
11
Momentum measurement and muon

detection

I think that a particle must have a separate reality independent of the
measurements. That is, an electron has spin, location, and so forth even

when it is not being measured. I like to think that the moon is there
even if I am not looking at it.

Albert Einstein

Momentum measurement and, in particular, muon detection is an impor-
tant aspect of any experiment of particle physics, astronomy or astro-
physics. Ultra-high-energy cosmic rays are currently at the forefront of
astroparticle physics searching for the accelerators in the sky. These ques-
tions can be studied by the detection of extensive air showers at ground
level by measuring secondary electrons, muons and hadrons produced by
primary cosmic rays which initiate hadronic cascades in the Earth’s atmo-
sphere. The detectors have to operate for many years in order to map the
galactic sources of high-energy cosmic rays which may be visible at the
experimental sites. There are several experiments dedicated to studying
these air showers that employ large detector arrays for electron and muon
detection. Apart from water Cherenkov and scintillation counters, typical
detectors such as limited streamer tubes [1] and resistive-plate chambers
are also used [2].

In the field of high energy physics, over the last several decades many
outstanding discoveries have been made from the studies of muons along
with other precision measurements of leptons and hadrons. Notable are
the determination of the number of neutrino generations by the LEP
detectors, charm production (J/ψ), the observation of the electroweak
bosons (W±, Z), and the top quark (t). Although these particles have
higher branching ratios for their hadronic decay channels, it is diffi-
cult to measure and isolate hadrons. At the time of the writing of this
book – the Large Hadron Collider is under construction (at CERN,
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328 11 Momentum measurement and muon detection

Geneva) – advances in the understanding of the Standard Model of par-
ticle physics have led to believe that the physics of Higgs particles as
well as new phenomena, like supersymmetry, should show up at a mass
scale of approximately a few TeV. ATLAS, CMS, ALICE and LHCb are
experiments having large, i.e. several thousand square metres of muon-
detection surfaces to signal the presence of new physics. Also precision
experiments like Belle and BaBar looking into B physics have to rely
on efficient muon identification and accurate momentum measurement.
Muons can be identified by the large penetrating power and the relevant
parameters to be measured very precisely are energy and momentum.
Energies of muons beyond the TeV range can be measured with calori-
metric techniques, because the energy loss at high energies is dominated
by bremsstrahlung and direct electron-pair production, both of which
processes are proportional to the muon energy.

The momenta of muons, just as for all charged particles, are usually
determined in magnetic spectrometers. The Lorentz force causes the par-
ticles to follow circular or helical trajectories around the direction of the
magnetic field. The bending radius of particle tracks is related to the
magnetic field strength and the momentum component of the particle per-
pendicular to the magnetic field. Depending on the experimental situation,
different magnetic spectrometers are used.

11.1 Magnetic spectrometers for fixed-target experiments

The basic set-up of a magnetic spectrometer for fixed-target experiments
(in contrast to storage-ring experiments) is sketched in Fig. 11.1. Particles

x

y

z

beam

target

track-defining
chambers

track-defining
chambers

magnet

L

Fig. 11.1. Schematic representation of a magnetic spectrometer in a fixed-target
experiment with a stationary target.
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11.1 Magnetic spectrometers for fixed-target experiments 329

of known identity and also, in general, of known energy are incident on
a target thereby producing secondary particles in an interaction. The
purpose of the spectrometer is to measure the momenta of the charged
secondary particles.

Let the magnetic field B be oriented along the y axis, �B = (0, By, 0),
whereas the direction of incidence of the primary particles is taken to
be parallel to the z axis. In hadronic interactions typical transverse
momenta of

pT ≈ 350 MeV/c (11.1)

are transferred to secondary particles, where

pT =
√
p2

x + p2
y . (11.2)

Normally, px, py � pz, where the momenta of outgoing particles are
described by �p = (px, py, pz). The trajectories of particles incident into the
spectrometer are determined in the most simple case by track detectors
before they enter and after they have left the magnet. Since the magnetic
field is oriented along the y axis, the deflection of charged particles is in
the xz plane. Figure 11.2 sketches the track of a charged particle in this
plane.

