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Abstract

An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again
finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold
on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic
inverse semigroup has the Howson property.

2010 Mathematics subject classification: primary 20M18.

Keywords and phrases: Howson property, E-unitary, monogenic.

1. Introduction

An algebra has the Howson property if the intersection of any two finitely generated
subalgebras is again finitely generated. The eponym ‘Howson’ stems from [3], where
it was shown that free groups have this property. Motivated by recent work by Silva
and Soares [9], we find a remarkably simple characterisation of the inverse semigroups
having the Howson property, under the assumption that the semilattice of idempotents
is finite: the Howson property holds if and only if the same is true for its maximal
subgroups. When specialised to E-unitary semigroups, it can immediately be deduced
that the Howson property holds if and only if the same is true for its maximal group
image. Thus, we generalise the main theorem of [9] using only elementary methods
based on Green’s relations. Some of the technical ideas were motivated by techniques
from the author’s work [4] on full inverse subsemigroups.

Throughout, inverse semigroups are to be regarded as unary semigroups. Thus, a
group has the Howson property, regarded as a group, if and only if the same is true
regarded as an inverse semigroup. Perhaps the deepest earlier work on the Howson
property for inverse semigroups was by Trotter and the author [5], who showed that
although free inverse semigroups of rank one have the Howson property, the property
fails for free inverse semigroups of rank greater than one. Silva [8] also showed,
however, that the intersection of any two monogenic inverse subsemigroups of any
free inverse semigroup is again finitely generated.
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Before providing technical background, we connect this work with the cited
paper [9], which concerns itself with the (E-unitary) inverse semigroups that are the
semidirect products of semilattices and groups. The first main result [9, Theorem 3.4],
that the resulting semigroup has the Howson property if and only if the group
itself does, is proved under the hypothesis that the semilattice is finite, and thereby
follows from our cited theorem (see Corollary 3.6). Although they do not make this
observation, we may note that in fact our corollary may be deduced from their result,
by virtue of O’Carroll’s embedding theorem [6]. See the discussion following the cited
corollary for more details.

2. Preliminaries

We refer the reader to the text by Petrich [7] for inverse semigroups in general,
including background on Green’s relations, congruences and so on. The semilattice
of idempotents of an inverse semigroup S is denoted ES . If X ⊆ S , then 〈X〉 denotes
the inverse subsemigroup generated by X. An inverse semigroup is monogenic if it
is generated by a single element. The notation T ≤ S means that T is an inverse
subsemigroup of S .

The Brandt semigroups [7, Section II.3] are the completely 0-simple inverse
semigroups. They are the semigroups isomorphic to the following: given a group G
and a nonempty set I, B(G, I) consists of the set I ×G × I ∪ {0}, where (i,g, j)( j,h, k) =

(i, gh, k) and all other products are 0. The nonzero idempotents are therefore in one–
one correspondence with the set I. Every primitive inverse semigroup—one in which
every nonzero idempotent is minimal—is the 0-direct union of Brandt semigroups.

Let S be an inverse semigroup. For each J-class J of S , let PF(J) denote the
principal factor associated with J. Formally [7, Section I.6], if J = Ja is not the least
J-class of S , PF(J) = J(a)/I(a), where J(a) = SaS and I(a) = J(a)\Ja. In practice,
we consider PF(J) as J ∪ {0}, with the products from J being those in S if they lie in
J, all other products being 0. If J is the least J-class of S , then PF(J) is defined to be
J itself.

If J is the least J-class of S (its kernel), then PF(J) is a group. Otherwise, PF(J)
is 0-simple and, if EJ is finite, completely 0-simple and thus a Brandt semigroup. In
general, S is completely semisimple if each principal factor is a group or a Brandt
semigroup. This holds if and only if S contains no bicyclic subsemigroup. In such a
semigroup,D = J .

We shall represent the bicyclic semigroup B via the presentation 〈x : xx−1 ≥ x−1x〉,
in which case ES is the chain e0 > e1 > e2 > · · · , where ei = x−ixi (x0 corresponding
to the identity element 1 = xx−1). For alternative representations, see [7].

