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Abstract

We study a continuous-time random walk on the d-dimensional lattice, subject to a drift
and an attraction to large clusters of a subcritical Bernoulli site percolation. We find two
distinct regimes: a ballistic one, and a subballistic one taking place when the attraction is
strong enough. We identify the speed in the former case, and the algebraic rate of escape
in the latter case. Finally, we discuss the diffusive behavior in the case of zero drift and
weak attraction.
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1. Model and results

Consider the graph of nearest neighbors on Z
d , d ≥ 1, and write x ∼ y when ‖x−y‖1 = 1.

Here, ‖ · ‖1 is the �1-norm, though | · | denotes the Euclidean norm.
An environment is an element ω of � = {0, 1}Z

d
. Environments are used to construct the

independent, identically distributed (i.i.d.) Bernoulli site percolation on the lattice. We consider
the product σ -field on � and, for p ∈ (0, 1), the probability P = B(p)⊗Z

d
, where B(p) denotes

the Bernoulli law with parameter p. A site x in Z
d is said to be open if ωx = 1 and closed

otherwise. Consider the open connected components (the so-called clusters) in the percolation
graph. The cluster of an open site x ∈ Z

d is the union of {x} with the set of all y ∈ Z
d which

are connected to x by a path with all vertices open. The cluster of a closed site is empty. We
denote by Cx the cardinality of the cluster of x.

It is well known that there exists a critical pc = pc(d) such that, for p < pc, P-almost surely
(P-a.s.), all connected open components (clusters) of ω are finite, though, for p > pc, there
a.s. exists an infinite cluster. Moreover, it follows from [1] and [11] that, in the first case, the
clusters size has an exponential tail: for any p < pc, there exists ξ = ξ(p) > 0 such that, for
all x,

lim
n→∞

1

n
ln P(Cx ≥ n) = −ξ.

In this paper we fix p < pc. Let � = (�k; 1 ≤ k ≤ d) be a unit vector, and let λ and β be
two nonnegative numbers. For every environment ω, let Pω be the law of the continuous-time
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690 F. COMETS AND F. SIMENHAUS

Markov chain Y = (Yt )t≥0 on Z
d starting at 0 with generator L given for continuous, bounded

functions f by

Lf (x) = K
∑
e∼0

exp(λ� · e − βCx)(f (x + e) − f (x)),

where we chose the normalizing constant K as K = (
∑

e∼0 eλ�·e)−1 for simplicity. Given ω,
define the measure µ on Z

d by

µ(x) = exp(2λ� · x + βCx).

The random measure µ combines a shift in the direction � together with an attraction to large
clusters. Observe that the process Y admits µ as an invariant, reversible measure. Markov
processes having µ as an invariant measure are of natural interest in the context of random
walks in random environments. They describe random walks which have a tendency to live on
large clusters, the attraction becoming stronger as β is increased. The isotropic case, λ = 0,
has been considered in [14] with a different, discrete-time dynamic. There, the authors proved
that the walk was diffusive for small β and subdiffusive for large β. The investigation of
slowdowns in the anisotropic case is then natural. In [16] a random resistor network was
considered with an invariant, reversible measure of the form C(x, ω)e2λ�·x , where the random
field (C(x, ω); x ∈ Z

d) is stationary ergodic and bounded away from 0 and +∞: in this case
the random walks in random environments are ballistic for all positive λ.

The study of a general dynamic in the presence of a drift contains many difficult questions,
and the advantage of the particular process Y considered here is that we can push the analysis
further. We could also handle the discrete-time analog of Y , i.e. the random walks in random
environments with geometric holding times instead of exponential holding times, which falls in
the class of marginally nestling walks in the standard classification (see, e.g. [20]). The Markov
process Y can also be described by its skeleton and jump rates. The skeleton X = (Xn)n∈N is
defined as the sequence of distinct consecutive locations visited by Y . Then, X is a discrete-time
Markov chain with transition probabilities P̃, given for x ∈ Z

d and e ∼ 0 by

P̃(Xn+1 = x + e | Xn = x) = eλ�·e∑
e′∼0 eλ�·e′ =: p̃e

and P̃(Xn+1 = y | Xn = x) = 0 if y is not a nearest neighbor of x. The jump rate of Y at site
x is equal to exp(−βCx) and the holding times are independent, exponentially distributed with
mean exp(βCx). The Markov chain X is quite simple, it is the random walk on Z

d with drift

d(λ) = 1∑d
k=1 cosh(λ�k)

(sinh(λ�k))1≤k≤d .

