choi (2021). We rather construct a database obtained with a
grid set, apply a test filter having a wider filter width to it to create another database having
coarser grid resolution, and train an FCNN with these two databases. Using this approach,
one can certainly reduce the effort of constructing databases for training. As shown later
(§ 4.2), this approach successfully predicts the flow over a circular cylinder even if the grid
distribution is different from that used for training. In Appendix D, we also show the result
for turbulent channel flow.

Let us apply two filters (Ḡ and G̃, called grid and test filters, respectively) to a flow
variable ( f ) obtained by DNS, and calculate two filtered DNS (fDNS) variables ( f̄ and f̃ )
as follows:

f̄ (x) =
∫

f (x′)Ḡ(x, x′) dx′, (2.3)

f̃ (x) =
∫

f (x′)G̃(x, x′) dx′, (2.4)

where G(x, x′) and G̃(x, x′) are box filter kernels, a type of filter applicable to flow over a
complex geometry. With the box filter applied in all the (x, y, z) directions, the grid-filtered
flow variable f̄ is obtained as

f̄ (x, y, z, t) = 1
Δ̄xΔ̄yΔ̄z

∫ 0.5Δ̄z

−0.5Δ̄z

∫ 0.5Δ̄y

−0.5Δ̄y

∫ 0.5Δ̄x

−0.5Δ̄x

f (x + x′, y + y′, z + z′, t) dx′ dy′ dz′,

(2.5)
where Δ̄i (the grid size of LES) is the filter size in i direction. A one-sided box filter is
used near the cylinder surface. The test-filtered flow variable ˜̄f is obtained by applying the
box filter (applied only in the spanwise direction) to the grid-filtered variable f̄ as

˜̄f (x, y, z, t) = 1

Δ̃z

∫ 0.5Δ̃z

−0.5Δ̃z

f̄ (x, y, z + z′, t) dz′, (2.6)

where Δ̃z(>�̄z) is the size of test filter in z direction. With the operations of (2.5) and (2.6),
training data (i.e. grid- and test-fDNS data) are obtained. The training data are extracted
from 25 instantaneous fDNS fields during approximately 20 vortex shedding cycles
(TU/d ≈ 100; see figure 4a). Adding more instantaneous fDNS fields does not improve
the prediction performance (see Appendix A for the details). From each instantaneous
flow field, the fDNS data on (x, y) planes at four different spanwise locations (only
278 × 158 grid points per plane within a dashed box in figure 4b) are taken as the
training data to filter out highly correlated data. Thus, the total number of training data
is Ntot = 25 × Nxy × 4 = 4 078 400, where Nxy(= 40 784) is the number of grid points
within the dashed box except for those inside a circular cylinder. The region close to
the cylinder surface denoted as the dashed box (−1 ≤ x/d ≤ 6 and −1.5 ≤ y/d ≤ 1.5)
contains laminar and turbulent flows, and the representative flow phenomena such as
the boundary layer development, flow separation, shear layer roll-up and turbulent wake.
We also increase the size of the dashed box to −1 ≤ x/d ≤ 8 and −2 ≤ y/d ≤ 2, but
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Figure 4. Spatiotemporal extraction of the training data: (a) time histories of the drag and lift coefficients
(DNS); (b) contours of the instantaneous SGS shear stress τxy. In (b), the dashed box denotes the (x, y) plane
where training data are extracted.

Cases Fusion Input variable(s) Number of input components (Nq)

G-SR — S̄ij 6
G-VG — ᾱij 9
T-SR-nFU X S̄ij and ˜̄Sij 12
T-VG-nFU X ᾱij and ˜̄αij 18
T-SR-FU O S̄ij and ˜̄Sij 12
T-VG-FU O ᾱij and ˜̄αij 18

Table 2. Model architectures and input variables for NNs.

a posteriori test provides only few changes in the LES results (see Appendix A for the
details).

3. FCNN training

3.1. Input and output variables
The present FCNNs (denoted as NNs hereafter) use four different input variables to predict
the six components of the SGS stress tensor τij, as listed in table 2. The grid-filtered
variables are used as inputs for all NNs, whereas the test-filtered variables are used as
inputs only for the cases of T-SR and T-VG. The input variables for the cases of G-SR and
G-VG are the six components of the SR tensor (S̄ij = 0.5(∂ ūi/∂xj + ∂ ūj/∂xi)) and nine
components of the VG tensor (ᾱij = ∂ ūi/∂xj) at each input grid point, respectively, and
the output variable is the six components of τij at the same grid point. The choice of these
input variables comes from the previous NN-based LES of turbulent channel flow by Park
& Choi (2021), in which the SGS models with the inputs of S̄ij and ᾱij were used and
provided good prediction performances.

For the cases of T-SR and T-VG, both the grid- and test-filtered variables are used as the
input variables. The use of test-filtered variables or similar as an input to NN is not the first
time. Xie et al. (2020a) used the first-order derivatives of the grid- and test-filtered velocity
and temperature at multiple grid points as inputs for compressible isotropic turbulence,
and showed that their predictions of the velocity and temperature spectra were better
than those by the DMM. Park & Choi (2021) trained an NN with input variables from
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Figure 5. Schematic diagrams of the present NNs: (a) NN with two hidden layers (denoted as nFU
architecture); (b) NN with two and one hidden layers before and after fusion (subtraction), respectively (denoted
as FU architecture). Here, q̄ and ˜̄q are the grid- and test-filtered inputs, respectively, Nq is the number of input
components (see table 2), and s is the output.

fDNS datasets obtained from two different filter widths, and showed that its prediction for
turbulent channel flow was better than that from single fDNS dataset when an actual LES
was performed with a grid resolution different from that used for training. Therefore, the
addition of the test-filtered variables to the input should enhance the prediction capability
of NN-based SGS models, especially when the grid resolution for LES is different from
that used for training.

3.2. Neural network architectures
Most of the previous studies have adopted simple NN architectures having consecutive
layers with multiple nodes (see, for example, Sarghini, de Felice & Santini 2003; Wollblad
& Davidson 2008; Gamahara & Hattori 2017; Pal 2019; Xie et al. 2020a,b,c; Yuan et al.
2020; Park & Choi 2021; Stoffer et al. 2021; Subel et al. 2021; Wang et al. 2021; Kang
et al. 2023), as shown in figure 5(a). Park & Choi (2021) used an NN with two hidden
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layers and 128 nodes per hidden layer by setting S̄ij or ᾱij as the input and τij as the output,
respectively, and showed its better performance than that of DSM for turbulent channel
flow. However, when the grid resolution of LES was different from that of training data,
the trained SGS model could not accurately predict turbulence statistics. This problem was
overcome by training an SGS model with data obtained from multiple filter widths, but its
performance can be degraded when the grid sizes used for LES are out of the range of
training grid sizes. We use the same NN architecture (denoted as nFU architecture), and
test for the present flow over a circular cylinder with grid resolutions different from the
training one, resulting in similar degradation of the prediction performance (see § 4.2.2).
We also increase the numbers of the hidden layers and nodes to 3 and 256, respectively,
but these increases do not improve the prediction performances (see Appendix B for the
details).

