SOME EXAMPLES OF SMOOTH AND REGULAR RINGS ${ }^{(1)}$

BY
LESLIE G. ROBERTS
In this note I investigate smoothness and regularity of the ring $A=$ $\mathbb{Z}[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right), a, b, c \in \mathbb{Z}, \mathbb{Z}$ the ring of integers. These results do not seem to be well known, especially those dealing with regularity. At any rate, several of my colleagues knew that $\mathbb{Z}[X, Y] /\left(X^{2}+Y^{2}-1\right)$ was not smooth, but thought that it might be regular. I was surprised by the number of possibilities that can occur, as well as by the fact that A can be regular but not smooth. As expected the prime 2 plays a special role. Smoothness depends on $a, b, c \bmod 2$, and regularity depends on $a, b, c \bmod 4$. Note that A is of Krull dimension 2. I conclude by showing that the same techniques can be applied if there are more than two variables. This discussion is less specific than that in the two variable case.

Let R be a commutative Noetherian ring with unit. Then R is regular at P (or P is a regular prime of R) if R_{P} is a regular local ring (as defined on page 78 of [2]). The ring R is defined to be regular if R is regular at all prime ideals $P \subset R$. The definition of smoothness is that given in 28.D page 200 of [2]. The groundring will be \mathbb{Z} unless stated otherwise, so I will usually write "smooth" instead of "smooth over \mathbb{Z} ". The ring R is smooth at P if the local ring R_{P} is smooth. If R is smooth then R is smooth at all primes. Conversely if R is smooth at all primes then R is smooth, at least under relatively mild finiteness conditions that are satisfied if $R=A$. (Theorem 5.11 of [4]).

Let $J=(2 a X+b Y, b X+2 c Y) A$. By the Jacobian criterion for smoothness A is not smooth at P if and only if $J \subseteq P$. Corollary 8.4 of [4] is a more direct reference for this than [2] Theorem 64.

My motivation for trying to understand smoothness and regularity comes from the study of algebraic K-theory. In [3] Quillen has defined two sets of functors $K_{i}, K_{i}^{\prime}(i \in \mathbb{Z}, i \geq 0)$ from rings to abelian groups. There is a natural transformation $K_{i} \rightarrow K_{i}^{\prime}$. If R is regular the resulting homomorphism $K_{i}(R) \rightarrow$ $K_{i}^{\prime}(R)$ is an isomorphism. There are different computational methods available for K_{i} and for $K_{i}{ }^{\prime}$. If R is regular these methods can be combined, with the result that the groups $K_{i}(R)$ are better understood if R is regular. Because of the Jacobian criterion smoothness is more easily determined than regularity (at

[^0]least, at first glance). Finally let R be an algebra of finite type over the regular ring S. If P is a prime ideal of R and R_{P} is smooth over S then R_{P} is regular. I have not been able to find a published reference for the last fact, but it is Corollary 8.5 of [4].

First we determine when A is smooth. Let $f=a X^{2}+b X Y+c Y^{2}$. By Euler's theorem $X(\partial f / \partial X)+Y(\partial f / \partial Y)=2 f=2$, so $2 \in J$. Let d be the determinant of the 2×2 matrix

$$
D=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right)
$$

Then $d=4 a c-b^{2}$ and $\operatorname{DadjD}=d I_{2}$ so there exist $c_{1}, c_{2}, d_{1}, d_{2} \in \mathbb{Z}$ such that $c_{1}(\partial f / \partial X)+c_{2}(\partial f / \partial Y)=d X, d_{1}(\partial f / \partial X)+d_{2}(\partial f / \partial Y)=d Y$. But $(X, Y) A=A$ so $d \in$ J. Thus if d is odd then $J=A$. Clearly d is odd if and only if b is odd. We saw above that $2 \in J$. If b is even then $\partial f / \partial X \in 2 A$ and $\partial f / \partial Y \in 2 A$, so $J=2 A$. If all of a, b, c are even then 2 is a unit in A, so $J=A$. If one of a or c is odd and b even then $A / 2 A=\mathbb{Z} / 2 \mathbb{Z}[X, Y] /\left(\bar{a} X^{2}+\bar{c} Y^{2}-1\right) \neq 0$ so $J \neq A$. This proves

Theorem 1. Let $A=\mathbb{Z}[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$. Then A is smooth over \mathbb{Z} if and only if b is odd or a, b, c are all even.

