
J. Fluid Mech. (2022), vol. 931, A34, doi:10.1017/jfm.2021.1000

Scale-space energy density for inhomogeneous
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The energy spectrum is commonly used to describe the scale dependence of turbulent
fluctuations in homogeneous isotropic turbulence. In contrast, one-point statistical
quantities, such as the turbulent kinetic energy, are mainly employed for inhomogeneous
turbulence models. Attempts have been made to describe the scale dependence of
inhomogeneous turbulence using the second-order structure function and two-point
velocity correlation. However, unlike the energy spectrum, expressions for the energy
density in the scale space fail to satisfy the requirement of being non-negative. In this
study, a new expression for the scale-space energy density based on filtered velocities is
proposed to clarify the reasons behind the negative values of the energy density and to
obtain a better understanding of inhomogeneous turbulence. The new expression consists
of homogeneous and inhomogeneous parts; the former is always non-negative, while
the latter can be negative because of the turbulence inhomogeneity. Direct numerical
simulation data of homogeneous isotropic turbulence and a turbulent channel flow are
used to evaluate the two parts of the energy density and turbulent energy. It was found that
the inhomogeneous part of the turbulent energy shows non-zero values near the wall and
at the centre of a channel flow. In particular, the inhomogeneous part of the energy density
changes its sign depending on the scale. A concave profile of the filtered-velocity variance
at the wall accounts for the negative value of the energy density in the region very close to
the wall.

Key words: shear layer turbulence, turbulence simulation, turbulence theory

1. Introduction

For homogeneous isotropic turbulence, the energy spectrum, which is the Fourier
transform of the two-point velocity correlation, is frequently used to describe the scale
dependence of turbulent fluctuations. The energy transfer, such as a cascade from low
to high wavenumbers, has been studied in detail, and several closure theories have
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been developed (Frisch 1995). In contrast, one-point statistical quantities are mainly
employed for inhomogeneous turbulence, such as the turbulent kinetic energy. The energy
production, dissipation and transfer in the physical space are described and predicted
using one-point closure models (Pope 2000). The treatment of two-point quantities
in inhomogeneous turbulence models is a highly complex process, although the scale
dependence of the energy is important for understanding and predicting turbulent flows.

To improve the turbulence models, attempts have been made to use the energy spectrum
for inhomogeneous turbulence. The two-scale turbulence theory defines the fast and
slow variables for space coordinates (Yoshizawa 1984, 1998). The Fourier transform
of a velocity field with respect to the fast variable was performed to use the closure
theory for homogeneous isotropic turbulence (Kraichnan 1971; Leslie 1973), whereas the
dependence of the velocity on the slow variable was used to describe the inhomogeneity
of the turbulent field. In the turbulence model developed by Schiestel (1987), multi-scale
turbulent kinetic energies were introduced by dividing the energy spectrum into several
wavenumber parts. The transport equations for the kinetic energies at different scales were
used to improve the prediction of turbulent flow (Chaouat & Schiestel 2005; Schiestel &
Dejoan 2005). In these studies, the energy transfer between different scales was used to
improve the turbulence models, while the Fourier transform and energy spectrum were
introduced in an approximate manner; hence, the procedures must be justified physically.

Instead of the energy spectrum, the second-order structure function 〈δu2
i (x, r)〉 (where

δui(x, r) = ui(x + r)− ui(x) and ui(x) is the velocity fluctuation) and the two-point
velocity correlation Qii(x, r) (=〈ui(x)ui(x + r)〉) in the physical space can be used to
describe the kinetic energy at the length scale of r (=|r|). For homogeneous isotropic
turbulence, the Kármán–Howarth equation and Kolmogorov equation were formulated
using the two-point correlation and structure function, respectively (Frisch 1995). Several
attempts have been made to extend these equations to inhomogeneous turbulence (Danaila
et al. 2001; Hill 2002; Davidson 2004; Marati, Casciola & Piva 2004; Danaila et al. 2012;
Cimarelli, De Angelis & Casciola 2013; Hamba 2015; Cimarelli et al. 2016; Hamba 2018;
Mollicone et al. 2018; Arun et al. 2021). Danaila et al. (2001) examined the turbulent
diffusion and dissipation terms at the centre of a channel flow and proposed a generalised
form of the Kolmogorov equation. Hill (2002) theoretically derived the exact transport
equation for the structure function in inhomogeneous turbulence and discussed its potential
applications. Marati et al. (2004) evaluated the structure function equation using the direct
numerical simulation (DNS) data of a turbulent channel flow. Cimarelli et al. (2013) and
Cimarelli et al. (2016) examined the energy flux occurring in the scale space and physical
space in turbulent channel flows. Danaila et al. (2012) developed a scale-by-scale kinetic
energy budget equation using the structure function and examined experimental data
obtained from a multiple-opposed jet flow. Using the generalised Kolmogorov equation,
Mollicone et al. (2018) described the scale-by-scale turbulence dynamics in a separation
bubble generated by a bulge in a turbulent channel flow. Davidson (2004) defined the
turbulent energy density in the scale space using the r derivative of the structure function,
and compared the energy density in homogeneous isotropic turbulence and wall turbulence
(Davidson & Pearson 2005; Davidson, Nickels & Krogstad 2006). Using the two-point
velocity correlation, Hamba (2015) proposed an expression for the energy density in the
scale space and examined the energy transfer in a turbulent channel flow. Arun et al. (2021)
derived the scale-space energy density equation for compressible flows and investigated
the effects of variable density and dilatation on an energy cascade in compressible mixing
layers.

In addition to two-point statistical quantities, the low-pass filtering operation of a
velocity field is also an effective tool for examining scale-by-scale turbulent fluctuations.
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Scale-space energy density for inhomogeneous turbulence

Using the generalised Kolmogorov equation for a filtered velocity field, Cimarelli &
De Angelis (2012) examined the scale-by-scale budget of the turbulent energy near the
wall of a turbulent channel flow. Applying a Gaussian filter to the DNS velocity field,
Motoori & Goto (2019) investigated the generation mechanism of the hierarchy of vortices
in a turbulent boundary layer. Using a local volume average, Watanabe, da Silva &
Nagata (2020) analysed the sub-grid scale energy budget near the turbulent/non-turbulent
interfacial layer. The wavelet transform of a velocity field is also considered a band-pass
filtered velocity, which has been widely used to analyse and simulate coherent structures
of turbulence (Farge 1992; Schneider & Vasilyev 2010). However, its application in
turbulence theory is limited. Altaisky, Hnatich & Kaputkina (2018) combined the wavelet
transform with the renormalisation group theory (Yahkot & Orszag 1986) to study the
statistics at different scales.

Similar to the energy spectrum, the energy density in the scale space should satisfy the
following conditions (Davidson 2004). First, the integral of the energy density over all
scales should be equal to the turbulent kinetic energy. Second, the energy density should
be non-negative. For example, the structure function is non-negative but its integral is not
equal to the turbulent kinetic energy. Instead, the structure function itself tends to be twice
the energy as r → ∞. In contrast, Davidson (2004) introduced the gradient of the structure
function as the energy density, which satisfies the first property but is not non-negative.
The same holds true for the energy density based on the two-point velocity correlation
proposed by Hamba (2015). By integrating the velocity correlation with a filter function,
Hamba (2018) improved the energy density so that it is non-negative for homogeneous
turbulence. Nonetheless, it fails to satisfy the non-negative property for inhomogeneous
turbulence. It shows a small negative value in the region very close to the wall in a turbulent
channel flow. In the present study, we use filtered velocities in a systematic manner to
propose a new expression for the energy density in the scale space to clarify the reasons
for the negative values of the energy density. The new expression consists of homogeneous
and inhomogeneous parts. The former is expressed in terms of the variance of the filtered
velocity and is always non-negative, whereas the latter can be negative because of the
turbulence inhomogeneity. Using the new expression, we investigate the effects of the
inhomogeneity on the negative values of the energy density. The scale-space energy
density based on filtered velocities will be useful in describing the turbulence statistics
at different scales and to obtain a better understanding of inhomogeneous turbulence.