The Lorentz force provides a centripetal acceleration v2/ρ directed
along the bending radius. We choose our coordinate system in such a
way that the particles incident into the spectrometer are parallel to the
z axis, i.e. |�p| = pz = p, where �p is the momentum of the particle to be

x

z
2

L
2

θ

θ

ρ

Fig. 11.2. Trajectory of a charged particle in a magnet.
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330 11 Momentum measurement and muon detection

measured. One then has (for �p ⊥ �B, where m – mass, v – velocity and
ρ – bending radius of the track in the magnetic field):

mv2

ρ
= e v By . (11.3)

The bending radius ρ itself is obtained from Eq. (11.3) by

ρ =
p

eBy
. (11.4)

With standard units, which are common in particle and astroparticle
physics, this formula leads to

ρ [m] =
p [GeV/c]
0.3B [T]

. (11.5)

The particles pass through the magnet following a circular trajectory,
where the bending radius ρ, however, is normally very large com-
pared to the magnet length L. Therefore, the deflection angle θ can be
approximated by

θ =
L

ρ
=
L

p
eBy . (11.6)

Because of the magnetic deflection, the charged particles obtain an
additional transverse momentum of

Δpx = p · sin θ ≈ p · θ = LeBy . (11.7)

If the magnetic field varies along L, Eq. (11.7) is generalised to

Δpx = e

∫ L

0
By(l) dl . (11.8)

The accuracy of the momentum determination is influenced by a num-
ber of different effects. Let us first consider the influence of the finite
track resolution of the detector on the momentum determination. Using
Eqs. (11.4) and (11.6), we obtain

p = eBy · ρ = eBy · L
θ
. (11.9)

Since the tracks of ingoing and outgoing particles are straight, the
deflection angle θ is the actual quantity to be measured. Because of∣∣∣∣dpdθ

∣∣∣∣ = eBy L · 1
θ2 =

p

θ
, (11.10)
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Fig. 11.3. Sketch illustrating the determination of the track measurement error.

one has
dp
p

=
dθ
θ

(11.11)

and
σ(p)
p

=
σ(θ)
θ

. (11.12)

Let us assume that to determine the deflection angle, θdef, four track
coordinates are measured, i.e. two in front of and two behind the magnet
(although for a circular orbit three coordinates would in principle be suf-
ficient). If the distance between the sensors in each pair is d (Fig. 11.3),
then the input, output and deflection angles are expressed as:

ϑin ≈ x2 − x1

d
, ϑout ≈ x4 − x3

d
, (11.13)

θdef = ϑout − ϑin ≈ x2 − x1 − x4 + x3

d
. (11.14)

If all track measurements have the same measurement error σ(x), the
variance of the deflection angle is obtained to be

σ2(θ) ∝
4∑

i=1

σ2
i (x) = 4σ2(x) , (11.15)

and

σ(θ) =
2σ(x)
d

. (11.16)

Using Eq. (11.12), this leads to

σ(p)
p

=
2σ(x)
d

p

LeBy
=
p [GeV/c]
0.3L [m]

B [T] · 2σ(x)
d

. (11.17)
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332 11 Momentum measurement and muon detection

From Eq. (11.17) one sees that the momentum resolution σ(p) is pro-
portional to p2. Taking as an example L = 1 m, d = 1 m, B = 1 T and
σx = 0.2 mm, we get

σ(p)
p

= 1.3 · 10−3 p [GeV/c] . (11.18)

Depending on the quality of the track detectors, one may obtain

σ(p)
p

= (10−3 to 10−4) · p [GeV/c] . (11.19)

In cosmic-ray experiments, it has become usual practice to define a
maximum detectable momentum (mdm). This is defined by

σ(pmdm)
pmdm

= 1 . (11.20)

For a magnetic spectrometer with a momentum resolution given by
Eq. (11.19), the maximum detectable momentum would be

pmdm = 1 TeV/c to 10 TeV/c . (11.21)

The momentum measurement is normally performed in an air-gap mag-
net. The effect of multiple scattering is low in this case and influences the
measurement accuracy only at low momenta. Because of the high pene-
trating power of muons, their momenta can also be analysed in solid-iron
magnets. For this kind of application, however, the influence of multiple
scattering cannot be neglected.