An inverse semigroup S is E-unitary if whenever s ∈ S , e ∈ ES and es ∈ ES , then
s ∈ ES . Let σ = {(s, t) ∈ S × S : es = et for some e ∈ ES }, the least group congruence
on any inverse semigroup, so that S/σ is its maximal group homomorphic image.
Then [7, Proposition III.7.2] S is E-unitary if and only if ES is a σ-class of S and if
and only if R ∩ σ is the identity relation.
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Note that if the E-unitary inverse semigroup S has a least idempotent e, say, then
its kernel Je = He is isomorphic to S/σ.

3. The main theorem

Proposition 3.1. A Brandt semigroup B(G, I) is finitely generated if and only if I is
finite and G is finitely generated.

Proof. First suppose that I is finite, I = {1, 2, . . . , n}, say, and let A be any generating
set for G. As usual, the nonzero R-classes and the nonzero L-classes may be indexed
by I and thus the nonzero H-classes by I × I, in such a way that the group H-classes
are {Hii : i ∈ I}, all isomorphic with G. Let x1, x2, . . . , xn be a transversal of the H-
classes H11,H12, . . . ,H1n, with x1 the identity element e of H11. By Green’s lemma [7,
Lemma I.6.9], Hi j = x−1

i H11x j for each (i, j) ∈ I × I, so B(G, I) = 〈A ∪ {x2, . . . , xn}〉.
Clearly, if G is finitely generated, then so is B(G, I).

Conversely, if B(G, I) is finitely generated, then I is finite (since any nonzero
element is R-related to either a generator or the inverse of a generator). In the notation
of the previous paragraph, B(G, I) = 〈B ∪ {x2, . . . , xn}〉 for some finite subset B of
A. Now if g ∈ H11, then the only nonzero products with members of {x2, . . . , xn} ∪

{x−1
2 , . . . , x−1

n } are of the form gx j, x−1
i g and x−1

i gx j. But the only nonzero products
of members of {x2, . . . , xn} ∪ {x−1

2 , . . . , x−1
n } are x jx−1

j = e and x−1
j x j ∈ H j j. Hence,

H11 = 〈B〉 and G is finitely generated. �

Corollary 3.2. A Brandt semigroup B(G, I) has the Howson property if and only if
the same is true of G.

Proof. Necessity is clear. To prove the converse, first consider any inverse
subsemigroup T of S = B(G, I) that is not just a subgroup. Then T is primitive
and thus a 0-direct union of Brandt subsemigroups. Clearly, T is finitely generated
if and only if there are finitely many factors, each of which is finitely generated.
So, by Proposition 3.1, it is finitely generated if and only if each factor has finitely
many idempotents and its maximal subgroups (which are subgroups of G) are finitely
generated.

Then let U and V be finitely generated inverse subsemigroups of S that are not
just subgroups. If U ∩ V is nonempty and not {0}, first suppose that it is a nonzero
group, a subgroup of He, say, for some e ∈ ES . Then it is a common subgroup of a
0-direct factor of U and a 0-direct factor of V and therefore it is the intersection of the
subgroups U ∩ He and V ∩ He. By the preceding paragraph, each of these subgroups
is finitely generated and, therefore, by the Howson property, so is U ∩ V .

If U ∩ V is not just a subgroup, then, similarly, each factor in its 0-direct union
is contained within a 0-direct factor of U and a 0-direct factor of V and so is the
intersection of those two factors. Each of its maximal subgroups is therefore the
intersection of a maximal subgroup of U with a maximal subgroup of V and is
therefore finitely generated. By Proposition 3.1, U ∩ V is finitely generated. �
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Lemma 3.3. Let S be an inverse semigroup, T = 〈X〉 an inverse subsemigroup of S and
J a J-class of S . Then T ∩ J ⊆ 〈EJX ∩ T ∩ J〉.