This paper is organised as follows. In § 2, we introduce three filtered velocities and
propose a new expression for the energy density in the scale space. In § 3, we evaluate the
energy density using the DNS data of homogeneous isotropic turbulence, and compare the
results between the cases of one- and three-dimensional filtering. In § 4, we evaluate the
homogeneous and inhomogeneous parts of the energy density using the DNS data of a
turbulent channel flow. We examine how the profile of the turbulent energy near the wall
affects the inhomogeneous part and induces a negative value of the energy density. Finally,
we conclude the paper in § 5.

2. Turbulent energy density in scale space

2.1. Energy spectrum and scale-space energy density
To compare the scale-space energy density with the energy spectrum, we first describe the
energy spectrum, which is also an energy density treated in the wavenumber space. The
velocity is divided into the mean and fluctuating parts as follows:

u∗
i (x) = Ui(x)+ ui(x), Ui = 〈u∗

i 〉, (2.1a,b)
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F. Hamba

where 〈 〉 denotes the ensemble average. For homogeneous turbulence, the velocity
fluctuation ui(x) is often expressed in terms of its Fourier transform ui(k) as follows:

ui(x) =
∫

dk ui(k) exp(ik · x),
∫

dk =
∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz. (2.2a,b)

This expression indicates that the velocity fluctuations in the physical space can be
decomposed into Fourier modes in the wavenumber space. The velocity variance
〈ui(x)ui(x)〉 can also be decomposed in the wavenumber space as

〈ui(x)ui(x)〉 =
∫

dk Qii(k), (2.3)

where Qii(k) is the Fourier transform of Qii(x, r) with respect to r and the summation
convention is used for repeated indices. The Fourier transform Qii(k) is related to the
velocity fluctuation ui(k) as follows:

〈ui(k)u
†
i (k)〉 = Qii(k)δ(0), (2.4)

where † denotes the complex conjugate and δ(0) is the Dirac delta function δ(k) with
k = 0. For homogeneous isotropic turbulence, the energy spectrum E(k) (=2πk2Qii(k))
is often introduced. The energy spectrum E(k) represents the energy density in the
wavenumber space and satisfies the following properties:

K =
∫ ∞

0
dk E(k), (2.5)

E(k) � 0, (2.6)

where K (=〈u2
i 〉/2) is the turbulent kinetic energy. The energy spectrum E(k) contains

information on the turbulence intensity and the scale dependence of the turbulent
fluctuations; it is considered as the kinetic energy of eddies of size π/k. Because the energy
spectrum E(k) is directly related to the velocity fluctuation ui(k) through the relationship
in (2.4), it is clearly non-negative. On the basis of the governing equation for ui(k),
the transport equation for the energy spectrum was analysed and modelled in statistical
theories for homogeneous isotropic turbulence. The decomposition of the instantaneous
velocity given by (2.2a,b) and that of the turbulent energy given by (2.5) and (2.6) are
very useful expressions in analysing turbulent statistics and developing closure theories
for homogeneous turbulence. We will try to determine the corresponding expressions for
inhomogeneous turbulence.

Instead of the energy spectrum in the wavenumber space, the energy density in the scale
space can be used for the inhomogeneous turbulence. The energy density E(x, r) in the
scale space is a function of both position x and length scale r, and should satisfy the
following properties:

K(x) =
∫ ∞

0
dr E(x, r), (2.7)

E(x, r) � 0, (2.8)

as in the cases of (2.5) and (2.6) for the energy spectrum (Davidson 2004). Although
several energy densities and scale energies have been proposed, there is still no quantity
that satisfies both properties. For example, Hill (2002) derived the transport equation for
the second-order structure function. The structure function satisfies (2.8) but not (2.7); that
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Scale-space energy density for inhomogeneous turbulence

is, it is non-negative but its integral is not equal to the turbulent kinetic energy. Davidson
(2004) proposed the energy density using the following structure function:

E(x, r) = −3
8

r2 ∂

∂r
1
r
∂

∂r
〈(�u)2〉, (2.9)

where �u = ux(x + rex)− ux(x). Conversely, it satisfies (2.7) but not (2.8). The same
holds true for the energy density proposed by Hamba (2015) using the two-point velocity
correlation as follows:

E(x, r) = − ∂

∂r
E>(x, r), (2.10)

where E>(x, r) = Qii(x, rer)/2. Here, E>(x, r) represents the kinetic energy of eddies
with sizes equal to or greater than r. In (2.9) and (2.10), the derivative with respect to r is
introduced so that E(x, r) can satisfy (2.7); however, they are not necessarily non-negative.
Hamba (2018) improved the energy density by introducing a filter function G(ξ, r) as
follows:

E>(x, r) =
∫ ∞

−∞
dξ

1
2

Qii(x, ξ)G(ξ, r), G(ξ, r) = 1√
2πr

exp
(

− ξ2

2r2

)
. (2.11a,b)

Here, the filtered correlation is used for E>(x, r) instead of the correlation Qii(x, r)
itself. As a result, the energy density is always non-negative for homogeneous turbulence.
However, it fails to satisfy the non-negative property for inhomogeneous turbulence; it
shows a small negative value in the region very close to the wall in a turbulent channel
flow (Hamba 2018).

Compared with the energy density, the second-order structure function 〈δu2
i (x, r)〉

has a well-defined theoretical background and physical meaning. It is non-negative and
represents the kinetic energy of eddies with sizes equal to or less than r. However,
the problem arises when we consider its behaviour as r → ∞ in turbulent flows
inhomogeneous in all directions. When r is much greater than the integral length scale,
we have 〈δu2

i (x, r)〉 � 〈u2
i (x + r)〉 + 〈u2

i (x)〉, which is the sum of the kinetic energies at
two positions apart from each other in an inhomogeneous direction. The energy density is
expected to be used not only for the analysis of turbulent statistics but also for turbulence
modelling where the kinetic energy at a single position should be decomposed into
several scales. This is why we treat the energy density that satisfies (2.7) rather than the
second-order structure function.

2.2. Filtered velocities
In this study, instead of the filtered correlation given by (2.11a,b), we start from filtered
velocities to derive an expression for the energy density in the scale space. For simplicity,
we describe the formulation in the case of one-dimensional filtering. We introduce three
filtered velocities using different filter functions. The first filtered velocity ūi(x, s) is an
ordinary one with a Gaussian function that is widely used in large eddy simulation (LES).
It is defined as

ūi(x, s) = F̄(s) ∗ ui(x) =
∫ ∞

−∞
dx′ Ḡ(x − x′, s)ui(x′), (2.12)

where Ḡ(x − x′, s) is the filter function given by

Ḡ(x − x′, s) = 1

(2πs)1/2
exp

[
−(x − x′)2

2s

]
. (2.13)
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Figure 1. Profiles of filter functions Ḡ(x, s), Ĝ(x, s) and G̃(x, s) given by (2.13), (2.15) and (2.21),
respectively, for s = 1 as functions of x.

It should be noted that instead of the length scale r, we adopt a quantity s with a dimension
of the square of the length in (2.12) and (2.13). Compared with the filtered velocity with r,
this choice simplifies the formulation; for example, double filtering is expressed in terms
of the addition of s as F̄(s1) ∗ F̄(s2) ∗ ui = F̄(s1 + s2) ∗ ui. Moreover, it yields a simple
relationship between the derivatives with respect to s and x, as will be discussed later.
Hereafter, we refer to s as the scale. The filtered velocity ūi(x, s) represents the velocity
with a scale equal to or greater than s. It corresponds to the resolved (grid-scale) velocity
in the LES. The profile of Ḡ(x, s) as a function of x for s = 1 is shown in figure 1. When
s = 0, the filtered velocity is reduced to the original velocity as ūi(x, 0) = ui(x) because
Ḡ(x − x′, 0) = δ(x − x′).