A muon penetrating a solid-iron magnet of thickness L obtains a
transverse momentum ΔpMS

T due to multiple scattering according to

ΔpMS
T = p · sin θrms ≈ p · θrms = 19.2

√
L

X0
MeV/c (11.22)

(Fig. 11.4 and Eq. (1.53) for p � m0c and β ≈ 1).

p

iron

MS
p T

Fig. 11.4. Illustration of the multiple-scattering error.
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Since the magnetic deflection is in the x direction, only the multiple-
scattering error projected onto this direction is of importance:

ΔpMS
x =

19.2√
2

√
L

X0
MeV/c = 13.6

√
L

X0
MeV/c . (11.23)

The momentum resolution limited by the effect of multiple scattering is
given by the ratio of the deflection by multiple scattering to the magnetic
deflection according to [3]

σ(p)
p

∣∣∣∣MS

=
ΔpMS

x

Δpmagn
x

=
13.6

√
L/X0 MeV/c

e
∫ L

0 By(l) dl
. (11.24)

Both the deflection angle θ caused by the Lorentz force and the multiple-
scattering angle are inversely proportional to the momentum. Therefore,
the momentum resolution in this case does not depend on the momentum
of the particle.

For solid-iron magnetic spectrometers (X0 = 1.76 cm) typical values of
B = 1.8 T are used, leading to a momentum resolution of, see Eq. (11.24),

σ(p)
p

∣∣∣∣MS

= 0.19 · 1√
L [m]

. (11.25)

This gives for L = 3 m

σ(p)
p

∣∣∣∣MS

= 11% . (11.26)

This equation only contains the effect of multiple scattering on the
momentum resolution. In addition, one has to consider the momentum-
measurement error from the uncertainty of the position measurement.
This error can be obtained from Eq. (11.17) or from the determination of
the sagitta (Fig. 11.5) [4]. The sagitta s is related to the magnetic bending
radius ρ and the magnetic deflection angle θ by

s = ρ− ρ cos
θ

2
= ρ

(
1 − cos

θ

2

)
. (11.27)

Because of 1 − cos θ
2 = 2 sin2 θ

4 , one obtains

s = 2ρ sin2 θ

4
. (11.28)

Since θ � 1, the sagitta can be approximated by (θ in radians)

s =
ρθ2

8
. (11.29)
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θ ρ

Fig. 11.5. Illustration of the sagitta method for momentum determination [4].

In the following we will replace By by B for simplicity. Using Eqs. (11.9)
and (11.4) for θ and ρ the sagitta can be expressed by

s =
ρ

8
·
(
eBL

p

)2

=
eBL2

8p
. (11.30)

For fixed units one gets

s [m] = 0.3B [T] (L [m])2/(8p [GeV/c]) . (11.31)

The determination of the sagitta requires at least 3 position measure-
ments xi (i = 1, 2, 3). These can be obtained from 3 tracking detectors
positioned at the entrance (x1) and at the exit (x3) of the magnet,
while one chamber could be placed in the centre of the magnet (x2).
Because of

s = x2 − x1 + x3

2
(11.32)

and under the assumption that the track measurement errors σ(x) are
the same for all chambers, it follows that

σ(s) =

√
3
2
σ(x) . (11.33)

This leads to a momentum resolution from track measurement errors of

σ(p)
p

∣∣∣∣track error

=
σ(s)
s

=

√
3
2σ(x) [m] · 8p [GeV/c]

0.3B [T] (L [m])2
. (11.34)
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If the track is measured not only at 3 but at N points equally distributed
over the magnet length L, it can be shown that the momentum resolution
due to the finite track measurement error is given by [5]

σ(p)
p

∣∣∣∣track error

=
σ(x) [m]

0.3B [T] (L [m])2
√

720/(N + 4) · p [GeV/c] . (11.35)

For B = 1.8 T, L = 3 m, N = 4 and σ(x) = 0.5 mm Eq. (11.35) leads to

σ(p)
p

∣∣∣∣track error

≈ 10−3 · p [GeV/c] . (11.36)

If the N measurements are distributed over L in k constant intervals, one
has

L = k ·N (11.37)

and thereby (if N � 4):