Karpathy et al. (2014) suggested three types of fusion (early fusion, late fusion and slow
fusion) to classify a video having spatiotemporal features. In that study, with shared CNN
parameters, spatial features from multiple contiguous frames in time were extracted, and
then the extracted features were combined by fusion. Analogous to the video classification,
one may construct an NN architecture by combining extracted features from inputs with
different grid resolutions by fusion. Motivated by this approach, we build a new NN
architecture (denoted as FU architecture; figure 5b) by introducing additional test-filtered
variables and fusing information from two separate single-frame networks. Among the
three types of fusion, we adopt late fusion to consider not only the grid- and test-filtered
input variables but also their difference. The present FU architecture consists of two and
one hidden layers before and after fusion, respectively, and 64 nodes per hidden layer (see
§ 3.3). This fusion process is also motivated by the dynamic procedure of DSM (Germano
et al. 1991; Lilly 1992). In DSM, the SGS stresses at the grid and test filter levels, τij
and Tij, are parameterised with the same functional form, and the resolved turbulent
stress, Lij = Tij − τ̃ij, is calculated explicitly. The resolved turbulent stress represents the
contribution to the Reynolds stress from the length scales between the grid and test filter
widths. Therefore, we expect that fusion in the FU architecture should be able to properly
treat the resolved turbulent stress from the grid- and test-filtered variables, and thus enable
to produce more accurate SGS stresses.

3.3. Training details
In the nFU architecture (no fusion), the output of the mth layer, h(m), is given as

h(1)
i = qi (i = 1, 2, . . . , Nq);

h(2)
j = max

⎡⎣0, γ
(2)
j

⎛⎝ Nq∑
i=1

W(1)(2)
ij h(1)

i + b(2)
j − μ

(2)
j

⎞⎠/
σ

(2)
j + β

(2)
j

⎤⎦
( j = 1, 2, . . . , 128);

h(3)
k = max

⎡⎣0, γ
(3)
k

⎛⎝ 128∑
j=1

W(2)(3)
jk h(2)

j + b(3)
k − μ

(3)
k

⎞⎠/
σ

(3)
k + β

(3)
k

⎤⎦
(k = 1, 2, . . . , 128);

h(4)
l = sl =

128∑
k=1

W(3)(4)
kl h(3)

k + b(4)
l (l = 1, 2, . . . , 6),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)
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where q̄ is the grid-filtered input, Nq is the number of the inputs, W (m)(m+1) is the weight
matrix between mth and (m + 1)th layers, b(m) is the bias of the mth layer, s is the output
and μ(m), σ (m), γ (m) and β(m) are the parameters for a batch normalisation (Ioffe &
Szegedy 2015). A rectified linear unit (ReLu; Nair & Hinton 2010) is used as an activation
function, and mean-squared error (MSE) is used as a loss function defined as

L = 1
2Nxy

1
6

6∑
l=1

Nxy∑
n=1

(
sfDNS

l,n − sl,n

)2
, (3.2)

where sfDNS is the SGS stress tensor obtained from fDNS data, and Nxy(= 40 784; see
§ 2.2) is the size of the batch.

Similarly, in the FU architecture (with fusion), the output of the mth layer, h(m), is as
follows:

h(1)
1i = qi (i = 1, 2, . . . , Nq/2);

h(1)
2i = q̃i (i = 1, 2, . . . , Nq/2);

h(2)
1j = max

⎡⎣0, γ
(2)
1j

⎛⎝Nq/2∑
i=1

W(1)(2)
1ij h(1)

1i + b(2)
1j − μ

(2)
1j

⎞⎠/
σ

(2)
1j + β

(2)
1j

⎤⎦
( j = 1, 2, . . . , 64);

h(2)
2j = max

⎡⎣0, γ
(2)
2j

⎛⎝Nq/2∑
i=1

W(1)(2)
2ij h(1)

2i + b(2)
2j − μ

(2)
2j

⎞⎠/
σ

(2)
2j + β

(2)
2j

⎤⎦
( j = 1, 2, . . . , 64);

h(3)
1k = max

⎡⎣0, γ
(3)
1k

⎛⎝ 64∑
j=1

W(2)(3)
1jk h(2)

1j + b(3)
1k − μ

(3)
1k

⎞⎠/
σ

(3)
1k + β

(3)
1k

⎤⎦
(k = 1, 2, . . . , 64);

h(3)
2k = max

⎡⎣0, γ
(3)
2k

⎛⎝ 64∑
j=1

W(2)(3)
2jk h(2)

2j + b(3)
2k − μ

(3)
2k

⎞⎠/
σ

(3)
2k + β

(3)
2k

⎤⎦
(k = 1, 2, . . . , 64);

h(4)
k = h(3)

1k − h(3)
2k (k = 1, 2, . . . , 64);

h(5)
l = sl =

64∑
k=1

W(4)(5)
kl h(4)

k + b(5)
l (l = 1, 2, . . . , 6),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

where q̄ and ˜̄q are the grid- and test-filtered inputs, respectively, h(4) is from fusion
(Karpathy et al. 2014), and other parameters are the same as those in the nFU architecture.
A stochastic gradient descent with a learning rate of 0.01 is used to optimise the trainable
parameters, and the weight and bias are initialised by using Xavier (Glorot & Bengio
2010) and zero initialisations, respectively. Training and validation data are extracted from
25 and 7 instantaneous fields, respectively (approximately 75 % of instantaneous fields for
training and 25 % for validation). With these databases, the NNs are trained, and training is
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A neural-network-based LES of flow over a circular cylinder

stopped to avoid overfitting if the validation loss increases. Both nFU and FU architectures
are trained by using the Python open-source library, TensorFlow.

While training the NNs, the input and output variables are normalised by the free-stream
velocity U and cylinder diameter d. In turbulent channel flow, Park & Choi (2021)
used the input and output variables in wall units, and showed that the SGS model has
an excellent prediction performance not only at the trained Reynolds number but also
at a higher Reynolds number when the grid resolutions in wall units are the same.
However, for the present flow, the wall unit is not proper for normalisation because it
contains turbulent wake behind the cylinder surface. We also consider the normalisation
of flow variables with the mean and r.m.s. values, such as τ ∗

ij (x, y, z, t) = (τij(x, y, z, t) −
τmean

ij (x, y))/τ rms
ij (x, y), to scale the input and output variables with zero mean and unit

variance. Although this normalisation may be good for training the architecture, it requires
a priori knowledge about the mean and r.m.s. values for untrained Reynolds number flow.
Thus, we normalise the input and output variables with U and d.