By differentiating ūi(x, s) with respect to s, we can obtain a filtered velocity with a scale
equal to s. We define the second filtered velocity ûi(x, s) as follows:

ûi(x, s) ≡ − ∂

∂s
ūi(x, s) = F̂(s) ∗ ui(x) =

∫ ∞

−∞
dx′ Ĝ(x − x′, s)ui(x′), (2.14)

where

Ĝ(x − x′, s) ≡ − ∂

∂s
Ḡ(x − x′, s) = 1

(2πs)1/2

[
1
2s

− (x − x′)2

2s2

]
exp

[
−(x − x′)2

2s

]
.

(2.15)

The profile of Ĝ(x, s) for s = 1 is also plotted in figure 1; it is an even function of x, as
in the case of Ḡ(x, s). The filtered velocity ūi(x, s) and the original velocity ui(x) can be
written in terms of ûi(x, s) as

ūi(x, s) =
∫ ∞

s
ds′ ûi(x, s′), (2.16)

ui(x) =
∫ ∞

0
ds ûi(x, s), (2.17)

respectively, where it is assumed that ūi(x,∞) = 0. Equation (2.17) indicates that the
velocity ui(x) is decomposed into the modes ûi(x, s) in the scale space and corresponds to
the Fourier transform given by (2.2a,b). Because we adopted a Gaussian filter function in

931 A34-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1000


Scale-space energy density for inhomogeneous turbulence

(2.13), we have the following relationships between the derivatives with respect to s and x:

∂

∂s
Ḡ(x − x′, s) = 1

2
∂2

∂x2 Ḡ(x − x′, s),
∂

∂s
ūi(x, s) = 1

2
∂2

∂x2 ūi(x, s), (2.18a,b)

which lead to

Ĝ(x − x′, s) = −1
2
∂2

∂x2 Ḡ(x − x′, s), ûi(x, s) = −1
2
∂2

∂x2 ūi(x, s). (2.19a,b)

The filtered velocity ûi(x, s) can also be obtained from the second x derivative of ūi(x, s)
instead of the s derivative. The relationships given by (2.18a,b) can be interpreted as the
diffusion equations for Ḡ(x − x′, s) and ūi(x, s) if we consider the scale s as the time.
In general, the profile of the filtered velocity becomes smoother as the scale increases.
Such a variation of the profile with increasing scale can be expressed in terms of the time
evolution of the solution of the diffusion equation (see Appendix A for details).

As the filtered velocity ûi(x, s) is proportional to the second x derivative of ūi(x, s), we
can also introduce the first x derivative of ūi(x, s). We define the third filtered velocity
ũi(x, s) as follows:

ũi(x, s) ≡ ∂

∂x
ūi(x, s) = F̃(s) ∗ ui(x) =

∫ ∞

−∞
dx′ G̃(x − x′, s)ui(x′), (2.20)

where

G̃(x − x′, s) ≡ ∂

∂x
Ḡ(x − x′, s) = − 1

(2πs)1/2
x − x′

s
exp

[
−(x − x′)2

2s

]
. (2.21)

The profile of G̃(x, s) for s = 1 is also plotted in figure 1. It is an odd function of x in
contrast to Ḡ(x, s) and Ĝ(x, s). This velocity is also considered the filtered velocity with a
scale equal to s. The original velocity can be expressed in terms of the following integral:

ui(x) = −
∫ ∞

0
ds F̃(s) ∗ ũi(x, s) = −

∫ ∞

0
ds
∫ ∞

−∞
dx′ G̃(x − x′, s)ũi(x′, s). (2.22)

The expression is rather complex compared with (2.17) because additional filtering is
necessary to reconstruct the velocity. It should be noted that the filtered velocity ũi(x, s) is
a continuous wavelet transform of ui(x) (see Appendix B for details).

We have introduced three filtered velocities. The first filtered velocity ūi with a Gaussian
filter is commonly used in the LES. Another filter function such as a top-hat filter is also
possible in the present formulation. The second filtered velocity ûi can be defined by
(2.14) and the relationships given by (2.16) and (2.17) also hold for general filter functions.
However, the relationships given by (2.18a,b) and (2.19a,b) hold only when the Gaussian
filter is used. Because these simple relationships are very useful for later formulation, we
adopted the Gaussian filter as a first filtered velocity. With respect to the x derivative,
ūi is of the zeroth order and ûi[= −(1/2)(∂2/∂x2)ūi] is of the second order. In the next
subsection, we will require that 2〈ūiûi〉 � 〈ũiũi〉. This is why we introduced the third
filtered velocity ũi[=(∂/∂x)ūi] which is of the first order.

2.3. New energy density in scale space
In this section, we analyse the variances of the filtered velocities defined in § 2.2 to
propose a new expression for the energy density in the scale space. The variance of the
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original velocity Qii(x) = 〈ui(x)ui(x)〉 gives the turbulent kinetic energy K (= Qii(x)/2).
The variance of the filtered velocity, written as

Q̄ii(x, s) = 〈ūi(x, s)ūi(x, s)〉, (2.23)

gives another energy Q̄ii(x, s)/2, which represents the kinetic energy of eddies with
scales equal to or greater than s, such as E>(x, r) given by (2.11a,b). In fact, Q̄ii(x, s)/2
is equivalent to E>(x, r) for homogeneous turbulence (Hamba 2018). When s = 0, the
variance is reduced to the original turbulent energy as

Q̄ii(x, 0)(= 〈ūi(x, 0)ūi(x, 0)〉) = Qii(x). (2.24)

By differentiating Q̄ii(x, s) with respect to s, we can define the scale-space energy density
Q̂ii(x, s)/2, where

Q̂ii(x, s) ≡ − ∂

∂s
Q̄ii(x, s) = 2〈ûi(x, s)ūi(x, s)〉, (2.25)

as in the case of E(x, r) given by (2.10). The following relationships are satisfied:

1
2 Q̄ii(x, s) =

∫ ∞

s
ds′ 1

2 Q̂ii(x, s′), K(x) =
∫ ∞

0
ds 1

2 Q̂ii(x, s), (2.26a,b)

where it is assumed that Q̄ii(x,∞) = 0. In contrast to Qii(k) in (2.4), Q̂ii(x, s) is not given
by the variance of ûi(x, s) but by the correlation between ûi(x, s) and ūi(x, s) in (2.25); it is
not necessarily non-negative. Therefore, the energy density Q̂ii(x, s)/2 satisfies (2.7) but
not (2.8), as in the case of previous energy densities.