σ(p)
p

∣∣∣∣track error

∝ (L [m])−5/2 · (B [T])−1 · p [GeV/c] . (11.38)

To obtain the total error on the momentum determination, the multiple-
scattering and track-resolution error have to be combined. Both contribu-
tions according to Eqs. (11.26) and (11.36) are plotted in Fig. 11.6 for the

30

20

total error
MS

track
error

σ(p)
p

σ(p)
p

10

0
0 100 200

momentum, p  [GeV/c]
300

m
om

en
tu

m
 r

es
ol

ut
io

n,
   

   
   

[%
]

σ(
p) p

Fig. 11.6. Contributions to the momentum resolution for a solid-iron magnetic
spectrometer.
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336 11 Momentum measurement and muon detection

aforementioned parameters of a solid-iron magnetic spectrometer. At low
momenta multiple scattering dominates the error and at high momenta
it is limited by the track measurement error.

For an air-gap magnet the error contribution due to multiple scattering
is naturally much smaller. If Eq. (11.24) is applied to an air-gap magnet,
(X0 = 304 m), one obtains

σ(p)
p

∣∣∣∣MS

= 1.4 · 10−3/
√
L [m] , (11.39)

which means for L = 3 m:

σ(p)
p

∣∣∣∣MS

= 0.08% . (11.40)

For a realistic experiment one has to consider another effect that will
degrade the momentum resolution of muons. In particular, at high energies
muons will undergo electromagnetic interactions, sometimes with large
energy transfers, in the solid-iron magnet, like bremsstrahlung and direct
electron-pair production. In addition, muons can undergo photonuclear
interactions. A monoenergetic muon beam will develop a ‘radiative tail’
due to bremsstrahlung and pair-production losses. The probability for an
energy transfer of more than 10 GeV for a 200 GeV muon in a 2 m long
iron magnet is already 3% [6]. This increases to 12% for a 1 TeV muon in
2 m of iron [7]. The secondaries produced by a muon might also emerge
from the solid-iron magnet, thereby complicating the track reconstruction
of the deflected muon. In rare cases also muon-trident production can
occur, i.e.

μ+ nucleus → μ+ μ+ + μ− + nucleus′ . (11.41)

Figure 11.7 shows such a process initiated by an energetic cosmic-ray
muon in the ALEPH detector.

In such a case it would even be difficult to find the correct outgoing
muon.

11.2 Magnetic spectrometers for special applications

Fixed-target experiments have the advantage that secondary beams can
be produced from a primary target. These secondary beams can consist
of many types of different particles so that one can perform experi-
ments with, e.g. neutrino, muon, photon or K0

L beams. The disadvantage
with fixed-target experiments, however, is that the available centre-of-
mass energy is relatively small. Therefore, investigations in the field of
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Fig. 11.7. Cosmic-ray muon undergoing a muon-trident production in the
ALEPH detector. The muon pair is created in the flux return of the solenoidal
magnetic field. The bending of one of the secondary muons in the iron is seen to
be opposite to the bending in the central detector [8].

high energy physics are frequently done at storage rings. In storage-ring
experiments, the centre-of-mass system is identical with the laboratory
system (for a crossing angle of zero), if the colliding beams have the same
energy and are opposite in momentum. The event rates are in general
rather low because the target density – one beam represents the target
for the other and vice versa – is low compared to fixed-target experi-
ments. There are, however, important differences between collider and
fixed-target experiments: in the first case the interaction products are
emitted into the full solid angle, while in the latter case the products are
released within a narrow cone around the incident direction. Therefore –
in contrast to fixed-target experiments – storage-ring detectors normally
have to cover the full solid angle of 4π surrounding the interaction
point. Such a hermeticity allows a complete reconstruction of individual
events.
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Depending on the type of storage ring, different magnetic-field config-
urations can be considered.

For proton–proton (or pp̄) storage rings dipole magnets can be used,
where the magnetic field is perpendicular to the beam direction. Since
such a dipole also bends the stored beam, its influence must be corrected
by compensation coils. The compensation coils are also dipoles, but with
opposite field gradient, so that there is no net effect on the stored beams.
Such a configuration is rarely used for electron–positron storage rings –
except at relatively low energies [9] – because the strong dipole field would
cause the emission of intense synchrotron radiation, which cannot be tol-
erated for the storage-ring operation and the safe running of the detectors.