4. Results

In § 4.1, we perform a priori tests at Red = 3900 and 5000 with the nFU and FU
architectures that are trained with the fDNS data at Red = 3900. The SGS shear stress,
SGS dissipation and backward SGS dissipation obtained by the trained architectures are
compared with those of fDNS and DSM. In § 4.2.1, a posteriori tests (i.e. actual LESs)
are conducted at Red = 3900 with the same grid resolution as that of the trained fDNS
data. These LES results are compared with those of fDNS and from LESs with DSM and
without SGS model, respectively. In § 4.2.2, we perform LESs at Red = 3900 with grid
resolutions different from that of the trained fDNS data, and discuss the results. Finally,
in § 4.2.3, LESs are carried out at Red = 5000 and 10 000, and their results are compared
with those of fDNS and previous experiment.

4.1. A priori tests
A priori tests at Red = 3900 and 5000 are conducted with the nFU and FU architectures
trained at Red = 3900. We do not conduct a priori test for Red = 10 000, because the
fDNS data at this Reynolds number are not available at hand. Figure 6 shows the profiles
of the mean SGS shear stress 〈τxy〉, mean SGS dissipation 〈εSGS〉 and mean backward SGS
dissipation 〈ε−

SGS〉 (backscatter) at x/d = 1.06, 1.54 and 2.02 for Red = 3900 and 5000,
respectively, where εSGS = −τijS̄ij and 〈ε−

SGS〉 = 1
2 〈εSGS − |εSGS|〉. Also shown in figure 6

are those of fDNS and from DSM.
At x/d = 1.06, G-SR and G-VG, and T-SR-FU and T-VG-FU, respectively, show similar

predictions of 〈τxy〉 and 〈εSGS〉. However, the SGS shear stresses from T-SR-nFU and
T-VG-nFU have negative and positive peaks in the lower and upper shear layer regions
for Red = 3900, respectively, which is opposite to that of fDNS data. A similar behaviour
is observed for the SGS dissipation. The backscatter profiles (〈ε−

SGS〉) from G-SR, G-VG,
T-SR-nFU and T-VG-nFU contain high peaks in the upper and lower shear layer regions
unlike that of fDNS data, but those from T-SR-FU and T-VG-FU are underpredicted but
similar to that of fDNS. On the other hand, at x/d = 1.54 and 2.02, G-SR, T-SR-nFU
and T-SR-FU (input of S̄ij), and G-VG, T-VG-nFU and T-VG-FU (input of ᾱij) show
similar performances, respectively, regardless of using fusion. The predictions from all the
architectures are better than that from DSM (note that the backscatter from DSM is zero).
The architectures with the input of ᾱij predict these statistics better than those with the
input of S̄ij. However, as is well known from the studies of the traditional and NN-based
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Figure 6. Statistics of the SGS variables at three streamwise locations in the wake from a priori tests
(Red = 3900 (left) and 5000 (right)): (a) mean SGS shear stress 〈τxy〉; (b) mean SGS dissipation 〈εSGS〉;
(c) mean backscatter 〈ε−

SGS〉. •, fDNS; —— (blue), G-SR; ---- (blue), G-VG; —— (green), T-SR-nFU; ----
(green), T-VG-nFU; —— (red), T-SR-FU; ---- (red), T-VG-FU; +, DSM.
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SGS modelling (Park et al. 2006; Gamahara & Hattori 2017; Beck et al. 2019; Park &
Choi 2021), a better prediction in a priori test does not guarantee a better performance in
a posteriori test (i.e. actual LES).

As discussed in Duraisamy (2021), one of the reasons for this inconsistency between a
priori and a posteriori tests is that errors are accumulated over time and, thus, resolved
scales are corrupted. Hence, we take another a priori test to assess the robustness of
the NN-based SGS models. The robustness is one of the indices that can represent the
sensitivity of the NNs, defined as the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions (IEEE
1990). Thus, we add noise to the present inputs (S̄ij and ˜̄Sij) and observe how outputs
(τij) are changed for the present NN-based SGS models. Let us define σ̄ij and ˜̄σij as

the standard deviations of the inputs (S̄ij and ˜̄Sij) in the training databases, respectively.
Then, the random inputs are added as follows (Ferri, Hernández-Orallo & Modroiu 2009;
Fabra-Boluda et al. 2022):

S̄′
ij = S̄ij + N(0, σ̄ 2

ij ),

˜̄S′
ij = ˜̄Sij + N(0, ˜̄σ 2

ij ),

⎫⎬⎭ (4.1)

where N(0, σ 2) is the normal distribution with zero mean and standard deviation of σ .
We consider G-SR, T-SR-nFU and T-SR-FU for assessing their robustness, and results
are shown in figure 7. The changes in the normal and shear SGS stresses (τxx, τyy and
τxy) are bigger for G-SR and T-SR-nFU than those for T-SR-FU, whereas the changes in
τzz are relatively insensitive to the models except the shear layer region at x/d = 1.06 for
T-SR-nFU. This result indicates that T-SR-FU is the most robust among these models.
Therefore, we expect better performance from a posteriori test with T-SR-FU (see the
following).

4.2. A posteriori tests
A posteriori tests (actual LESs) are conducted for flow over a circular cylinder at
Red = 3900, 5000 and 10 000 with the NN-based SGS models trained at Red = 3900.
The computational domain size is fixed to be 30d × 50d × 3.14d for all cases. Table 3
summarises the computational parameters for LESs and flow parameters obtained from
LESs with various SGS models, together with those of DNS, DSM and no SGS model.
Note that, in LES with DSM, the model coefficient of the eddy viscosity is obtained by
averaging over z direction (Germano et al. 1991; Lilly 1992; Mittal & Moin 1997; Breuer
1998; Kravchenko & Moin 2000; Mani et al. 2009). The grid resolution for the cases
of LES3900 is the same as that of fDNS used in training SGS models, and those of
LES3900c and LES3900f are coarser and finer than that of LES3900, respectively. In
cases of LES5000 and LES10000, the grid resolutions are finer than that of LES3900. For
Red = 5000, the numbers of grid points used for DNS and fDNS are 2049 × 1001 × 128
and 545 × 301 × 64, respectively, and the grid resolution for the cases of LES5000 is
the same as that of fDNS. More on the grid-resolution study for a posteriori tests at
Red = 3900, 5000 and 10 000 is given in Appendix C.