In this study, we investigate the energy density in detail using the third filtered velocity
ũi(x, s). The variance of ũi(x, s), given by

Q̃ii(x, s) = 〈ũi(x, s)ũi(x, s)〉, (2.27)

is non-negative. Using (2.19b) for ûi(x, s), we can derive the relationship between
Q̂ii(x, s)/2 and Q̃ii(x, s)/2 as follows:

1
2

Q̂ii(x, s) = 1
2

Q̃ii(x, s)− 1
4
∂2

∂x2 Q̄ii(x, s). (2.28)

For homogeneous turbulence, only the first term remains on the right-hand side of (2.28).
The second term disappears because it is the second derivative of an averaged quantity.
Here, we call the first and second terms the homogeneous and inhomogeneous parts of the
energy density, respectively. We can see that the energy density Q̂ii(x, s)/2 is non-negative
for homogeneous turbulence because

Q̂ii(x, s) = Q̃ii(x, s). (2.29)

This situation is the same as the energy density E(x, r) given by (2.10) and (2.11a,b). The
non-negative property of E(x, r) is shown indirectly using its Fourier transform (Hamba
2018), whereas that of Q̂ii(x, s) is clearly shown by (2.27) and (2.29), as in the case of (2.4)
for the energy spectrum. Using the relationship in (2.28), we can quantitatively examine
the deviation from the non-negative part in the case of inhomogeneous turbulence.
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Scale-space energy density for inhomogeneous turbulence

From (2.26a,b) and (2.28), we obtain the expressions for the filtered-velocity variance
and turbulent energy, which are decomposed into the homogeneous and inhomogeneous
parts as follows:

1
2

Q̄ii(x, s) =
∫ ∞

s
ds′ 1

2
Q̃ii(x, s′)−

∫ ∞

s
ds′ 1

4
∂2

∂x2 Q̄ii(x, s′), (2.30)

K(x) =
∫ ∞

0
ds

1
2

Q̃ii(x, s)−
∫ ∞

0
ds

1
4
∂2

∂x2 Q̄ii(x, s). (2.31)

For homogeneous turbulence, the turbulent energy K is expressed in terms of Q̃ii(x, s),
which is the variance of ũi(x, s), like the energy spectrum E(k). For inhomogeneous
turbulence, the inhomogeneous part is added, which involves the integral of the second
derivative of Q̄ii(x, s). By evaluating the homogeneous and inhomogeneous parts of the
turbulent energy, we can obtain a better understanding of inhomogeneous turbulence.

So far, we have described the formulation based on one-dimensional filtering defined
by (2.16). In an actual turbulent field, three-dimensional filtering is more appropriate
to assess the scale dependence of turbulent fluctuations. In this study, we consider
three-dimensional filtering defined as

ūi(x, s) = F̄(s) ∗ ui(x) =
∫

dx′ Ḡ(x − x′, s)ui(x′), (2.32)

where

Ḡ(x − x′, s) = 1

(2πs)3/2
exp

[
−(x − x′)2

2s

]
,

∫
dx =

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz.

(2.33a,b)
The expressions for the filtered velocities and energy density can be obtained in a similar
manner and are described in detail in Appendix C.

In the present formulation, the energy density can still be negative and a non-negative
expression has not been found. Nevertheless, the deviation from the non-negative part has
been identified and its relation to the inhomogeneity can be examined explicitly. In this
sense, it is more advantageous than the previous energy densities. To seek a non-negative
energy density, it must be interesting to introduce more filtered velocities which are the
higher-order derivatives of ūi(x, s), but the formulation would be highly complex. In the
present analysis, we will examine the turbulent energy and the energy density using the
three filtered velocities.

3. Energy density in homogeneous isotropic turbulence

Before investigating the energy density in inhomogeneous turbulence, we examine its
homogeneous part in homogeneous isotropic turbulence. In this case, the statistical
quantities are not dependent on position x, and the inhomogeneous parts appearing in
(2.30) and (2.31) disappear. The filtered-velocity variance and turbulent energy can then
be written as

1
2 Q̄ii(s) =

∫ ∞

s
ds′ 1

2 Q̃ii(s′), K =
∫ ∞

0
ds 1

2 Q̃ii(s). (3.1a,b)

In the case of three-dimensional filtering, Q̄ii(s)/2 and Q̃ii(s)/2 are related to the
three-dimensional energy spectrum E(k) as follows:

1
2 Q̄ii(s) =

∫ ∞

0
dk exp(−sk2)E(k), 1

2 Q̃ii(s) =
∫ ∞

0
dk k2 exp(−sk2)E(k). (3.2a,b)
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We can see that Q̄ii(s)/2 is the energy with low-pass filtering at k < s−1/2, while Q̃ii(s)/2
is that with band-pass filtering at k ∼ s−1/2 in the wavenumber space. When we substitute
the Kolmogorov spectrum for the inertial range, E(k) = K0ε

2/3k−5/3 into (3.2b) for
Q̃ii(s)/2, we obtain

1
2 Q̃ii(s) = 1

2Γ (
2
3 )K0ε

2/3s−2/3, (3.3)

where Γ (x) is the gamma function, K0 is the Kolmogorov constant and ε is the energy
dissipation rate. In the limit of large s, Q̄ii(s)/2 and Q̃ii(s)/2 behave as follows:

Q̄ii(s) =
∫

dξ ′ 1

(4πs)3/2
exp

(
−ξ ′2

4s

)
Qii(ξ

′) �
∫

dξ ′ 1

(4πs)3/2
Qii(ξ

′) ∝ s−3/2, (3.4)

Q̃ii(s) = Q̂ii(s) = − ∂

∂s
Q̄ii(s) ∝ s−5/2, (3.5)

where Qii(ξ
′) is the two-point velocity correlation with separation ξ ′. When s = 0, they

behave as follows:
1
2

Q̄ii(0) = K,
1
2

Q̃ii(0) = 1
2

〈
∂ui

∂xk

∂ui

∂xk

〉
= ε

2ν
, (3.6a,b)

where ν is the kinematic viscosity.
To assess the homogeneous part of the energy density described here, we examine the

DNS data of homogeneous isotropic turbulence. The simulation was carried out as follows.
The size of the computational domain was 2π × 2π × 2π and the number of grids was
10243. The velocity was normalised so that the initial velocity variance 〈u2

i 〉 was equal
to unity. The initial energy spectrum was set to E(k) ∝ k4 exp(−2(k/k0)

2), where k0 =
3.5. The external forcing of negative viscosity (Jiménez et al. 1993; Yamazaki, Ishihara
& Kaneda 2002) was applied to low wavenumbers to keep the turbulent kinetic energy
constant over time. Statistical data were obtained by averaging over 2.1 < t < 8.1. The
Taylor micro-scale Reynolds number Rλ(=

√〈u2
x〉λ/ν) was 161.

Figure 2(a) shows the profile of Q̄ii(s)/2 as a function of s in the cases of one- and
three-dimensional filtering. The scale s is in the range 10−5 < s < 1. The filter function
Ḡ(x, s) for s = 1, which is the maximum value of s, is shown in figure 1; it suggests
that the profile is as wide as the computational domain. In figure 2(a), as s is increased,
the energy decays faster in the three-dimensional case than in the one-dimensional case.
In the limit of s = 0, both profiles tend to have the value of K = 1/2. In the limit of
large s, the profile in the three-dimensional case is approximately proportional to s−3/2, as
indicated by (3.4). The profile slightly deviates from the s−3/2 line probably because the
computational domain is finite although the integral region should be infinite in (3.4).

Figure 2(b) shows the profile of the pre-multiplied energy density sQ̃ii(s)/2 as a function
of s in the cases of one- and three-dimensional filtering. Because the slope of Q̄ii(s)/2
in the three-dimensional case is greater than that in the one-dimensional case, shown in
figure 2(a), the energy density sQ̃ii(s)/2 at s < 10−1 is greater in the three-dimensional
case, shown in figure 2(b). The inertial-range profile estimated in (3.3) corresponds to s1/3

for the pre-multiplied profile, which increases as s increases. The inertial range is fairly
narrow in figure 2(b). Because the Reynolds number Rλ = 161 is not very large, a clear
profile of the inertial range cannot be expected. The finite Reynolds number effect should
be taken into account for a better understanding of the profiles in figure 2(b). In the limit
of s = 0, the pre-multiplied profile is proportional to s because Q̃ii(s)/2 tends to be a
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Scale-space energy density for inhomogeneous turbulence
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Figure 2. Profiles of (a) energy Q̄ii(s)/2 and (b) pre-multiplied energy density sQ̃ii(s)/2 as functions of s in
the cases of one- and three-dimensional filtering.

constant value, as shown in (3.6b). The profile of sQ̃ii(s)/2 is very similar to that of the
energy density rE(r) examined by Hamba (2018), and plays a similar role as the energy
spectrum E(k).