It is plain that, for the random walk,

Xn

n
−→ d(λ) P̃-a.s.; (1)

so directional transience is clear, and the law of large numbers for Y reduces to studying
the clock process, which takes care of the jump times. As can be seen from (4), below, the
process considered here is a generalization of the so-called random walk in a random scenery,
or the random walk subordinated to a renewal process, which are used as effective models for
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anomalous diffusions. The difference is essentially that the environment (i.e. the field of jump
rates) here has some space correlations, which are short range. It is also related to the trap
model considered in the analysis of the ageing phenomenon introduced in [5]: the ageing of
this model has been studied in detail; see [2] for a recent review.

For a fixed ω, Pω is called the quenched law and we define the annealed law P̂ by

P̂ = P × Pω .

Of course, statements which hold P̂-a.s., equivalently hold Pω-a.s. for P-almost every (P-a.e.)
environment.

Finally, we stress that we assume that d ≥ 1 in this paper. The case in which d = 1 is
special since the critical threshold pc(1) = 1. Moreover, specific techniques are available in
one dimension (see, e.g. [20] for a survey); however, we will stay as much as possible with
techniques that apply for all d .

Our first result is the law of large numbers.

Theorem 1. (Law of large numbers.) For any λ ≥ 0 and any β ≥ 0, as t → +∞,

Yt

t
→ v(λ, β) P̂-a.s.,

where
v(λ, β) = (E(exp(βC0)))

−1d(λ). (2)

In particular, v(λ, β) = 0 if β > ξ or λ = 0, though v(λ, β) · � > 0 if β < ξ and λ �= 0.

As considered in [14], for the case in which λ = 0, slowdowns occur for a large disorder
intensity β, when the walk gets trapped on large percolation clusters. This behavior is reminis-
cent of the biased random walk on the supercritical percolation infinite cluster [4], [19], where
ballistic or subballistic regimes take place according to the parameter values. The slowdowns
in our paper have a similar nature to those in some one-dimensional random walks in random
environments; see [9], [17], and [18]. Moreover, as in the one-dimensional case, we obtain
explicit values for the rate of escape here, a rather unusual fact in larger dimensions. More drastic
(logarithmic) slowdowns were also found for an unbiased walker on a moon crater landscape
in [6] and [7], or diffusions in random potentials [10], but in these models the behavior at small
disorder is qualitatively different from the behavior without disorder.

The next result contains extra information on the subballistic behavior.

Theorem 2. (Subballistic regime.) Let β ≥ ξ .

1. For any d ≥ 1 and λ > 0, as t → +∞,

ln |Yt |
ln t

→ ξ

β
P̂-a.s.

2. If λ = 0, for any d ≥ 2, we have

lim sup
t→+∞

ln |Yt |
ln t

= ξ

2β
P̂-a.s.

3. If d = 1 and λ = 0, we have

lim sup
t→+∞

ln |Yt |
ln t

= 1

2

(
β

2ξ
+ 1

2

)−1

P̂-a.s.
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Hence, the spread of the random walks in random environments scales algebraically with
time in all cases. Note that in the isotropic cases, λ = 0, the slowdown is larger for d = 1 than
for d ≥ 2. This will appear in the proof as a consequence of the strong recurrence of the simple
random walk X in the one-dimensional case. Note that our results are only on the logarithmic
scale, though the scaling limit has been obtained for the isotropic trap model, in dimension
d = 1 (see, e.g. [2]) and dimension d ≥ 2 [3] with a limit given, if the disorder is strong, by the
time change of a Brownian motion by the inverse of a stable subordinator (fractional kinetics).
Though we believe that the scaling limit of our model without drift (λ = 0) is the same, we
could not obtain more precise results because of the presence of correlations in the medium.
Moreover, the case of a drift, λ �= 0, has not been considered in the literature, except for d = 1
with renormalization group arguments [13].

To complete the picture, we end with the diffusive case. (Recall that β < ξ is sufficient for
E(exp(βC0)) < ∞.)

Theorem 3. (Diffusive case regime.) Assume that λ = 0 and that E(exp(βC0)) < ∞.
Then, we have a quenched invariance principle for the rescaled process Zε = (Zε

t )t≥0,
Zε

t = ε1/2Yε−1t : for almost every ω, as ε ↘ 0, the family of processes Zε converges in
law under Pω in the Skorokhod topology to the d-dimensional Brownian motion with diffusion
matrix � = (d × E(exp(βC0)))

−1 Id (where Id denotes the identity matrix of dimension d).
Moreover,

lim sup
t→+∞

ln |Yt |
ln t

= 1

2
a.s. (3)

For the proof of our results, we will take the point of view of the environment seen from the
walker. It turns out that the ‘static’ environmental distribution is invariant for the dynamics.
Hence, the environment is always at equilibrium.