4.2.1. LES with the grid resolution same as that of training data (Red = 3900)
As listed in table 3, for LES3900, the statistics from G-SR and G-VG and T-SR-FU and
T-VG-FU are in good agreements with those of DNS, whereas T-SR-nFU and T-VG-nFU
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Figure 7. Robustness of the NN-based SGS models under the inputs without and with noise (equation 4.1)
(Red = 3900): (a) 〈τxx〉; (b) 〈τxy〉; (c) 〈τyy〉; (d) 〈τzz〉. —— (blue), G-SR without noise; ---- (blue), G-SR with
noise; —— (green), T-SR-nFU without noise; ---- (green), T-SR-nFU with noise; —— (red), T-SR-FU without
noise; ---- (red), T-SR-FU with noise.

do not predict these statistics very well. In particular, G-SR, G-VG, T-SR-FU and
T-VG-FU predict the recirculation length and base pressure coefficient more accurately
than DSM does. The profiles of the mean streamwise velocity and r.m.s. streamwise
velocity fluctuations at three streamwise locations in the wake from LES3900 are shown
in figure 8, together with those of fDNS, DSM and no SGS model. As shown, the results
from G-SR, G-VG, T-SR-FU and T-VG-FU are in excellent agreements with those of
fDNS and are better than those of DSM, whereas T-SR-nFU and T-VG-nFU show poor
predictions (T-SR-nFU is even worse than no SGS model). Figure 9 shows the contours
of the instantaneous vorticity magnitude at a spanwise location from the present SGS
models, fDNS, DSM and no SGS model, respectively. At Red = 3900, the upper and lower
shear layers are elongated downstream and very few vortical structures exist very near the
base surface (see the case of fDNS in this figure). However, the contours from no SGS
model are significantly distorted in the shear layer and near-wake contains full of small
scales because of lack of turbulent dissipation. The cases of T-SR-nFU and T-VG-nFU
show somewhat similar (but with lower vorticity magnitudes) behaviours to that of no
SGS model. That is, the shear layer transition starts earlier by weak SGS dissipation
that was observed in a priori test (figure 6). Therefore, when the grid resolution of a
posteriori test is the same as that of training data, the grid- and test-filtered inputs with

984 A6-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.154


A neural-network-based LES of flow over a circular cylinder

Red Cases (Nx, Ny, Nz) SGS model Lr/d 〈Cpb 〉 Umin/U 〈CD〉
3900 DNS (1025, 501, 128) 1.56 −0.87 −0.31 1.00

LES3900 (449, 271, 64) G-SR 1.51 −0.90 −0.27 0.94
G-VG 1.56 −0.88 −0.34 0.96

T-SR-nFU 0.79 −1.24 −0.21 1.17
T-VG-nFU 1.28 −0.96 −0.31 1.00
T-SR-FU 1.59 −0.88 −0.29 0.94
T-VG-FU 1.56 −0.86 −0.31 0.94

DSM 1.32 −0.94 −0.31 1.04
no SGS 1.25 −0.99 −0.23 1.06

LES3900c (353, 213, 64) G-SR 1.16 −1.03 −0.27 1.04
G-VG 1.07 −1.07 −0.29 1.09

T-SR-FU 1.55 −0.91 −0.32 0.99
T-VG-FU 1.49 −0.90 −0.33 0.97

DSM 0.80 −1.23 −0.18 1.23
no SGS 0.74 −1.29 −0.20 1.26

LES3900f (545, 301, 64) G-SR 1.22 −0.99 −0.23 0.99
G-VG 1.39 −0.92 −0.30 0.97

T-SR-FU 1.62 −0.86 −0.34 0.92
T-VG-FU 1.57 −0.85 −0.33 0.92

DSM 1.45 −0.89 −0.32 1.00
no SGS 1.24 −0.96 −0.31 1.04

5000 DNS (2049, 1001, 128) 1.39 −0.91 −0.30 1.01
LES5000 (545, 301, 64) T-SR-FU 1.45 −0.90 −0.31 0.93

T-VG-FU 1.47 −0.88 −0.31 0.93
DSM 1.35 −0.92 −0.31 0.99

no SGS 1.16 −0.99 −0.32 1.04

10 000 experimenta 0.82 −1.13 −0.25 1.14
LES10000 (1025, 649, 64) T-SR-FU 0.85 −1.17 −0.27 1.10

T-VG-FU 0.70 −1.29 −0.25 1.16
DSM 0.62 −1.36 −0.21 1.25

no SGS 0.51 −1.47 −0.18 1.31

Table 3. Computational parameters for LESs and simulation results. Here, Lr is the mean recirculation length
measured from the base point of the cylinder, 〈Cpb 〉 is the mean base pressure coefficient, Umin is the maximum
mean negative velocity along the centreline and 〈CD〉 is the mean drag coefficient.

aDong et al. (2006).

fusion as well as the grid-filtered input alone successfully predict the statistics, while
the grid- and test-filtered inputs without fusion do not accurately predict the turbulence
statistics. Note that this result is consistent with the a priori result of τxy near the shear
layer from T-SR(VG)-nFU. Hence, the grid-filtered input alone is sufficient to produce
successful predictions when the trained NN is applied to a a posteriori test using the
same grids and, thus, additional test-filtered input to the same NN (such as T-SR-nFU
and T-VG-nFU) degrades the prediction performance through lower correlations among
nodes. On the other hand, when the test-filtered input is provided to a separate NN from
that of the grid-filtered input, the combined NNs (such as T-SR-FU and T-VG-FU) avoid
this problem and perform quite well.

Note in figure 9 that spurious oscillations appear near the front surface due to
the dispersive nature of second-order central difference scheme (CD2). To avoid
these oscillations, one should provide much more grids in this laminar accelerating
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T-VG-nFU; —— (red), T-SR-FU; ---- (red), T-VG-FU; +, DSM; ◦, no SGS model.

x/d

y/
d

–1 0 1 2 3 4 5
–2

–1

0

1

2

y/
d

–1 0 1 2 3 4 5
–2

–1

0

1

2

y/
d

–1 0

fDNS G-SR G-VG

no SGS T-SR-nFU T-VG-nFU

DSM T-SR-FU T-VG-FU

1 2 3 4 5
–2

–1

0

1

2

x/d
–1 0 1 2 3 4 5

–2

–1

0

1

2

–1 0 1 2 3 4 5
–2

–1

0

1

2

–1 0 1 2 3 4 5
–2

–1

0

1

2

x/d
–1 0 1 2 3 4 5

–2

–1

0

1

2

–1 0 1 2 3 4 5
–2

–1

0

1

2

–1 0 1 2 3 4 5
–2

–1

0

1

2
(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 9. Contours of the instantaneous vorticity magnitude in the near-wake behind the cylinder (Red =
3900). The contour levels are from |ω|d/U = 0 to 30 by increments of 3. An inset for the case of T-SR-FU
is the result of applying a hybrid scheme (QUICK + CD2; Yun et al. 2006) to the convection terms of the
Navier–Stokes equations.
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flow region. To see if these oscillations propagate downstream, a hybrid scheme (QUICK
scheme at a laminar accelerating flow region (x/d < −0.25) and CD2 elsewhere; Yun,
Kim & Choi 2006) is applied to the convection terms for the case of T-SR-FU, and its
result is given as an inset in the result of T-SR-FU in figure 9. As shown, the flow structures
from CD2 alone and from this hybrid scheme are very similar to each other except for
those oscillations, indicating that they do not propagate downstream at this relatively low
Reynolds number. However, for a much higher Reynolds number, a hybrid scheme may
have to be used to avoid the propagation of these spurious oscillations into downstream.