A dipole magnet can be made self-compensating if two dipoles with
opposite field gradient on both sides of the interaction point are used
instead of only one dipole. Compensation is automatically fulfilled in this
case, but at the expense of strongly inhomogeneous magnetic fields at the
interaction point which complicate the track reconstruction considerably.
If, on the other hand, toroidal magnets are employed, one can achieve that
the beams traverse the spectrometer in a region of zero field. Multiple
scattering, however, on the inner cylinder of the toroidal magnet limits
the momentum resolution.

In most cases a solenoidal magnetic field is chosen, in which the stored
beams run essentially – apart from small beam crossing angles or beta-
tron oscillations – parallel to the magnetic field (like in Fig. 11.7 [8]).
Therefore, the detector magnet has no influence on the beams, and also
no or very little synchrotron radiation is produced. In either case one has
to consider that any magnetic spectrometer used in the detector becomes
an integral element of the accelerator and should be properly accounted
for and compensated.

The track detectors are mounted inside the magnetic coil and are there-
fore also cylindrical. The longitudinal magnetic field acts only on the
transverse momentum component of the produced particles and leads to
a momentum resolution given by Eq. (11.35), where σ(x) is the coordinate
resolution in the plane perpendicular to the beam axis. Figure 11.8 shows
schematically two tracks originating from the interaction point in a projec-
tion perpendicular to the beam (‘rϕ plane’) and parallel to the beam (‘rz
plane’). The characteristic track parameters are given by the polar angle
θ, the azimuthal angle ϕ and the radial coordinate r, i.e. the distance from
the interaction point. A sketch of a simulated muon-track reconstruction
in the Compact Muon Solenoid (CMS) at CERN is shown in Fig. 11.9 [10].
A simulated event of the production of supersymmetric particles in the
ATLAS experiment with two muons escaping to the left can be seen in
Fig. 11.10 [11].
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Fig. 11.8. Track reconstruction in a solenoid detector (shown for an event
e+e− → μ+μ−).

If N coordinates are measured along a track of total length L with an
accuracy of σrϕ in a magnetic fieldB, the transverse momentum resolution
caused by the track measurement error is found to be [5], see Eq. (11.35),

σ(p)
pT

∣∣∣∣track error

=
σrϕ [m]

0.3B [m] (L [m])2

√
720
N + 4

· pT [GeV/c] . (11.42)

In addition to the track error one has to consider the multiple-scattering
error. This is obtained from Eq. (11.24) for the general case of also non-
relativistic velocities β as

σ(p)
pT

∣∣∣∣MS

= 0.045
1
β

1
B [T]

√
L [m]X0 [m]

, (11.43)

where X0 is the average radiation length of the material traversed by the
particle.

The total momentum of the particle is obtained from pT and the polar
angle θ to be

p =
pT

sin θ
. (11.44)

As in the transverse plane, the measurement of the polar angle contains
a track error and multiple-scattering error.

If the z coordinate in the track detector is determined with an accuracy
σ(z), the error on the measurement of the polar angle can be derived from
a simple geometrical consideration to be

σ(θ) = sin2(θ)
σ(z)
r

= sin(2θ)
σ(z)
2z

. (11.45)
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Fig. 11.9. Sketch demonstrating the particle-identification possibilities in the
CMS experiment at CERN. A muon originating from the vertex is deflected in
the central solenoidal magnet. The backbending of the muon is clearly visible in
the outer magnetic spectrometer [10].
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Fig. 11.10. Event simulation for the production of supersymmetric particles in
ATLAS and reconstruction of the tracks in the various subdetector components
with two energetic muons escaping to the left [11]. The central part of ATLAS
incorporates a solenoidal field, while the outer section of the experiment uses
toroidal magnets.

θ
σ (z)

z

σ (z)

p T

interaction point

Fig. 11.11. Illustration of the polar-angle measurement error for the case of only
two coordinates, defining a track. pT is the transverse momentum to the beam.