The paper is organized as follows. In Section 2 we introduce the basic ingredients for our
analysis and we prove the law of large numbers of Theorem 1. Section 3 is devoted to the
subballistic regime and contains the proofs of Theorems 2 and 3. Finally, in Section 4 we
present some concluding remarks.

2. Preliminaries and the proof of Theorem 1

For x ∈ Z
d , T x will denote the space shift with vector x. We will also consider the time

shift θ .

2.1. The skeleton and clock process of Y

The sequence (Sn; n ≥ 0) of jump times of the Markov process Y with right-continuous
paths is defined by S0 = 0 < S1 < S2 < · · · , Yt = YSn for t ∈ [Sn, Sn+1), and YSn+1 �= YSn .
The skeleton of Y is the sequence X given by Xn = YSn, n ≥ 0. As mentioned above, the
skeleton X of Y is the simple random walk with drift. For any x in Z

d , the jump rate of (Yt )t≥0
at x is exp(−βCx). Hence, the time Sn of the nth jump is the sum of n independent random
variables with exponential distribution with mean exp(βCXi

), i = 1, . . . n. This means that
the sequence E = (Ei )i∈N, where Ei = exp(−βCXi

)(Si+1 − Si), is, under the quenched law
and then also under the annealed law, a sequence of i.i.d. exponential variables with mean 1,
with E and X independent. The law of this sequence will be denoted by Q (Q = Exp(1)⊗N,
where Exp(1) denotes the mean 1 exponential law). For any n in N, the time Sn of the nth jump
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is given by

Sn =
n−1∑
i=0

Ei exp(βCXi
). (4)

This sequence can be viewed as a step function St := S[t], where [·] is the integer part, and we
also define its generalized inverse S−1: for any t ≥ 0,

S−1(t) = n ⇐⇒ Sn ≤ t < Sn+1.

We observe that Sn → ∞ as n → ∞ Pω-a.s. for all ω, making the function S−1 defined on the
whole of R+. Then, Pω-a.s.,

XS−1(t) = Y (t) for all t ≥ 0, (5)

and, therefore, the process S−1 is called the clock process.
Conversely, let E , X, and ω be independent, with distribution Q, P̃, and P, respectively,

defined on some new probability space. Then, fixing λ and viewing β as a parameter, by (4)
and (5) we construct, on this new probability space, a coupling of the processes Y = Y (β) for
all β ∈ R. The coupling has the properties that the skeleton is the same for all β and that the
clock processes are such that, for β ≥ β ′ and t ≥ 0,

S−1(β; t) ≤ S−1(β ′; t). (6)

2.2. The environment seen from the walker

Depending on the time being discrete or continuous, we consider the processes (ω̃n)n∈N and
(ω̂t )t≥0 defined by

ω̃n = T Xnω and ω̂t = T Yt ω = ω̃S−1(t)

for n ≥ 0 and t ≥ 0. We start with the case of discrete time.

Lemma 1. Under P̂, (ω̃i)i∈N is a stationary ergodic Markov chain. The same holds for
(ω̃i , Ei )i∈N.

Proof. As (Ei )i∈N is an i.i.d. sequence of variables independent of ω̃, it is enough to prove
Lemma 1 for the process (ω̃i)i∈N. Under P̂ or Pω, (ω̃i)i∈N is Markovian with transition kernel
R, defined, for any bounded function f , by

Rf (ω) =
∑
e∼0

p̃ef (T eω) for all ω ∈ �,

and initial distribution P or, respectively, δω. The transitions of (ω̃i)i∈N do not depend on ω,
as those of X, and, in this sense, the sequence is itself a random walk. Since P is invariant by
translation,

Ê(f (ω̃1)) =
∫ ∑

e∼0

p̃ef (T eω) dP =
∑
e∼0

p̃e

∫
f (T eω) dP = E(f (ω)),

showing that P is an invariant measure for (ω̃i)i∈N.
We will use F to denote the product σ -field on �N and, for any k ≥ 0, Fk will denote the

σ -field generated by the first k coordinates. Note that θ is measurable and preserves the law of
ω̃ under P̂. We have to prove that the invariant σ -field � := {A ∈ F , 1A(ω̃) = 1A(θω̃) P̂-a.s.}
is trivial. Let Y be a �-measurable bounded random variable on �N. We have to show that Y

is P̂-a.s. constant.
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Define, for all ω in �, hY (ω) := Eω(Y ). We will study this function with standard arguments;
see, e.g. Chapter 17.1.1 of [12]. Using the Markov property and the θ -invariance of Y , we can
show that

hY (ω̃k) = Ê(Y | Fk) for all k ∈ N, P̂-a.s. (7)

As a consequence, under P̂, (hY (ω̃k))k≥0 is both a stationary process and an a.s. convergent
martingale and, hence, it is a.s. constant. In particular,

Y = hY (ω̃0) P̂-a.s.,

which means that Y can be considered as a function of the first coordinate alone. The next step
is to show that hY is P-a.s. harmonic, that is

RhY (ω̃0) = hY (ω̃0) P̂-a.s.