4.2.2. LES with a grid resolution different from that of training data (Red = 3900)
In this section, we provide results from LES with a grid resolution different from that
of training data. Due to the poor performances of T-SR-nFU and T-VG-nFU, other
four NN-based SGS models are investigated. Two different grid resolutions (LES3900c
and LES3900f) are considered as listed in table 3. LES3900c and LES3900f have
coarser and finer grid resolutions on (x, y) planes, respectively, and have the same grid
resolution in z direction as that of LES3900 (more on the grid-resolution study is given
in Appendix C, and computational costs for estimating the SGS stresses from G-SR
and T-SR-FU are compared with that from DSM in Appendix E). For LES3900c, the
prediction performances of G-SR and G-VG are significantly degraded especially for
the recirculation length and base pressure coefficient. On the other hand, T-SR-FU and
T-VG-FU predict these variables quite reasonably, maintaining their prediction capabilities
even with coarser grid resolution used. Note that DSM with this coarse resolution
predicts much smaller recirculation length, lower base pressure coefficient and higher drag
coefficient. For LES3900f, the predictions with DSM are in excellent agreements with
those of DNS, but those with G-SR and G-VG become closer to those of DNS but still not
better than those with the same grid resolution as that of training data. It is noteworthy that
the prediction performances of T-SR-FU and T-VG-FU do not become worse even when
the resolution used is different from that of training data.

Figure 10 shows the profiles of the mean streamwise velocity and r.m.s. streamwise
velocity fluctuations from four NN-based SGS models with coarser and finer grid
resolutions (LES3900c and LES3900f, respectively) than that of training data, together
with those of fDNS, DSM and no SGS model. For LES3900c, the use of fusion with
grid- and test-filtered input variables (T-SR-FU and T-VG-FU) predicts 〈ū〉 and ūrms
quite accurately, whereas the grid-filtered input variables alone (G-SR and G-VG) do not
accurately predict them (note, however, that the predictions are still better than those of
DSM with this coarser grid resolution). When the grid resolution is finer (LES3900f)
than that of training data, both T-SR-FU and T-VG-FU and DSM accurately predict
these flow variables, whereas the predictions of G-SR and G-VG are not good. From the
results given in table 3 and figure 10, it is clear that the grid- and test-filtered inputs are
better than the grid-filtered input alone and fusion connecting these two different filtered
inputs significantly increases the prediction performance, when the grid resolution used is
different from that of training data. The present results clearly indicate that, by constructing
multiple filtered datasets with different filter sizes and using them to train an NN with
fusion, one can expect a successful NN-based LES, even if the grid resolution is different
from the resolutions used to construct the NN. A similar conclusion was also made in Park
& Choi (2021). Note also that this result is consistent with that from the robustness of
G-SR and T-SR-FU in § 4.1.

Sirignano et al. (2020) evaluated the discretisation errors in LES from finite-difference
schemes by comparing finite-differenced spatial derivatives of the filtered velocity on the
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ū r
m

s/
U

(a) (b)

(c) (d)

Figure 10. Flow statistics from LES3900c and LES3900f (coarser and finer grid resolutions than that of
training data, respectively; a posteriori test): (a) mean streamwise velocity (LES3900c); (b) r.m.s. streamwise
velocity fluctuations (LES3900c); (c) mean streamwise velocity (LES3900f); (d) r.m.s. streamwise velocity
fluctuations (LES3900f). •, fDNS; —— (blue), G-SR; ---- (blue), G-VG; —— (red), T-SR-FU; ---- (red),
T-VG-FU; +, DSM; ◦, no SGS model.

DNS and LES grids, respectively. We follow this approach for estimating the magnitudes
of discretisation errors in LES from the second-order finite difference scheme used in the
present study, and provide the results in table 4. In this table, 〈|δᾱij|〉/〈|ᾱij|DNS〉 is the
relative magnitude of discretisation error of calculating ᾱij in LES, and δᾱij is obtained as

δᾱij = ᾱij|LES − ᾱij|DNS, (4.2)

where

ᾱij|LES =
ūi

(
xj + 1

2
�xj|LES

)
− ūi

(
xj − 1

2
�xj|LES

)
�xj|LES

,

ᾱij|DNS =
ūi

(
xj + 1

2
�xj|DNS

)
− ūi

(
xj − 1

2
�xj|DNS

)
�xj|DNS

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.3)
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Cases (Nx, Ny, Nz)

〈|δᾱij|
〉〈|ᾱij|DNS
〉

LES3900ccc (225, 137, 64) 0.5690
LES3900cc (321, 189, 64) 0.5455
LES3900c (353, 213, 64) 0.5320
LES3900 (449, 271, 64) 0.5136
LES3900f (545, 301, 64) 0.4986

Table 4. Averaged relative magnitudes of finite-differencing errors, evaluated for filter sizes of
Δ(LES)/Δ(DNS) = 2 (for Red = 3900, the size of LES grids in each direction is about two times that of DNS
grids; see table 3). The information on LES3900cc (Gcc-64) and LES390ccc (Gccc-64) are given in table 5.

〈·〉 is the average in time and over the training zone shown in figure 4(b), and �xj|LES and
�xj|DNS are the grid spacings in LES and DNS, respectively. Table 4 indicates that, for
all the cases considered, 〈|δᾱij|〉 (difference between ᾱij on the DNS and LES grids) is
about half the average magnitude of the VG evaluated on the DNS grids, indicating that
the finite-difference errors in LES is not so significant, and the NN-based models trained
may not suffer form the finite difference errors (see also Sirignano et al. (2020) for further
discussion).

4.2.3. LES at higher Reynolds numbers (Red = 5000 and 10 000)
In this section, we perform LESs at Red = 5000 and 10 000, which are higher than that
of training data (Red = 3900). The grid resolutions at Red = 5000 and 10 000 are the
same as and finer than that of LES3900f, respectively, as listed in table 3. These Reynolds
numbers are selected as untrained cases, because the flows at these Reynolds numbers are
quite different from the trained Reynolds number flow. In the shear layer transition regime
(1000 < Red < 200 000), the Strouhal number, base pressure coefficient and recirculation
length decrease, and the Reynolds stress increases, as the Reynolds number increases
(Williamson 1996). These trends can be also observed in table 3. In this regime, with
increasing Reynolds number, the onset of shear layer transition occurs earlier, with which
the shear-layer vortices evolve earlier and the alternating Kármán vortices exist closer to
the base of the cylinder (Dong et al. 2006). These flow characteristics can be observed
in figure 11, where the instantaneous vortical structures identified by the iso-surfaces
of λ2 = −50U2/d2 (Jeong & Hussain 1995) are shown together with the contours of
the instantaneous pressure at Red = 3900 and 10 000, respectively. Therefore, it will be
interesting to see how the NN-based SGS models trained at Red = 3900 perform at higher
Reynolds numbers.

Figure 12 shows the results from T-SR-FU and T-VG-FU at Red = 5000 (LES5000),
together with those of fDNS, DSM and no SGS model. The grid resolution of LES5000 is
the same as that of LES3900f. Similar to the results from LES3900f, T-SR-FU, T-VG-FU
and DSM have excellent prediction performances. The predicted flow parameters in table 3
are also in good agreements with those of DNS.