4. Energy density in turbulent channel flow

To investigate the homogeneous and inhomogeneous parts of the energy density, we
examine the DNS data of a turbulent channel flow. The simulation was carried out as
follows. The size of the computational domain was Lx × Ly × Lz = 4π × 2 × 2π, where
x, y and z denote the streamwise, wall-normal and spanwise directions, respectively. The
number of grid points was Nx × Ny × Nz = 2048 × 448 × 2048. The Reynolds number
based on the friction velocity uτ and the channel half-width Ly/2 was set to Reτ = 1000.
Hereafter, the physical quantities were non-dimensionalised by uτ and Ly/2. Periodic
boundary conditions were used in the streamwise and spanwise directions, and no-slip
conditions were imposed at the wall at y = 0 and y = 2. We used the fourth-order
finite-difference scheme in the x- and z-directions, the second-order scheme in the
y-direction in space, and the Adams–Bashforth method for time marching. Statistical
quantities were obtained by averaging over the x–z plane and over a time period of 30.
Because the channel flow was homogeneous in the x- and z-directions, and inhomogeneous
in the y-direction, the statistical quantities were only dependent on y.

In this section, we consider both cases of one- and three-dimensional filtering. The
choice of the dimension and direction of the filtering is arbitrary; any filtering can be used.
In the one-dimensional case, the estimate is rather simple and inhomogeneous properties
are clearly observed, as will be shown later. The results can be compared with those of
Hamba (2018), where one-dimensional filtering was used to obtain the energy density
E( y, ry). In contrast, three-dimensional filtering is appropriate for assessing the inter-scale
energy transfer in channel flow because the energy cascade in the three-dimensional
spectrum is often discussed for homogeneous isotropic turbulence.

First, we describe the filtered velocities and energy density with one-dimensional
filtering in the y-direction. The filtered velocity ūi(x, s) is defined as

ūi(x, y, z, s) =
∫ 2

0
dy′ Ḡ( y, y′, s)ui(x, y′, z). (4.1)

The filter function given by (2.13) satisfies the diffusion equation (2.18a) in the region at
−∞ < x < ∞. Because the integral region is limited to 0 � y � 2 in the channel flow,
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Figure 3. Profiles of turbulent energy K and its three parts given by (4.6) in the case of one-dimensional
filtering as functions of y (a) at 0 < y < 1 and (b) at 0 < y+ < 50.

the filter function must be modified near the boundary at y = 0 and y = 2. We redefine the
filter function as the solution of the following diffusion equation:

∂

∂s
Ḡ( y, y′, s) = 1

2
∂2

∂y2 Ḡ( y, y′, s), Ḡ( y, y′, 0) = δ( y − y′), (4.2a,b)

with some adequate boundary conditions at y = 0 and y = 2. We adopt two boundary
conditions

∂

∂y
Ḡ( y, y′, s) = 0 (4.3)

for ūx and ūz, and

Ḡ( y, y′, s) = 0 (4.4)

for ūy to satisfy the solenoidal condition ∂ ūi/∂xi = 0 (see Appendix D for details). When
the distance from the wall is much greater than the length scale s1/2, the filter function
obtained from (4.2a,b) agrees with (2.13). From (2.28), the energy density in the scale
space can be written as

1
2

Q̂ii( y, s) = 1
2

Q̃ii( y, s)− 1
4
∂2

∂y2 Q̄ii( y, s), (4.5)

where the first and second terms on the right-hand side are the homogeneous and
inhomogeneous parts, respectively. Integrating each term in (4.5) with respect to s, we
have

K( y) =
∫ ∞

0
ds

1
2

Q̃ii( y, s)−
∫ ∞

0
ds

1
4
∂2

∂y2 Q̄ii( y, s)+ 1
2

Q̄ii( y,∞). (4.6)

The turbulent energy can be divided into homogeneous, inhomogeneous and residual parts
in (4.6). The residual part Q̄ii( y,∞)/2 (=〈ūi(x,∞)ūi(x,∞)〉/2) appears in (4.6) because
ūi(x,∞) = 0 was not assumed.

Figure 3 shows the profiles of the turbulent energy and its three parts given by (4.6) as
functions of y. The residual part Q̄ii( y,∞)/2 shows a small but non-zero value. This is
because the integral region of the one-dimensional filtering given by (4.1) is limited to 0 �
y � 2 and the filtered velocity ūi(x,∞) is not always negligible. The homogeneous part
is greater than the inhomogeneous part, but the latter shows a rather large value near the
wall and at the channel centre. The positive and negative values of the inhomogeneous part
can be roughly understood by considering the second derivative of K instead of that of the
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Figure 4. Profiles of pre-multiplied homogeneous part sQ̃ii( y, s)/2 in the case of one-dimensional filtering:
(a) contour plots in the s–y plane and (b) profiles as functions of s at four y locations.

integral
∫∞

0 ds Q̄ii( y, s). In the core region at 0.6 < y < 1, the inhomogeneous part shows
a negative value because K has a concave profile. Near the wall at 10 < y+(=yuτ /ν) <
20, it shows a positive value because K has a convex profile. Very close to the wall at
0 < y+ < 5, it shows a negative value once again because of the concave profile of K.
Therefore, the inhomogeneous effect in the viscous sublayer 0 < y+ < 5 is opposite to
that in the buffer layer y+ > 10 in figure 3(b).

Next, we examine the homogeneous part of the energy density, Q̃ii( y, s)/2, appearing in
(4.5). Figure 4(a) shows the contours of the pre-multiplied quantity sQ̃ii( y, s)/2 in the s–y
plane. The peak is located at s = 3.2 × 10−4 and y = 0.036 (y+ = 36). The peak location
with respect to s increased as y increased. The contour plots of sQ̃ii( y, s)/2 are very similar
to those of ryE( y, ry) shown by Hamba (2018). The difference is that the latter shows a
negative value in the region very close to the wall, whereas the former is non-negative
because of its definition. Figure 4(b) shows the profiles of sQ̃ii( y, s)/2 as functions of
s at four y locations. The shift of the peak towards large scales is clearly shown. The
profile for y = 0.79 in the core region is similar to that of the homogeneous isotropic
turbulence shown in figure 2(b) because the local Reynolds number is rather large. The
profiles quickly decay at s > 1, unlike in the case of homogeneous isotropic turbulence,
because the integral region is limited to 0 � y � 2 in the channel flow.

Although the homogeneous part is non-negative, the energy density Q̂ii( y, s)/2 can
be negative because of the inhomogeneous part. We examined the homogeneous and
inhomogeneous parts of the energy density at a fixed y location. Figure 5 shows the profiles
of the pre-multiplied energy density and its two parts given by (4.5) as functions of s
at two y locations. In figure 5(a) for y+ = 29, the homogeneous part is positive in the
entire s region, whereas the inhomogeneous part shows both positive and negative values.
Because the inhomogeneous part is not very large, the total value is always positive. In
contrast, in figure 5(b) for y+ = 2.9, the inhomogeneous part has a large negative value at
s ∼ 10−4, and the resulting total value also shows a negative value. Therefore, the energy
density Q̂ii( y, s)/2 can be negative in the region very close to the wall because of the
inhomogeneous effect.