In order to discuss the regularity of A we need the following fact about regular local rings. Let R be a regular local ring and I an ideal of R. Then $S=R / I$ is a regular local ring if and only if I can be generated by a subset of a regular system of parameters ([5] Theorem 26, p. 303). Let P be a prime ideal of A, and Q the inverse image of P in $\mathbb{Z}[X, Y]$. Then $A_{P}=$ $\mathbb{Z}[X, Y]_{Q} /\left(a X^{2}+b X Y+c Y^{2}-1\right)$. Clearly $a X^{2}+b X Y+c Y^{2}-1 \in Q$ so it follows from the above that A_{P} is regular if and only if $a X^{2}+b X Y+c Y^{2}-$ $1 \notin Q^{2} \mathbb{Z}[X, Y]_{\mathrm{Q}}$.

Suppose P is a non-regular prime ideal of A. By Theorem 1 (and the fact that smooth implies regular) we have $2 \in P$ and b even (write $b=2 B$). Without loss of generality we can assume a odd. There are two possibilities, c odd or c even. First we consider the case c odd. Then $A / 2 A=$ $\mathbb{Z} / 2 \mathbb{Z}[X, Y] /\left(X^{2}+Y^{2}-1\right)=\mathbb{Z} / 2 \mathbb{Z}[X, Y] /(X+Y-1)^{2}$. Set $Z=X+Y-1$, so that $A=\mathbb{Z}[Y, Z] /\left(a Z^{2}+(a+c-2 B) Y^{2}+2(B-a) Y+2 a Z+2(B-a) Y Z+(a-1)\right)$.
We have $2 \in P$ and $Z \in P$ so the terms $a Z^{2}, 2 a Z$, and $2(B-a) Y Z$ lie in Q^{2}. Now let P be any prime $P \subset A$ such that $2 \in P$. Then P is not regular if and only if $(a+c-2 B) Y^{2}+2(B-a) Y+(a-1) \in Q^{2} \mathbb{Z}[X, Y]_{\mathrm{Q}}$. Note that $a+c$ is even and $a-1$ is even, so that $(a+c-2 B) Y^{2}+2(B-a) Y+(a-1)=2 F$, where $F=[(a+c) 2-B] Y^{2}+(B-a) Y+(a-1) / 2 \in \mathbb{Z}[Y]$. Now I claim that $2 \notin Q^{2} \mathbb{Z}[X, Y]_{\mathrm{Q}}$. For $\left.\mathbb{Z}[Y, Z] / 2\right)=\mathbb{Z} / 2 \mathbb{Z}[Y, Z]$ is regular. Again by [5] p. 303 we have that 2 is part of a regular system of parameters of $Q \mathbb{Z}[X, Y]_{Q}$, and hence does not lie in $Q^{2} \mathbb{Z}[X, Y]_{\mathrm{Q}}$. Thus $2 F \in Q^{2} \not \mathbb{Z}[X, Y]_{Q}$ if and only if $F \in$ $Q \mathbb{Z}[X, Y]_{Q}$ if and only if $F \in Q$. Thus the non-regular prime ideals of A are
those which contain $(2, Z, F)$, i.e. the closed subscheme $\operatorname{Spec} A /(2, Z, F)=$ Spec $\mathbb{Z} / 2 \mathbb{Z}[Y] /(F) \subset \operatorname{Spec} A$.