Proof. Let t ∈ T ∩ J, t = y1 · · · yn, where for each i, yi or y−1
i belongs to X. Then

by the result of Hall [2, Lemma 1], t = ȳ1 · · · ȳn, where for each i, ȳi = eiyi, ei =

yi · · · ynt−1y1 · · · yi−1 (with the usual provisions in cases i = 1 or i = n). By the cited
result, each ȳi D t and each ei ∈ EJ . Clearly, each ei ∈ T . Note that if yi = x−1, then
eiyi = ( fix)−1, where fi = xeix−1 ∈ EJ ∩ T . Thus, t ∈ 〈EJX ∩ T ∩ J〉. �

Let T ≤ S and let J = Ja be a nongroupJ-class of S that T meets nontrivially. Then
T ∩ J(a) ≤ J(a) and so (T ∩ J) ∪ {0} may be regarded as an inverse subsemigroup of
PF(J). Denote it by TJ . If J is a subgroup, put TJ = T ∩ J.

Proposition 3.4. Let S be an inverse semigroup with finitely many idempotents and
T ≤ S . Then T is finitely generated if and only if TJ is finitely generated for each
J-class J of S that meets T nontrivially.

Proof. If T is generated by the finite set X, then, by Lemma 3.3, each such TJ is
generated by the finite set EJX ∩ T ∩ J. Conversely, if for each such J, TJ = 〈XJ〉,
where we may assume that XJ does not contain the zero of PF(J) in the nongroup
case, then when interpreted in S each XJ is contained in T and T ∩ J ⊆ 〈XJ〉. Thus, T
is generated by the union of the sets XJ . �

We can now prove the theorem stated in the introduction.

Theorem 3.5. Let S be an inverse semigroup with finitely many idempotents. Then S
has the Howson property if and only if each of its maximal subgroups has this property.

Proof. Necessity is clear. For the converse, let U and V be finitely generated inverse
subsemigroups of S . Let J be a J-class of S that meets U ∩ V nontrivially.

If J is the minimum J-class of S , then all the relevant intersections are subgroups
of J and so (U ∩ V)J is finitely generated, by the Howson property for J.

Otherwise, by the direct half of Proposition 3.4, UJ and VJ are finitely generated
inverse subsemigroups of PF(J). Applying Proposition 3.2, UJ ∩ VJ is finitely
generated. But UJ ∩ VJ = ((U ∩ J) ∩ (V ∩ J)) ∪ {0} = ((U ∩ V) ∩ J) ∪ {0} = (U ∩ V)J .
Applying the reverse half of Proposition 3.4, U ∩ V is therefore finitely generated and
the Howson property holds in S . �

Without finiteness of the semilattice of idempotents, the theorem may fail: as
remarked in the introduction, the free inverse semigroups of rank greater than one
do not satisfy the Howson property, but all their subgroups are trivial.

Corollary 3.6. Let S be an E-unitary inverse semigroup with finitely many
idempotents. Then S has the Howson property if and only if the maximal group image
S/σ has this property. In particular, [9, Theorem 3.4], the semidirect product of a
finite semilattice and a group has the Howson property if and only if the group has this
property.
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Proof. In this special case, the minimum J-class J is isomorphic to S/σ and each
maximal subgroup of S embeds in J, so the result is immediate from Theorem 3.5. �

Remark 3.7. In [9, Corollary 4.1], Silva and Soares cleverly applied the last statement
of the corollary just stated to extend it to the case of locally finite actions: those for
which the orbit of each element of the semilattice under finitely generated subgroups
is finite. One application was to actions on ‘strongly finite above semilattices with
identity’. These are semilattices possessing a well-defined height function, given
by the maximum length of a chain from each element to the identity, and, further,
having only finitely many elements of any given height. Note that the semilattice of
idempotents of any free inverse semigroup of finite rank has this property. Thus, it
does not guarantee the Howson property for E-unitary inverse semigroups in general.

Another application of the same corollary—to the case that the group is locally
finite—is moot: any E-unitary inverse semigroup whose maximal group homomorphic
image is locally finite is itself locally finite, by Brown’s lemma [1], and therefore
immediately has the Howson property.

On the other hand, as remarked in the introduction, Corollary 3.6 may also be
deduced from [9, Theorem 3.4]. Sufficiency follows from O’Carroll’s theorem [6]
that any E-unitary inverse semigroup S (with finite semilattice of idempotents and)
maximum group homomorphic image G embeds in a semidirect product of a (finite)
semilattice with G. Necessity follows from the fact that S/σ is isomorphic to the group
kernel of S .