As shown in figure 5, the inhomogeneous part changes its sign as s increases. Its sign
is closely related to the profile of the energy Q̄ii( y, s)/2, as shown by (4.5). Figure 6
shows the profiles of Q̄ii( y, s)/2 as functions of y for four scales. The vertical line denotes
the location at y+ = 29, where the energy density is plotted in figure 5(a). The energy
Q̄ii( y, s)/2 for s = 0 corresponds to the turbulent energy K. The energy for s = 10−4

shows a convex profile at y+ = 29, which leads to a positive value for the inhomogeneous

931 A34-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1000


F. Hamba

1.0 0.4

0.2

–0.2

–0.4

–0.6

–0.8

0

0.8

0.6

0.4

0.2

–0.2
10–7 10–5 10–3 10–1 101 10–7 10–5 10–3 10–1 101

0

s s

sQ̃
ii(
y,

 s)
/2

(a) (b)
Total

Homogeneous

Inhomogeneous

Figure 5. Profiles of pre-multiplied energy density sQ̂ii( y, s)/2 and its two parts given by (4.5) in the case of
one-dimensional filtering as functions of s (a) for y+ = 29 and (b) for y+ = 2.9.
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Figure 6. Profiles of energy Q̄ii( y, s)/2 in the case of one-dimensional filtering for four scales as functions of
y (a) at 0 < y < 1 and (b) at 0 < y+ < 100. The vertical lines denote the location at y = 0.029 (y+ = 29).

part at s = 10−4 in figure 5(a). However, the energy for s = 10−3 shows a slightly concave
profile, which leads to a negative value for the inhomogeneous part at s = 10−3. Despite
the very small variations, the energy for s = 10−2 has a convex profile that leads to a
positive value at s = 10−2.

The energy Q̄ii( y, s)/2 is half the variance of the filtered velocity ūi(x, s), which is
affected by the original velocity ui(x′) in the region where Ḡ( y − y′, s) has a certain
positive value. Here, we compare the profiles of Ḡ( y − y′, s) and the velocity field,
and discuss the reasons why the energy Q̄ii( y, s)/2 shows different profiles depending
on s. Figure 7 shows the profiles of the turbulent energy K and the filter function
Ḡ( y − 0.029, s) for three scales as functions of y+. The vertical line denotes the location
at y+ = 29 (y = 0.029). As shown in (D4) and (D5) in Appendix D, it is considered that at
y < 0, the velocity components ux and uz have mirror-symmetric profiles with respect to
the wall. To represent their intensity, we plot a mirror-symmetric profile of K in figure 7.
The profile of K has two peaks at y+ = ±18 and a deep valley at y+ = 0. The reason
for the dependence of the profile of Q̄ii( y, s)/2 on s can be explained as follows. In
the case of s = 10−4, only the peak at y+ = 18 is located within the non-zero region of
Ḡ( y − 0.029, s), which leads to a convex profile of Q̄ii( y, s)/2 for s = 10−4, as shown
in figure 6. In the case of s = 10−3, both the peak at y+ = 18 and the deep valley at
y+ = 0 are located in the region. The strong effect of the valley gives rise to a concave
profile of Q̄ii( y, s)/2 for s = 10−3. In the case of s = 10−2, the profile of Ḡ( y − 0.029, s)
is so wide that the total of two peaks and one valley can effectively act as one peak,
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which could lead to a convex profile of Q̄ii( y, s)/2 for s = 10−2. Therefore, Q̄ii( y, s)/2
at y+ = 29 shows different profiles depending on s. A similar explanation is possible for
Q̄ii( y, s)/2 at y+ = 2.9. In this case, the effect of the valley at y+ = 0 is so significant
that the inhomogeneous part shows a large negative value at 10−5 < s < 10−4, as shown
in figure 5(b).

The inhomogeneous part represents the explicit effect of inhomogeneity as discussed
above. At the same time, the effect of inhomogeneity is also present in the homogenous
part because of the inhomogeneous distribution of the velocity variance. In figure 3, the
homogeneous part shows an inhomogeneous profile and its peak location is apart from the
wall compared with the peak of the kinetic energy. The peak of sQ̃ii( y, s)/2 in figure 4
occurs at (s+)1/2 � 18 for y+ = 36. The length scale (s+)1/2 is approximately half the
distance to the wall and suggests the effect of the wall on the size of eddies.

So far, we have examined the homogeneous and inhomogeneous parts of the energy
density in the case of one-dimensional filtering. To assess the properties of channel flow
corresponding to the three-dimensional energy spectrum, three-dimensional filtering is
adopted here. In the case of three-dimensional filtering, the filtered velocity ūi(x, s) is
defined as

ūi(x, s) =
∫ 4π

0
dx′
∫ 2

0
dy′
∫ 2π

0
dz′ Ḡ(x, x′, s)ui(x′). (4.7)

The homogeneous and inhomogeneous parts of the energy density and turbulent energy
are given by (4.5) and (4.6), respectively. These are the same equations as in the
one-dimensional case because the averaged quantities are only dependent on y, and their
derivatives with respect to x and z disappear. Figure 8 shows the profiles of the turbulent
energy and its three parts given by (4.6) as functions of y. The residual part Q̄ii( y,∞)/2
is negligibly small because ūi(x,∞) is very small in the three-dimensional case. The
magnitude of the inhomogeneous part is also small compared with the one-dimensional
case, while the homogeneous part is nearly equal to the total value. The inhomogeneous
effect of the turbulent energy at remote positions decreased in the three-dimensional case
because the energy density at large scales decreased, as shown in figure 2(b). Nevertheless,
the inhomogeneous part shows a large negative value in the region very close to the wall
at y+ < 10, as shown in figure 8(b).
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Figure 8. Profiles of turbulent energy K and its three parts given by (4.6) in the case of three-dimensional
filtering as functions of y (a) at 0 < y < 1 and (b) at 0 < y+ < 50.
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Figure 9. Profiles of the pre-multiplied homogeneous part sQ̃ii( y, s)/2 in the case of three-dimensional
filtering: (a) contour plots in the s–y plane and (b) profiles as functions of s at four y locations.

Next, we examine the homogeneous part of the energy density, Q̃ii( y, s)/2, which
appears in (4.5). Figure 9(a) shows the contours of the pre-multiplied quantity sQ̃ii( y, s)/2
in the s–y plane. The peak is located at s = 1.1 × 10−4 and y = 0.026 (y+ = 26). The scale
s is smaller and the y location is closer to the wall compared with the one-dimensional case
shown in figure 4(a). The peak location with respect to s increases as y increases, as in the
case shown in figure 4(a). Figure 9(b) shows the profiles of sQ̃ii( y, s)/2 as functions of
s at four y locations. The values of the homogeneous part are greater than those of the
one-dimensional case shown in figure 4(b), whereas their peak locations shift towards
smaller scales. This situation is the same as the energy density for homogeneous isotropic
turbulence shown in figure 2(b).

Figure 10 shows the profiles of the pre-multiplied energy density sQ̂ii( y, s)/2 and its
two parts given by (4.5) as functions of s at two y locations. The relative importance of the
inhomogeneous part is small compared with the one-dimensional case shown in figure 5.
In particular, the positive profiles of the inhomogeneous part at large scales shown in
figure 5 disappear in figure 10. Nevertheless, in figure 10(b), a large negative value of the
inhomogeneous part at small scales leads to a negative value of the total or the energy
density Q̂ii( y, s)/2 at y+ = 2.9, even in the three-dimensional case.

Figure 11 shows the profiles of Q̄ii( y, s)/2 as functions of y for four scales. The vertical
line denotes the location at y+ = 29 (y = 0.029). As in the case in figure 6, a convex
profile for s = 10−4 and a concave profile for s = 10−3 at y+ = 29 can account for the
positive and negative values of the inhomogeneous part shown in figure 10(a), respectively.
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Figure 10. Profiles of pre-multiplied energy density sQ̂ii( y, s)/2 and its two parts given by (4.5) in the case
of three-dimensional filtering as functions of s (a) for y+ = 29 and (b) for y+ = 2.9.
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Figure 11. Profiles of energy Q̄ii( y, s)/2 in the case of three-dimensional filtering for four scales as functions
of y (a) at 0 < y < 1 and (b) at 0 < y+ < 100. The vertical lines denote the location at y = 0.029 (y+ = 29).