Now set $c_{1}=(a+c) / 2-B, \quad c_{2}=B-a, \quad c_{3}=(a-1) / 2$, so that $F=$ $c_{1} Y^{2}+c_{2} Y+c_{3}$. There are several different possibilities, depending on the parity of c_{1}, c_{2}, c_{3}.
(1) c_{1}, c_{2}, c_{3} all even. Here $F=0(\bmod 2)$ so that the non-regular prime ideals of A are the height one prime $(2, Z) A$ and those maximal ideals that contain $(2, Z) A$. In this case the non-regular primes are the same as the non-smooth primes. An example is $A=\mathbb{Z}[X, Y] /\left(X^{2}+2 X Y+5 Y^{2}-1\right)$. Here $a=1, B=1, c=5$ so that $c_{1}=3-1, c_{2}=1-1$, and $c_{3}=0$ are all even.
(2) c_{1}, c_{2} even, c_{3} odd. Here $F=1(\bmod 2)$ so A is regular at every prime ideal. Hence A is regular. An example is $A=\mathbb{Z}[X, Y] /\left(3 X^{2}+2 X Y+3 Y^{2}-1\right)$.
(3) c_{1} even, c_{2} odd or c_{1} odd, c_{2} even. Then $F=Y-\bar{c}_{3}$ or $F=\left(Y-\bar{c}_{3}\right)^{2}$ so there is one non-regular prime ideal of A, namely the maximal ideal $P=$ $\left(2, Z, Y-\bar{c}_{3}\right)$, and $A / P=Z / 2 Z$. Examples are $A=\mathbb{Z}[X, Y] /\left(X^{2}+3 Y^{2}-1\right)$ and $A=\mathbb{Z}[X, Y] /\left(X^{2}+2 X Y+3 Y^{2}-1\right)$.
(4) c_{1}, c_{2}, c_{3} odd. Then $F=Y^{2}+Y+1 \bmod 2$, which is irreducible in $\mathbb{Z} / 2 \mathbb{Z}[Y]$. There is one non-regular prime $P=\left(2, Z, Y^{2}+Y+1\right)$ and $A / P=$ the field with 4 elements. An example is $A=\mathbb{Z}[X, Y] /\left(X^{2}+Y^{2}+1\right)$.
(5) c_{1}, c_{2} both odd, c_{3} even. Then $F=Y^{2}+Y(\bmod 2)$. There are two non-regular primes $P_{1}=(2, Z, Y)$ and $P_{2}=(2, Z, Y+1)$, with $A / P_{i}=\mathbb{Z} / 2 \mathbb{Z}$ ($i=1,2$). An example is $A=\mathbb{Z}[X, Y] /\left(X^{2}+Y^{2}-1\right)$.

Interchanging X and Y interchanges a and c. Thus conditions (1)-(5) must be symmetric in a and c. This can be easily checked.

Now let us consider the case c even. Let P be a prime ideal of A such that $2 \in P$. Again we need only consider b even $(b=2 B)$. Then $A / 2 A=$ $\mathbb{Z} / 2 \mathbb{Z}[X, Y] /\left(X^{2}+1\right)=\mathbb{Z} / 2 \mathbb{Z}[X, Y] /(X+1)^{2}$. Set $Z=X+1$ so that $A=$ $\mathbb{Z}[Y, Z] /\left(a Z^{2}-2 a Z+2 B Z Y-2 B Y+c Y^{2}+a-1\right)$. We have $2 \in P$ and $Z \in P$ so that the $a Z^{2},-2 a Z$, and $2 B Z Y$ terms lie in Q^{2} (Q as before). Thus P is not regular if and only if $c Y^{2}-2 B Y+a-1 \in Q^{2} \mathbb{Z}[X, Y]_{\mathrm{Q}}$. Again $2 \notin Q^{2} \mathbb{Z}[X, Y]_{\mathrm{Q}}$. If we set $c_{1}=c / 2, c_{2}=-B$, and $c_{3}=(a-1) / 2$ then we get the same five cases that we had with c odd. All cases can occur. It is also possible to change c from odd to even by a change of variable.

The regularity of A is characterized by cases (1)-(5). The ring A is Cohen-Macauley so by Theorem 39 page 125 of [2] A is integrally closed if and only if all primes of height one are regular. Thus case (1) is not integrally closed, and cases (2)-(5) are integrally closed. These results can be summarized as follows (with c_{1}, c_{2}, c_{3} as previously defined-with different formulae depending on the parity of c):

Theorem 2. Let $A=\mathbb{Z}[X, Y] /\left(a X^{2}+b X Y+c Y^{2}-1\right)$. Then A is regular if and only if either (i) A is smooth as in Theorem 1, or (ii) b is even, at least one of
a or c is odd, and c_{1}, c_{2} are even, c_{3} odd. In case (ii) A is regular but not smooth. Also A is integrally closed except in the case b even, at least one of a or c odd, and c_{1}, c_{2}, c_{3} all even.