(For high-energy particles the particle track in the rz plane is a straight
line, see Fig. 11.11.) If the particle track is measured inN equidistant steps
each with an error σ(z) along the track length L, the angular uncertainty
is obtained to be [4, 5]

σ(θ)|track error =
σ(z)
L

√
12(N − 1)
N(N + 1)

. (11.46)

In this formula z is the projected track length in the z direction which
is normally on the same order of magnitude as the transverse length of
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a track. Equation (11.46) describes only the track measurement error. In
addition, one has to consider the multiple-scattering error which can be
derived from Eq. (1.50) to be

σ(θ)|MS =
0.0136√

3
· 1
p [GeV/c]

·
√

l

X0
, (11.47)

where l is the track length (in units of radiation lengths) and β = 1 is
assumed. The factor 1/

√
3 is motivated in [12, 13].

Gaseous detectors with extremely low transverse mass are generally
used in solenoids. Therefore, the momentum measurement error due
to multiple scattering plays only a minor rôle. Equation (11.42) shows
that the momentum resolution improves with the product BL2. It also
improves for a fixed track length with the number of track measurement
points although only approximately like 1/

√
N .

In the past multiwire proportional chambers or drift chambers have
been used as particle trackers in muon spectrometers. To cover large areas,
streamer tubes with digital readout, muon drift tubes or resistive-plate
chambers – often inserted into slots in the magnetised iron – can be used.
For experiments at the Large Hadron Collider at CERN momentum res-
olutions of Δp/p < 10−4 × p/(GeV/c) for p > 300 GeV/c are envisaged.
Because of their excellent time resolution resistive-plate chambers can also
be used for deriving a muon trigger.

11.3 Problems

11.1 What is the average energy loss of 1 TeV muons in a solid-iron
magnet of 3 m thickness?

11.2 In gaseous detectors track reconstruction is often hindered by
δ electrons which spiral in the magnetic field thus producing
many hits. For LHC experiments track multiplicities of 100
charged particles per beam crossing are not uncommon. Low-
momentum electrons are not so serious because their helices
occupy only a small volume. High-momentum electrons are only
slightly deflected. It is the δ rays with bending radii between 5 cm
and 20 cm that represent problems.

Estimate the number of δ rays with bending radii between
5 cm and 20 cm in a 3 m-diameter argon-filled track detector
at atmospheric pressure for a magnetic field of 2 T. Assume
that the charged particles that create δ rays are very energetic
(� 10 GeV).
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11.3 High-resolution β-ray spectroscopy can be accomplished with
a double-focussing semicircular magnetic spectrometer [14–16].
The magnetic field in this spectrometer is axially symmetric but
inhomogeneous in the radial direction like

B(ρ) = B(ρ0)
(
ρ0

ρ

)n

, 0 < n < 1 ,

where ρ0 is the bending radius of the central orbit. Focussing in
radial direction is achieved after an angle of

Θρ =
π√

1 − n

and in axial direction after [16]

Θϕ =
π√
n
.

(a) Work out the radial dependence of the guiding field and
determine the angle at which double focussing is achieved.

(b) What kind of average energy loss will a 10 keV electron expe-
rience in such a spectrometer (ρ0 = 50 cm, dE

dx (10 keV) =
27 keV/cm, pressure p = 10−3 Torr)? How many ionisation
processes would this correspond to?

11.4 Most colliders use magnetic quadrupoles to focus the beam into
the interaction point, because a beam of small transverse dimen-
sions ensures high luminosity. The magnetic bending power must
be proportional to the distance of the charged particle from the
ideal orbit, i.e., particles far away from the central orbit must
experience a stronger deflection than those that are already close
to the desired orbit.

It has been shown that the bending angle θ depends on the
length of the magnetic field, �, and the bending radius ρ like, see
Eq. (11.6),

θ =
�

ρ
=

�

p
eBy ∝ x , i.e. By · � ∝ x ,

where By is the magnetic field strength that causes the focussing
in the x direction. In the direction perpendicular to x a bending
field Bx is required with the corresponding property

θ ∝ Bx� ∝ y .
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For practical reasons the length � of the quadrupole is fixed. How
has the shape of the iron yoke of the quadrupole to look like so
that it produces a magnetic field with the desired properties?
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