Finally we should also note that the authors of [9] used some rather heavy
‘machinery’ to prove their main theorem, while our methods are elementary.

4. Monogenic inverse semigroups

As remarked in the introduction, the author and Trotter showed that the free inverse
semigroup FI1 of rank one (which is an E-unitary inverse semigroup) has the Howson
property. A key tool was the following.

Theorem 4.1 [5, from Proposition 1.5]. For any inverse subsemigroup S of the
free inverse semigroup of rank one, the inverse subsemigroup generated by the
nonidempotents of S is finitely generated.

As far as the author is aware, all the inverse semigroups hitherto known to have the
Howson property were completely semisimple, so the following results are of special
interest.

Lemma 4.2. Every inverse subsemigroup of the bicyclic semigroup B that does not
consist solely of idempotents is finitely generated.

Proof. Let S be such a subsemigroup and let ek be the greatest idempotent for which
the associated R-class of S is nontrivial, where k is a nonnegative integer. Say
ek xm ∈ S , where m is a positive integer. Then, for every nonnegative integer r, S
contains (ek xm)r = ek xmr and so (ek xm)−r(ek xm)r = ek+rm.
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Since B is a quotient of the free inverse semigroup of rank one, S is generated by a
finite set A of nonidempotents, together with a set F of idempotents. Suppose that S
contains ek+sm+i for some s and some i, 0 < i < m. Since xsmx−sm = 1, direct calculation
shows that S contains (ek xsm)ek+sm+i(ek xsm)−1 = ek+i and ek+i(ek xm) = ek+ixm. Further,
S contains ek+rm+i for every nonnegative r, as in the previous paragraph. Thus, S is
generated by A together with the finite set of idempotents {e j : 0 ≤ j < k + m} ∩ S . �

Corollary 4.3. The bicyclic semigroup B has the Howson property.

Proof. Let U,V be finitely generated inverse subsemigroups. If either consists solely
of idempotents, then it is finite, so assume otherwise. Then, for some positive integers
m and n and nonnegative integers j and k, u = e jxm ∈ U and v = ek xn ∈ V . By replacing
u and v respectively by un and vm, if necessary, we may assume that m = n, so that
u σ v.

If U ∩ V contains a nonidempotent, then Lemma 4.2 applies. In particular, this is
the case whenever U ∩ V contains an idempotent ei such that i ≥ max( j, k), that is,
ei ≤ uu−1, vv−1. For then eiu R eiv and eiu σ eiv, so, since B is E-unitary, eiu = eiv is a
nonidempotent of U ∩ V .

Otherwise, U ∩ V is contained in the finite set {ei : i < max( j, k)}. �

Apart from the free one, the monogenic inverse semigroups are determined by the
following classes of defining relations [7, Theorem IX.3.11], where k, ` are positive
integers: (1) xk = xk+`; (2) xk x−1 = x−1xk; (3) xk = x−1xk+1.

The first class consists of the finite instances. The second consists of the infinite
cyclic group (k = 1) and ideal extensions of that group by finite Rees quotients of FI1.
The third consists of the bicyclic semigroup B (k = 1) and ideal extensions of B by
finite Rees quotients of FI1.

Proposition 4.4. Every monogenic inverse semigroup has the Howson property.

Proof. We have already noted that FI1 has this property. For the first class this is
obvious; those in the second class have finitely many idempotents and the maximal
subgroups are either trivial or infinite cyclic, so Theorem 3.5 applies. We have just
proved that B has the Howson property, so let S be an ideal extension of B by a
finite Rees quotient of FI1, where xn ∈ B, say. Let U,V be finitely generated inverse
subsemigroups of S . As in the proof of Corollary 4.3, we may assume that neither U
nor V consists of idempotents. Since x is of infinite order, neither U ∩ B nor V ∩ B
consists of idempotents. By Lemma 4.2, U ∩ B and V ∩ B are finitely generated, so
(U ∩ V) ∩ B is finitely generated and, since (U ∩ V)\B is finite, U ∩ V is also finitely
generated. �
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