The case of more than two variables can be discussed in a similar way. Let $A=\mathbb{Z}\left[X_{1}, X_{2}, \ldots, X_{n}\right] /(F-1)$ where $F=\sum_{1 \leq i, j \leq n} a_{i j} X_{i} X_{j}$ is a homogeneous form of degree $2, a_{i j} \in \mathbb{Z}$. Let $J=\left(\partial F / \partial X_{i}\right) A$. Again $2 \in J$. The non-smooth primes of A are those that contain J, and as a set equal the closed subscheme Spec $A / J \subset \operatorname{Spec} A$. But $A / J=(A / 2 A) /(J / 2)$. If we apply the Jacobian criterion for smoothness over $\mathbb{Z} / 2 \mathbb{Z}$ to the ring $A / 2 A=\mathbb{Z} / 2 \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right] /(\bar{F}-1)$ (where the - means reduction of coefficients mod 2) we get the same closed subscheme. Thus the non-smooth primes of A are the same as the non-smooth (over $\mathbb{Z} / 2 \mathbb{Z}$) primes of $A / 2 A$ (under the inclusion $\operatorname{Spec}(A / 2 A) \subset \operatorname{Spec} A$). Over $\mathbb{Z} / 2 \mathbb{Z}$ we can make a change of variable so that $\bar{F}=\sum_{i=1}^{m}\left(a_{i} Y_{i}^{2}+Y_{i} Z_{i}+c_{i} Z_{i}^{2}\right)+\sum_{j=1}^{m^{\prime}} W_{j}^{2}$ $\left(2 m+m^{\prime} \leq n\right)\left([1]\right.$ Satz 2). Then $\bar{J}(=J / 2 J)=\left(Y_{i}, Z_{i}\right) \bar{A}$, so we see that \bar{A} is smooth over $\mathbb{Z} / 2 \mathbb{Z}$ (and hence A is smooth over \mathbb{Z}) if $m^{\prime}=0$, otherwise the non-smooth points are of codimension $2 m$ in Spec \bar{A} and codimension $2 m+1$ in $\operatorname{Spec} A$. All possibilities can occur.
Now consider the regular primes of A. All non-regular primes must contain J and hence 2 . Let P be any prime of A that contains J, and let Q be the inverse image of P in $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$. An invertible matrix over $\mathbb{Z} / 2 \mathbb{Z}$ is the product of elementary matrices, hence can be lifted to an invertible matrix over \mathbb{Z}. Therefore the change of variable carried out above in $A / 2 A$ can be lifted to A and we can assume that we have variables $Y_{i}, Z_{i}(1 \leq i \leq m), W_{j}\left(1 \leq j \leq m^{\prime}\right)$ and possibly other variables, so that

$$
F=\sum_{i=1}^{m}\left(a_{i} Y_{i}^{2}+b_{i} Y_{i} Z_{i}+c_{i} Z_{i}^{2}\right)+\sum_{j=1}^{m^{\prime}} d_{j} W_{j}^{2}+2 G
$$

where b_{i}, d_{j} are odd. If $m^{\prime}=0$ then A is smooth, thus regular. Hence assume $m^{\prime}>0$. We have $\partial F / \partial Y_{i}=b_{i} Z_{i}+2(\cdots)$. Since b_{i} is odd and $2 \in J$ we conclude that $Z_{i} \in J$. Similarly $Y_{i} \in J$ and $\sum_{i=1}^{m}\left(a_{i} Y_{i}^{2}+b_{i} Y_{i} Z_{i}+c_{i} Z_{i}^{2}\right) \in P^{2}$. The ring A is not regular at P if and only if $F-1 \in Q^{2} \mathbb{Z}\left[Y_{i}, Z_{i}, W_{i}, \ldots\right]_{Q}$ if and only if $T=\sum_{j=1}^{m^{\prime}} d_{j} W_{j}^{2}+2 G-1 \in Q^{2} \mathbb{Z}\left[Y_{i}, Z_{i}, W_{j}, \ldots\right]_{\mathrm{Q}}$. Now set $Z=\left(\sum_{j=1}^{m^{\prime}} W_{j}\right)-1$ and replace one of the variables W_{j} by Z. Then $T=Z^{2}+2 H$. Since 2 and T lie in Q we have $Z^{2} \in Q$. But Q is prime, so $Z \in Q$ and thus $Z^{2} \in Q^{2}$. We now have P non-regular if and only if $2 H \in Q^{2} \not \mathbb{Z}\left[Y_{i}, Z_{i}, W_{i}, \ldots\right]_{\mathrm{Q}}$. As in the two variable case we can cancel off a 2 and conclude that P is non-regular if and only if $H \in Q$. This is one extra condition to be satisfied, so the set of non-regular primes is either empty, or has codimension exceeding that of the non-smooth primes by at most 1 . These results can be summarized as

Theorem 3. Let $A=\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right] /(F-1)$, where F is a homogeneous form of degree 2 with coefficients in \mathbb{Z}. Then the non-smooth primes of A form a
closed subset of Spec A which is either empty or of odd codimension. Every allowable codimension can occur. The non-regular primes of A form a closed subset of the non-smooth primes. This subset is either empty or of codimension at most one in the set of non-smooth primes.