Figure 13 shows the profiles of the mean streamwise velocity and r.m.s. streamwise
velocity fluctuations from LES10000, together with those of an experiment (Dong et al.
2006), DSM and no SGS model. As shown, both T-SR-FU and T-VG-FU accurately predict
those statistics (even slightly better than DSM), even though the flow at Red = 10 000 is
untrained and the transitional phenomena in the separating shear layer is notably altered.
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(a) (b)

p̄/ρU2

0–0.9

Figure 11. Instantaneous vortical structures coloured with the contours of the instantaneous pressure from
T-SR-FU: (a) Red = 3900 (LES3900); (b) Red = 10 000 (LES10000).
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〈ū〉
/U 0

–1

–2

(b)(a)

Figure 12. Flow statistics from LES5000 (a posteriori test): (a) mean streamwise velocity; (b) r.m.s.
streamwise velocity fluctuations. •, fDNS; —— (red), T-SR-FU; ---- (red), T-VG-FU; +, DSM; ◦, no SGS
model.

Moreover, T-SR-FU, which uses the SR as the input variable, shows slightly better
predictions than T-VG-FU at this Reynolds number. The results provided in this subsection
clearly indicate that both the grid- and test-filtered input variables with fusion increase the
prediction capability even for untrained Reynolds number flows.

Lastly, one may suggest combining DNS databases at Re = 3900 and 5000 to widen
input ranges of ᾱij and S̄ij and improve the prediction capability. This approach should
work for higher-Reynolds-number flows. Nevertheless, in the present study, we show that
the present approach with a database at Re = 3900 alone can predict the flows at higher
Reynolds numbers.

5. Conclusions

Recently, many studies have been performed to develop NN-based SGS models for LES.
However, most of them have focused on simple turbulent flows such as isotropic turbulence
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Figure 13. Flow statistics from LES10000 (a posteriori test): (a) mean streamwise velocity; (b) r.m.s.
streamwise velocity fluctuations. •, experiment (Dong et al. 2006); —— (red), T-SR-FU; ---- (red), T-VG-FU;
+, DSM; ◦, no SGS model.

and turbulent channel flow, and an application to complex flow is very limited. Since
NN-based SGS models should be eventually applied to any complex flows, it is important
to develop such models and test them for representative complex flows. Therefore, in the
present study, we chose a circular cylinder as a representative complex flow. We believe
that the present study may be one of the first attempts to develop and apply NN-based SGS
models to a complex flow.

In the present study, FCNNs were constructed to develop SGS models that predicted
the SGS stresses for flow over a circular cylinder, and a priori and a posteriori tests were
conducted to estimate their prediction performances. To obtain SGS models, we proposed
a new FCNN architecture that used both grid- and test-filtered variables as inputs and
fusion connecting these two different inputs, and compared its prediction performance
with that of an FCNN architecture that had only the grid-filtered variable as input. As
the input variable, the SR or VG tensor at a single grid point was considered. Hence, we
constructed six different FCNN-based SGS models: G-SR and G-VG (grid-filtered SR and
VG as the input variables, respectively), T-SR-nFU and T-VG-nFU (grid- and test-filtered
SR and VG as the input variables, respectively, without fusion) and T-SR-FU and T-VG-FU
(grid- and test-filtered SR and VG as the input variables, respectively, with fusion).

For training database, fDNS data were obtained by applying the box filter to the DNS
data at Red = 3900. The training data were extracted from 25 instantaneous fDNS fields
during approximately 20 vortex shedding cycles, and the fDNS data from (x, y) planes at
four different spanwise locations were used for the training data. The FCNN architectures
were trained with these training data to generate six SGS models, and a priori and a
posteriori tests were conducted for the comparison of their prediction performances.

In a priori tests, the FCNN-based SGS models had better predictions of the SGS stress,
SGS dissipation and backscatter than the DSM. However, the results of T-SR-nFU and
T-VG-nFU showed the distributions of SGS shear stress and dissipation opposite to those
of fDNS in the shear layer regions near the cylinder, and thus high peaks of backscatter
were observed there. Due to the lack of dissipation in these regions, a posteriori tests
showed early evolution of the shear layer instability and non-physical small-scale vortices
in the near-wake region, resulting in inaccurate predictions of turbulence statistics.
On the other hand, G-SR, G-VG, T-SR-FU and T-VG-FU showed better performances than
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DSM. These four SGS models were applied to LESs with two different grid resolutions
which were coarser and finer than that of the training data. With untrained grid resolutions,
T-SR-FU and T-VG-FU still showed good prediction performances, but G-SR and G-VG
did not, indicating that both the grid- and test-filtered variables with fusion increased the
prediction performance when the grid resolution was different from that of the training
data. Finally, we applied T-SR-FU and T-VG-FU trained at Re = 3900 to LESs at higher
Reynolds numbers of Red = 5000 and 10 000, and also obtained quite accurate turbulence
statistics.

Since the present idea of combining the grid- and test-filtered input variables with
fusion for constructing an FCNN architecture has not been applied to any simple flow,
we apply G-SR and T-SR-FU to LES of turbulent channel flow at Reτ = 178. As shown
in Appendix D, adding the test-filtered variable as an additional input together with fusion
increases the prediction accuracy for turbulent channel flow. Therefore, the present FCNN
architecture with the grid- and test-filtered input variables and fusion may be applicable to
other complex flows.

Lastly, the present NN-based SGS models cannot overcome a well-known limitation of
traditional SGS models: inconsistency between a priori and a posteriori tests. To overcome
this inconsistency, Sirignano et al. (2020) developed an NN-based SGS model by solving
adjoint partial differential equations for isotropic turbulence to match the mean filtered
velocity of LES with fDNS data. In addition, Kim et al. (2022) developed SGS models
based on deep RL for turbulent channel flow to maximise the statistical accuracy such
as the mean viscous and Reynolds stresses. In contrast to the isotropic turbulence and
turbulent channel flow, it should be very difficult to determine a target to match for flow
over/inside a complex geometry because it is a priori unknown for those flows. On the
other hand, the present NN-based SGS model may have scalability to general flows by
accumulating more databases from various turbulent flows and combining those databases
into one NN architecture.
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ICT (number 2022R1A2B5B02001586). The computing resources are provided by the KISTI Super Computing
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Appendix A. Effects of the size of training data in a priori and a posteriori tests

At present, the data from 25 instantaneous fDNS fields (Nt = 25) during approximately
20 vortex shedding cycles and (x, y) planes at four spanwise locations (Ns = 4) per
instantaneous field are taken as the training data. Figures 14(a) and 14(b) show the
variations of the mean SGS shear stress with the changes in Nt(= 13, 25 and 50) and
Ns(= 2, 4 and 8), respectively. As shown in this figure, the effect of varying Nt and Ns is
very small, indicating that Nt = 25 and Ns = 4 are sufficient for training purpose.

