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Let n be a positive integer. Then we know that!, if m > — 1,
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Consider the integral
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On integrating term by term, we get
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In a similar manner, we can prove the following results:
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1 Equation (1) follows at once by putting =z = 1 — 2y2, using Rodrigues’ formula for
P, (x), and integrating n times by parts. Cf. Cooke, Proc. London Math. Sec., 23
(1924), xix, equ. (3).

2 The process of arrangement and term by term integration can be easily justitied.
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