If F is in "diagonal" form H is easily calculated. Let $F=\sum_{i=1}^{n} a_{i} X_{i}^{2}+\sum_{j=1}^{m} b_{j} Y_{j}^{2}$ where the a_{i} are odd and the b_{j} are even. Here $J=(2)$ and we can assume $n>0$, otherwise 2 is a unit and A is smooth. Let $Z=\left(\sum_{i=1}^{n} X_{i}\right)-1$, so that $X_{1}=Z-\left(\sum_{i=2}^{n} X_{i}\right)+1$. Then $F-1$ becomes
$a_{1} Z^{2}+\sum_{i=2}^{n}\left(a_{1}+a_{i}\right) X_{i}^{2}-2 a_{1}\left(\sum_{i=2}^{n} X_{i}\right)+2 a_{1}\left(\sum_{1<i<j} X_{i} X_{j}\right)+2 Z(\cdots)+\sum_{j=1}^{m} b_{j} Y_{j}^{2}$

$$
+a_{1}-1
$$

Thus
$H=\sum_{i=2}^{n}\left[\left(a_{1}+a_{i}\right) / 2\right] X_{i}^{2}-a_{1}\left(\sum_{i=2}^{n} X_{i}\right)+a_{1}\left(\sum_{1<i<j} X_{i} X_{j}\right)+\sum_{j=1}^{m}\left(b_{j} / 2\right) Y_{j}^{2}+\left(a_{1}-1\right) / 2$
(the $2 Z(\cdots)$ term can be omitted since $Z \in Q)$. Then A is regular at $P(2 \in P)$ if and only if $H \notin Q$. For A to be regular everywhere we require that all coefficients be $0(\bmod 2)$ except $\left(a_{1}-1\right) / 2$ which should be non-zero. This happens if and only if $n=1$, the b_{j} are all divisible by 4 , and $a_{1}=3 \bmod 4$. In order for A to be non-regular at the set of non-smooth points (Spec $A / 2 A$) we require that $H=0 \bmod 2$, and this happens if and only if $n=1$, the b_{j} are all divisible by 4 , and $a_{1} \equiv 1 \bmod 4$. (The latter is the only non-integrally closed case). Otherwise A is non-regular in codimension 2 . These results can be summarized as

Theorem 4. Let $A=\mathbb{Z}\left[X_{i}, Y_{j}\right] /\left(\sum_{i=1}^{n} a_{i} X_{i}^{2}+\sum_{j=1}^{m} b_{j} Y_{j}^{2}-1\right)(1 \leq i \leq n, 1 \leq j \leq m$, a_{i} odd, b_{j} even). Then the non-smooth primes of A are those that contain 2, and A is smooth if and only if $n=0$. The ring A is regular if and only if $n=0$ or $n=1, a_{1} \equiv 3 \bmod 4$ and the b_{j} are all divisible by 4 . The ring A is non-regular at all non-smooth primes if and only if $n=1, a_{1} \equiv 1 \bmod 4$, and the b_{j} are all divisible by 4. Otherwise A is non-regular on $\operatorname{Spec} A /(2, H)$, a subset of codimension 2, where H is given above. The ring A is integrally closed except in the case $n=1, a_{1} \equiv 1 \bmod 4$, and the b_{j} are all divisible by 4 .

Bibliography

[1] C. Arf, Untersuchungen uber quadratische Formen in Korpern der Charakteristik 2 (Teil 2), J. fur reine und angew Math 183 (1940) 148-167.
[2] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
[3] D. Quillen, Higher Algebraic K-theory I, pp. 179-198, Lecture Notes in Mathematics, No. 341, Springer-Verlag, New York, 1973.
[4] R. Swift, Smooth Algebras, M.Sc. Thesis, Queen's University, Kingston, Ontario, 1978.
[5] O. Zariski and P. Samuel, Commutative Algebra Volume II, Van Nostrand, Princeton, 1958.

Department of Mathematics
Queen's University
Kingston, Ontario, K7L 3N6

[^0]: This paper is one of series of survey papers written at the invitation of the Editors.
 ${ }^{(1)}$ This research was supported in part by NRC grant A-7209.