In addition, in figure 4(b), the domain size for extracting training data is −1 ≤
x/d ≤ 6 and −1.5 ≤ y/d ≤ 1.5. We change this domain size to smaller and larger ones,
respectively, and their results are given in figure 15. As shown, the present domain size is
sufficient to accurately predict the mean velocity and r.m.s. velocity fluctuations, but the
smaller one is too small to carry all the important velocity field information.
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Figure 14. Effect of the number of training data on the mean SGS shear stress (a priori test; Red = 3900):
(a) Nt = 25 (——, black), Nt = 13 (——, blue) and Nt = 50 (——, red) with Ns = 4; (b) Ns = 4 (——,
black), Ns = 2 (——, blue) and Ns = 8 (——, red) with Nt = 25. •, fDNS.
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Figure 15. Effect of the domain size of extracting training data on the mean streamwise velocity and r.m.s.
streamwise velocity fluctuations (a posteriori test; Red = 3900): (a) mean streamwise velocity; (b) r.m.s.
streamwise velocity fluctuations. •, fDNS; —— (black), present domain (−1 ≤ x/d ≤ 6, −1.5 ≤ y/d ≤ 1.5);
—— (blue), smaller domain (−1 ≤ x/d ≤ 4, −1 ≤ y/d ≤ 1); —— (red), larger domain (−1 ≤ x/d ≤ 8, −2 ≤
y/d ≤ 2).

Appendix B. Effects of the numbers of the hidden layers and nodes on the flow
statistics from a posteriori test

Figure 16 shows the effects of the numbers of the hidden layers (Nhl) and nodes (Nnd) in
G-SR on the mean streamwise velocity and r.m.s. streamwise velocity fluctuations from a
posteriori test. We test for the cases of Nhl = 1 to 3 and Nnd = 64 to 256, respectively. As
shown in this figure, one hidden layer (Nhl = 1) or 64 nodes (Nnd = 64) are not enough
to accurately predict the mean and r.m.s. magnitudes of the streamwise velocity, and at
least two hidden layers (Nhl = 2) and 128 nodes (Nnd = 128) are required for successful
predictions. Larger Nhl and Nnd do not improve the predictions, as shown in this figure. We
also tested the effects of Nhl and Nnd in T-SR-FU. Again, two hidden layers before fusion

984 A6-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.154


M. Kim, J. Park and H. Choi

1

0.6

0

–0.6

–1.2
–2 –1 0 1 2

y/d y/d

x/d = 2.02

x/d = 2.02

x/d = 1.54

x/d = 1.54

x/d = 1.06

x/d = 1.06

–2 –1 0 1 2
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Figure 16. Effects of the numbers of the hidden layers (Nhl) and nodes (Nnd) in G-SR on the flow statistics
(a posteriori test; Red = 3900): (a) mean streamwise velocity; (b) r.m.s. streamwise velocity fluctuations. •,
fDNS; —— (black), (Nhl, Nnd) = (2, 128); —— (red), (Nhl, Nnd) = (1, 128); ---- (red), (Nhl, Nnd) = (3, 128);
—— (blue), (Nhl, Nnd) = (2, 64); ---- (blue), (Nhl, Nnd) = (2, 256).

and 64 nodes per hidden layer were sufficient for an accurate prediction (not shown in this
paper).

Appendix C. Grid-resolution study for a posteriori tests at Red = 3900, 5000 and
10 000

In this appendix, we conduct a grid-resolution study for a posteriori test using T-SR-FU at
Red = 3900. The numbers of grid points tested are given in table 5. The case of G-64 uses
the grid distribution used for training T-SR-FU (same as that of LES3900), and the cases
of G-48 and G-80 use 48 and 80 grid points in z direction, respectively, while maintaining
the same grids in x and y directions. The grids of Gf-64 and Gc-64 are the same as those
of LES3900f and LES3900c, respectively, and the cases of Gf-80 and Gc-48 use 80 and
48 grid points in z direction, respectively, and the same grid points in x and y directions as
those of Gf-64 and Gc-64. Lastly, the cases of Gcc-64 and Gccc-64 use less grid points in
x and y directions than those of Gc-64.

The results from nine different grid distributions for Red = 3900 are shown in figure 17.
As shown in this figure, the results from G-48, G-64 and G-80 using T-SR-FU (presented
in y/d ≤ 0) are quite similar among themselves and agree well with those of fDNS,
indicating that Nz = 64 is sufficient to produce grid-independent results. Note, however,
that the results from DSM (G-64) show non-negligible deviations from those of fDNS.
With coarser resolution in x and y directions denoted as Gc-64 (presented in y/d ≥ 0),
DSM (Gc-64) provides quite different solutions from those of fDNS (Gc-64), but the
solutions of T-SR-FU are quite accurate. Additional decrease in the spanwise resolution
does not noticeably degrade the solution from T-SR-FU (Gc-48). With finer resolutions
in x and y directions (Gf-64) and in z direction (Gf-80), the solutions of T-SR-FU and
DSM agree well with those of fDNS (Gf-64). LESs using T-SR-FU with even coarser
grids (Gcc-64 and Gccc-64) diverge (LESs with DSM and no SGS also diverge with
these grids), but provide solutions when the SGS stresses are clipped to be zero wherever
backscatter occurs, as done in previous studies (Zhou et al. 2019; Park & Choi 2021).
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Cases (Nx, Ny, Nz)

G-64 (trained) (449, 271, 64)
G-48 (449, 271, 48)
G-80 (449, 271, 80)

Gf-64 (545, 301, 64)
Gf-80 (545, 301, 80)

Gc-64 (353, 213, 64)
Gc-48 (353, 213, 48)
Gcc-64 (321, 189, 64)
Gccc-64 (225, 137, 64)

Table 5. Numbers of grid points used for a posteriori test at Red = 3900. Note that the grid distributions
of G-64, Gf-64 and Gc-64 in this table are the same as those of LES3900, LES3900f and LES3900c in
table 3, respectively.
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Figure 17. Turbulence statistics in the wake from different grid distributions (Red = 3900): (a) mean
streamwise velocity; (b) r.m.s. streamwise velocity fluctuations. Here, the results for (G-**) are plotted at
y/d ≤ 0, and those for (Gc-**) and (Gf-**) are plotted at y/d ≥ 0. • (black), fDNS (G-64); • (blue), fDNS
(Gc-64); • (red), fDNS (Gf-64); —— (black), T-SR-FU (G-64); ---- (black), T-SR-FU (G-48); - · - · - · (black),
T-SR-FU (G-80); —— (blue), T-SR-FU (Gc-64); —— (green), T-SR-FU (Gcc-64, with ad hoc clipping); ——
(cyan), T-SR-FU (Gccc-64, with ad hoc clipping); ---- (blue), T-SR-FU (Gc-48); —— (red), T-SR-FU (Gf-64);
---- (red), T-SR-FU (Gf-80); + (black), DSM (G-64); + (blue), DSM (Gc-64); + (red), DSM (Gf-64). LESs
with Gcc-64 and Gccc-64 without ad hoc clipping diverged.