Similarly, a concave profile of Q̄ii( y, s)/2 for s = 10−4 at y+ = 2.9 leads to a large
negative value for the inhomogeneous part, as shown in figure 10(b), which can account
for the negative value of the energy density Q̂ii( y, s)/2 at y+ = 2.9.

As shown in figure 8, the turbulent energy K disappears at y = 0, whereas the
homogeneous and inhomogeneous parts show positive and negative values, respectively.
Although the no-slip condition causes the velocity to disappear at y = 0, the filtered
velocities do not disappear because the velocity at y > 0 contributes to some extent; the
homogeneous part of the turbulent energy can take a positive value at the wall. It is well
known that the energy dissipation rate ε takes a positive value at the wall although the
turbulent energy K itself disappears. In the budget equation of K, a negative value of the
dissipation term is balanced by a positive value of the viscous diffusion term. This budget
indicates that the energy that flowed in by viscous diffusion dissipated at the wall. We can
consider that the energy that flows in creates the positive homogeneous part at the wall
and then the latter dissipates owing to the viscosity. In fact, the value of the homogeneous
part of the energy density for s = 0 is closely related to the dissipation rate, as shown in
(3.6b).

Here, we attempt to understand the physical meaning of the inhomogeneous part of the
energy density by considering the diffusion equation. We consider the one-dimensional
case again for simplicity. As shown in Appendix A, the variance Q̄ii(x, s) also satisfies the
diffusion equation given by (A5). Solving the diffusion equation, we obtain an expression
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for Q̄ii(x, s) in (A6). By differentiating (A6) with respect to s, we obtain

1
2 Q̂ii(x, s) = 1

2 Q̃ii(x, s)−
∫ s

0
ds′
∫ ∞

−∞
dx′ Ĝ(x − x′, s − s′)1

2 Q̃ii(x′, s′)

+
∫ ∞

−∞
dx′ Ĝ(x − x′, s)K(x′). (4.8)

We can see that the inhomogeneous part that appears in (2.28) is further divided into
two parts: the second and third terms on the right-hand side of (4.8). If the turbulence
is homogeneous and the averaged quantities are not dependent on x, then the second
and third terms disappear because

∫∞
−∞ dx′ Ĝ(x − x′, s) = 0. Equation (4.8) implies that

the inhomogeneous part consists of the term representing the inhomogeneity of the
homogeneous part Q̃ii(x′, s′)/2 and the term representing that of the turbulent energy
K(x′). In particular, the expression suggests that for the scale decomposition of the
turbulent energy K at position x, not only the homogeneous part Q̃ii(x, s)/2 at the same
position but also that at remote positions are necessary. This non-local contribution is
similar to the expression for ui(x) in terms of ũi(x, s) given by (2.22). Therefore, if the
contribution from remote positions is allowed to reconstruct the turbulent energy K, the
homogeneous part Q̃ii(x, s)/2 can also be interpreted as the energy density itself. In fact,
the volume integral of the turbulent energy is equal to the volume and scale integrals of
Q̃ii(x, s)/2, even for inhomogeneous turbulence, as follows:∫

V
dx K(x) =

∫
V

dx
∫ ∞

0
ds 1

2 Q̃ii(x, s), (4.9)

where boundary terms are omitted.
In addition to the second-order statistics examined in the present analysis, the third-order

statistics are also important. The third-order moments including the energy flux in the
scale space must be useful in examining the energy transport in channel flow. In fact, an
inverse energy cascade in channel flow was observed in the analysis of the generalised
Kolmogorov equation (Cimarelli et al. 2013, 2016) and in that of the previous energy
densities (Hamba 2015, 2018). The energy flux in the scale space based on the present
formulation and its relation to the inhomogeneity should be investigated in future work.

5. Conclusions

A new expression for the energy density in the scale space is proposed using three filtered
velocities. The new expression consists of homogeneous and inhomogeneous parts. The
homogeneous part is expressed in terms of the variance of the filtered velocity and is
always non-negative. The inhomogeneous part is proportional to the second derivative of
the variance of the filtered velocity. The energy density is non-negative for homogeneous
turbulence because only the homogeneous part remains non-zero. It is shown that the
turbulence inhomogeneity can cause a negative value of the energy density. By integrating
the energy density with respect to scale, we obtain an expression for the turbulent kinetic
energy that is also decomposed into homogeneous and inhomogeneous parts.

DNS data of homogeneous isotropic turbulence were first used to evaluate the
homogeneous part of the energy density. The profiles of the energy density as functions
of scale were compared between cases of one- and three-dimensional filtering. The
homogeneous part plays a similar role as the energy spectrum. DNS data of a turbulent
channel flow were then used to evaluate the homogeneous and inhomogeneous parts of
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the energy density and turbulent energy. In the case of one-dimensional filtering, the
inhomogeneous part of the turbulent energy showed fairly large values near the wall and at
the channel centre. The contour plots of the homogeneous part of the energy density were
similar to those of the previous energy density. The inhomogeneous part of the energy
density changed its sign depending on the scale. Its positive and negative values were
determined by the convex and concave profiles of the filtered-velocity variance near the
wall, respectively. It was shown that a concave profile of the filtered-velocity variance at
the wall accounts for the negative value of the energy density in the region very close to the
wall. In the case of three-dimensional filtering, the value of the inhomogeneous part of the
turbulent energy is relatively small. Nevertheless, the homogeneous and inhomogeneous
parts of the energy density show profiles similar to those in the one-dimensional case.

We formulated the scale decomposition of the turbulent energy using filtered velocities
in a systematic manner. The variations in the filtered velocity and its variance with
increasing scale are related to the diffusion equations. One of the filtered velocities
corresponds to a continuous wavelet transform of the velocity field. This formulation is
expected to pave the way for a better understanding of inhomogeneous turbulence. For
example, the energy transfer between different scales and the scale decomposition of
two-point correlations should be examined in future work. It would also be interesting
to formulate a statistical theory using filtered velocities to improve the turbulence models.
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Appendix A. Diffusion equations for filtered velocity and its variance

We consider the following diffusion equation for θ(x, t) at −∞ < x < ∞:

∂

∂t
θ(x, t) = ν

∂2

∂x2 θ(x, t)+ θS(x, t), (A1)

where ν is the diffusivity and θs(x, t) is a source term. The solution of (A1) can be
expressed in terms of the source term and initial value as follows:

θ(x, t) =
∫ t

0
dt′
∫ ∞

−∞
dx′ 1

[4πν(t − t′)]1/2 exp

[
− (x − x′)2

4ν(t − t′)

]
θS(x′, t′)

+
∫ ∞

−∞
dx′ 1

(4πνt)1/2
exp

[
−(x − x′)2

4νt

]
θ(x′, 0). (A2)

As shown in (2.18b), the filtered velocity ūi(x, s) satisfies

∂

∂s
ūi(x, s) = 1

2
∂2

∂x2 ūi(x, s). (A3)

If we consider the scale s as the time, (A3) can be the diffusion equation where the
viscosity ν is 1/2 and no source term is involved. The solution of (A3) can then be
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written as

ūi(x, s) =
∫ ∞

−∞
dx′ 1

(2πs)1/2
exp

[
−(x − x′)2

2s

]
ūi(x′, 0) =

∫ ∞

−∞
dx′ Ḡ(x − x′, s)ui(x′),

(A4)

which agrees with (2.16). In general, the profile of the filtered velocity becomes smoother
as the scale increases. Such a variation of the profile with increasing scale is expressed in
terms of the time evolution of the diffusion equation solution.