The solution from Gcc-64 with ad hoc clipping is quite similar to that from Gc-64, whereas
that from Gccc-64 is not good.

In addition, coarser grid resolutions than LES5000 and LES10000 (table 3) are tested
at Red = 5000 and 10 000, respectively. The grid distribution of LES5000 is the same as
that of Gf-64, and we further reduce the resolution to G-64 and Gc-64 for Red = 5000.
For Red = 10 000, we start from LES10000 and reduce the resolution to Gf-64 and G-64,
respectively. The results with these coarser grid resolutions are shown in figure 18. As
shown, the predictions from G-64 and Gc-64 for Red = 5000 and from Gf-64 and G-64
for Red = 10 000 are not as good as those from LES5000 and LES10000, respectively,
indicating that the present grid distributions of LES5000 and LES10000 are marginal in
accurately predicting the second-order statistics at these Reynolds numbers.
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Figure 18. Turbulence statistics in the wake from coarser grids (Red = 5000 and 10000): (a) mean streamwise
velocity; (b) r.m.s. streamwise velocity fluctuations. Here, the results for Red = 5000 and 10000 are plotted in
y/d ≤ 0 and y/d ≥ 0, respectively. •, fDNS (LES5000 (= Gf-64) and LES10000); —— (black), T-SR-FU
(LES5000 (= Gf-64) and LES10000); —— (blue), T-SR-FU (G-64 for Red = 5000 and Gf-64 for Red =
10000); —— (red), T-SR-FU (Gc-64 for Red = 5000 and G-64 for Red = 10000); + (black), DSM (LES5000
(= Gf-64) and LES10000). + (blue), DSM (G-64 for Red = 5000 and Gf-64 for Red = 10000); + (red), DSM
(Gc-64 for Red = 5000 and G-64 for Red = 10000).

Appendix D. LES of turbulent channel flow with grid- and test-filtered inputs and
fusion

In this appendix, we train an FCNN for turbulent channel flow with the grid- and
test-filtered SR tensors in wall units as the input and fusion. The Reynolds number
considered is Reτ = uτ δ/ν = 178, where uτ is the wall-shear velocity and δ is the channel
half height. The domain size and number of grid points for DNS are 2πδ × 2δ × πδ

and 96 × 97 × 96 in the streamwise (x), wall-normal ( y) and spanwise (z) directions,
respectively. The training data are obtained for the grids of 16 × 97 × 16 by filtering the
DNS data. Numerical details are the same as those in Park & Choi (2021).

LESs are performed at Reτ = 178 for two different SGS models (G-SR and T-SR-FU)
with the grid resolutions same (16 × 49 × 16; LES178) as and coarser (12 × 49 × 12;
LES178c) than that of training data (16 × 49 × 16). Park & Choi (2021) showed that an
FCNN-based SGS model (i.e. G-SR) does not perform well when the grid resolution in
wall units is different from that of training data, and this limitation is overcome by training
an FCNN with the datasets having two filters whose sizes are bigger and smaller than the
grid size in LES. This strategy is quite similar to the idea of T-SR-FU suggested in the
present study, in that T-SR-FU is trained with a test-filtered flow variable as well as the
grid-filtered one. Hence, we compare the result from LES (LES178c) using G-SR trained
with two separate fDNS datasets of 16 × 49 × 16 and 8 × 49 × 8 with that of T-SR-FU.

Figure 19 shows the mean velocity and Reynolds stresses of turbulent channel flow at
Reτ = 178 from two different SGS models (G-SR and T-SR-FU) with the grid resolutions
same (16 × 49 × 16) as and coarser (12 × 49 × 12) than that of training data (16 × 49 ×
16). With the same grid resolution (LES178), the predictions from T-SR-FU and G-SR are
very similar to each other and agree well with fDNS data. With a coarser grid resolution
(LES178c), the prediction of G-SR is not accurate and is similar to those of DSM. On the
other hand, T-SR-FU predicts better than G-SR and DSM, and the predicted flow variables
are very similar to those of G-SR trained with two different fDNS datasets suggested by
Park & Choi (2021). Therefore, the FCNN architecture with the grid- and test-filtered
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Figure 19. LESs of turbulent channel flow at Reτ = 178 with grids of 16 × 49 × 16 (LES178, left) and 12 ×
49 × 12 (LES178c, right): (a) mean streamwise velocity; (b) r.m.s. velocity fluctuations; (c) Reynolds shear
stress. The training data (fDNS) have the grids of 16 × 49 × 16 from DNS with 96 × 97 × 96. •, fDNS; ——
(blue), G-SR; —— (red), T-SR-FU; +, DSM; ◦, no SGS model. In the right column of this figure, the results
from LES (12 × 49 × 12) using G-SR trained with two datasets of fDNS data (16 × 49 × 16 and 8 × 49 × 8,
respectively) are given with � (Park & Choi 2021). Here, 〈·〉 denotes the averaging over the streamwise and
spanwise directions and in time.

inputs and fusion performs well for turbulent channel flow, as it worked well for flow over
a circular cylinder.

Appendix E. Computational cost

The amounts of CPU time required for estimating the SGS stresses and advancing one
computational timestep for NNs (G-SR and T-SR-FU) and DSM are given in table 6.
All simulations are performed using 18 CPU cores (Inter(R) Core(TM) i9-9980X CPU @
3.00 GHz), and the amounts of CPU time are obtained by averaging over 10 computational
timesteps. With the same grid resolution (LES3900), the amounts of CPU time required for
obtaining the SGS stresses by G-SR and T-SR-FU are approximately 10 and 6.5 times that
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Model LES3900c LES3900 LES3900f
(number of grid points) (4.81 million) (7.79 million) (10.50 million)

SGS stresses DSM 0.177 0.319 0.455
G-SR 2.099 3.338 4.571

T-SR-FU 1.278 2.087 2.859

One computational DSM 1.077 1.998 2.986
timestep G-SR 2.973 4.953 6.999

T-SR-FU 2.113 3.761 5.416

Table 6. Amounts of CPU time (seconds) required for estimating the SGS stresses and advancing one
computational timestep, respectively.

by DSM, respectively, whereas those required for advancing one computational timestep
by G-SR and T-SR-FU are about 2.5 and 2 times that by DSM, respectively. Therefore,
NN-based SGS models are slower in terms of CPU time than DSM, when the same grid
resolution is taken.

However, as shown in figure 10, the results from LES3900c (coarser resolution)
with T-SR-FU are very similar to those from LES3900f (finer resolution) with DSM,
indicating that one may reduce the number of grid points with T-SR-FU while keeping
the same accuracy (note that the number of grid points of LES3900f is about twice that
of LES3900c). The amount of CPU time for LES3900f with DSM is 2.986 seconds
for advancing one computational timestep, but it is 2.113 seconds for LES3900c with
T-SR-FU. This result suggests that the present NNs may not significantly increase overall
CPU time by providing better accuracy with fewer grid points.
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