Equation (2.28) shows that the variance Q̄ii(x, s) also satisfies the diffusion equation

∂

∂s
Q̄ii(x, s) = 1

2
∂2

∂x2 Q̄ii(x, s)− Q̃ii(x, s), (A5)

where the source term is given by the homogeneous part of the energy density. The solution
of (A5) can be written as

Q̄ii(x, s) = −
∫ s

0
ds′
∫ ∞

−∞
dx′ 1

[2π(s − s′)]1/2 exp

[
−(x − x′)2

2(s − s′)

]
Q̃ii(x′, s′)

+
∫ ∞

−∞
dx′ 1

(2πs)1/2
exp

[
−(x − x′)2

2s

]
Q̄ii(x′, 0)

= −
∫ s

0
ds′
∫ ∞

−∞
dx′ Ḡ(x − x′, s − s′)Q̃ii(x′, s′)+

∫ ∞

−∞
dx′ Ḡ(x − x′, s)Qii(x′).

(A6)

By differentiating (A6) with respect to s, we obtain (4.8).

Appendix B. Filtered velocity and continuous wavelet transform

The continuous wavelet transform of f (x) and its inverse transform are written as
(Daubechies 1992)

(Wψ f )(b, a) = 1√
a

∫ ∞

−∞
f (x)ψ

(
x − b

a

)
dx, (B1)

f (x) = 2
Cψ

∫ ∞

0

[∫ ∞

−∞
(Wψ f )(b, a)

1√
a
ψ

(
x − b

a

)
db
]

da
a2 , (B2)

respectively, where ·̄ denotes the complex conjugate and

Cψ =
∫ ∞

−∞
dk
∣∣∣ψ̂(k)∣∣∣2/ |k| , ψ̂(k) =

∫ ∞

−∞
dxψ(x) exp(−ikx). (B3a,b)

The filtered velocity ũi(x, s) defined as (2.20) can be considered a continuous wavelet
transform of ui(x) as follows:

ũi(x, s) = 1

(2s)3/4
(Wψui)(x, (2s)1/2), (B4)

with

ψ(x) = 2√
π

x exp(−x2). (B5)

In contrast to the wavelet analysis of turbulence, where even Mexican-hat-type functions
are frequently used for ψ(x) (Farge 1992; Schneider & Vasilyev 2010), an odd function

931 A34-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1000


Scale-space energy density for inhomogeneous turbulence

was used in (B5). A similar wavelet function was used by Altaisky et al. (2018) to analyse
the stirring force of the statistical theory of turbulence.

Appendix C. Formulation in the case of three-dimensional filtering

In the case of three-dimensional filtering, the first filtered velocity is defined as

ūi(x, s) = F̄(s) ∗ ui(x) =
∫

dx′ Ḡ(x − x′, s)ui(x′), (C1)

where

Ḡ(x − x′, s) = 1

(2πs)3/2
exp

[
−(x − x′)2

2s

]
,

∫
dx =

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz.

(C2a,b)

By differentiating (C2) with respect to s, we can obtain the second filtered velocity

ûi(x, s) ≡ − ∂

∂s
ūi(x, s) = F̂(s) ∗ ui(x) =

∫
dx′ Ĝ(x − x′, s)ui(x′), (C3)

where

Ĝ(x − x′, s) ≡ − ∂

∂s
Ḡ(x − x′, s) = 1

(2πs)3/2

[
3
2s

− (x − x′)2

2s2

]
exp

[
−(x − x′)2

2s

]
.

(C4)

The filter function and filtered velocity satisfy the three-dimensional diffusion equations
as follows:

∂

∂s
Ḡ(x − x′, s) = 1

2
∂2

∂x2
j

Ḡ(x − x′, s),
∂

∂s
ūi(x, s) = 1

2
∂2

∂x2
j

ūi(x, s). (C5a,b)

The third filtered velocity can be defined as

ũ(j)i (x, s) ≡ ∂

∂xj
ūi(x, s) = F̃(j)(s) ∗ ui(x) =

∫
dx′G̃(j)(x − x′, s)ui(x′), (C6)

where

G̃(j)(x − x′, s) ≡ ∂

∂xj
Ḡ(x − x′, s) = − 1

(2πs)3/2
xj − x′

j

s
exp

[
−(x − x′)2

2s

]
. (C7)

It should be noted that the third filtered velocity is effectively the velocity gradient with
three components j = 1, 2, 3. The original velocity can be given by obtaining the sum over
j as follows:

ui(x) = −
∫ ∞

0
dsF̃(j)(s) ∗ ũ(j)i (x, s) = −

∫ ∞

0
ds
∫

dx′ G̃(j)(x − x′, s)ũ(j)i (x
′, s). (C8)

Finally, the homogeneous and inhomogeneous parts of the energy density are expressed in
a similar manner as

1
2

Q̂ii(x, s) = 1
2

Q̃ii(x, s)− 1
4
∂2

∂x2
k

Q̄ii(x, s). (C9)

931 A34-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1000


F. Hamba

Appendix D. Treatment of filter function at the wall

We consider the 0 < y < ∞ region, where the wall is located at y = 0. We then define the
one-dimensional filtered velocity as

ūi(x, y, z, s) =
∫ ∞

0
dy′ Ḡ( y, y′, s)ui(x, y′, z). (D1)

The filter function given by (2.13) can be used apart from the wall, where y is much greater
than s1/2, whereas some modifications are required near the wall. Here, we assume that
the filter function is a solution of (4.2a,b) with some boundary conditions at y = 0. The
first candidate of the boundary condition is

∂

∂y
Ḡ( y, y′, s) = 0, (D2)

which is a type of free-slip condition. This is adequate because the following condition is
satisfied:

∫ ∞

0
dy′ Ḡ( y, y′, s) = 1. (D3)

The use of the free-slip condition is equivalent to the situation in which a mirror-symmetric
velocity profile exists at y < 0 as

ui(x, y, z) = ui(x,−y, z), ( y < 0). (D4)

Therefore, the filter function obtained from (4.2a,b) with (D2) is equivalent to the
summation of the two original filter functions as follows:

ūi(x, y, z, s) =
∫ ∞

0
dy′ Ḡ( y − y′, s)ui(x, y′, z)+

∫ 0

−∞
dy′ Ḡ( y − y′, s)ui(x,−y′, z)

=
∫ ∞

0
dy′(Ḡ( y − y′, s)+ Ḡ( y + y′, s))ui(x, y′, z). (D5)

In this study, we adopt this type of filter function for ūx and ūz, but not for ūy. This is
because the x and z derivatives are commutative with the filtering but the y derivative is
not, as follows:

∂

∂x
ūi(x, y, z, s) =

∫ ∞

0
dy′(Ḡ( y − y′, s)+ Ḡ( y + y′, s))

∂

∂x
ui(x, y′, z), (D6)

∂

∂y
ūi(x, y, z, s) =

∫ ∞

0
dy′(Ḡ( y − y′, s)− Ḡ( y + y′, s))

∂

∂y′ ui(x, y′, z), (D7)

and the solenoidal condition ∂ ūi/∂xi = 0 cannot be satisfied.
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We then consider the second boundary condition

Ḡ( y, y′, s) = 0, (D8)

which is a type of no-slip condition. This is equivalent to the situation in which an
anti-mirror-symmetric velocity profile exists at y < 0 as

ui(x, y, z) = −ui(x,−y, z), ( y < 0), (D9)

and the filtered velocity is written as

ūi(x, y, z, s) =
∫ ∞

0
dy′ Ḡ( y − y′, s)ui(x, y′, z)−

∫ 0

−∞
dy′ Ḡ( y − y′, s)ui(x,−y′, z)

=
∫ ∞

0
dy′(Ḡ( y − y′, s)− Ḡ( y + y′, s))ui(x, y′, z). (D10)

The y derivative of (D10) can then be written as

∂

∂y
ūi(x, y, z, s) =

∫ ∞

0
dy′(Ḡ( y − y′, s)+ Ḡ( y + y′, s))

∂

∂y′ ui(x, y′, z), (D11)

where the filter functions are the same as those in (D6). Therefore, we adopt the filter
function with the boundary condition in (D8) for ūy to satisfy the solenoidal condition
∂ ūi/∂xi = 0.
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