It is a consequence of the following computation,

RhY (ω̃0) = Ê(hY (ω̃1) | F0) P̂-a.s.

= Ê(Ê(Y | F1) | F0) P̂-a.s.

= hY (ω̃0) P̂-a.s.,

where the second equality is true because of (7). We will now show that Y is invariant by
translation in space. By the invariance of P and the harmonicity of hY , it is true that

∑
e∼0

∫
p̃e(Y − Y ◦ T e)2 dP = 0.

For every e neighbor of 0, p̃e > 0, and the previous equation implies that, P-a.s., Y = Y ◦ T e

for any e ∼ 0. Together with the ergodicity of P, this shows that Y is P̂-a.s. constant, and
completes the proof.

As a consequence of Lemma 1 and Birkhoff’s ergodic theorem, for any function f in L1(�
N)

(or f nonnegative), as n → +∞,

1

n

n−1∑
k=0

f (θkω̃) → E(f ) P̂-a.s.

Now, we turn to the time-continuous case, and we consider the empirical distribution
t−1

∫ t

0 δω̂s
ds of the environment seen from the walker up to time t . Our next result is a law

of large numbers for this random probability measure. For small β, the empirical distribution
converges to some limit P0, which is then an invariant measure for (ω̂t )t≥0.

Corollary 1. If β < ξ then, P̂-a.s., the empirical distribution of the environment seen from the
walker, t−1

∫ t

0 δω̂s
ds, converges weakly to P0, defined by

dP0 = exp(βC0)

E(exp(βC0))
dP.
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Proof. We need to show that t−1
∫ t

0 f (ω̂s) ds → ∫
f dP0 as t → ∞ for all real, bounded

continuous functions f on �. Since exp(βC0) is integrable when β < ξ , this follows from the
convergence along the sequence t = Sn, n → ∞. By (4), this is equivalent to

n−1 ∑n−1
i=0 Ei exp(βCXi

)f (ω̃i)

n−1
∑n−1

i=0 Ei exp(βCXi
)

−→
∫

�

f dP0, n → ∞.

We first study the P̂-almost sure convergence of the denominator, i.e. of n−1Sn. Define the real
function g on (RN, �N) by

g : ((Ei )i∈N, (ω̃i)i∈N) �→ E0 exp(βC0(ω̃0)),

and note that CXn = C0(ω̃n). Applying Lemma 1 and the ergodic theorem to (ω̃, E) and to the
nonnegative function g, we find that n−1Sn converges P̂-a.s. to E(exp(βC0)). The numerator
can be studied with the same arguments, and we obtain the claim since, for β < ξ , both limits
are finite.

With this in hand, we can easily complete the proof of Theorem 1.

Proof of Theorem 1. Write

Yt

t
= XS−1(t)

S−1(t)

S−1(t)

S(S−1(t))

S(S−1(t))

t
.

Recall from (1) that the first factor on the right-hand side converges a.s. to d(λ) as t → ∞. In
the proof of Corollary 1 we showed that S(S−1(t))/S−1(t) → E(exp(βC0)) a.s. for β < ξ ,
but clearly the result remains true for all β (the limit is infinite for β > ξ ). For the last factor
on the right-hand side, we simply observe that

S(S−1(t))

S(S−1(t) + 1)
≤ S(S−1(t))

t
≤ 1, (8)

concluding that S(S−1(t))/t converges P̂-a.s. to 1 if E(exp(βC0)) < ∞: in this case we then
conclude that Yt/t converges P̂-a.s. to v(λ, β) given in (2).

For the case in which E(exp(βC0)) = ∞, we just use the right inequality in (8) to obtain
the P̂-almost sure convergence of Yt/t to v(λ, β) = 0.

3. Subballistic regime, and the proofs of Theorems 2 and 3

We start with a few auxiliary results.

Lemma 2. Assume that d ≥ 2 or λ > 0. Then, for any ε > 0, there exists α > 0 such that,
P̂-a.s., we eventually have

#

{
i ≤ n, CXi

>

(
1

ξ
− ε

)
ln n

}
≥ nα,

where the notation #A denotes for the cardinality of the set A.

Proof. Define the range Rn to be the number of points visited by (Xi)i∈N during the first n

steps. For λ > 0, there exists a constant c1 > 0 such that, P̃-a.s., Rn > c1n eventually. For
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λ = 0 and d ≥ 2, it is well known (see Chapter 21 of [15]) that there exists a constant c2 such
that, P̃-a.s., Rn > c2n/ln n eventually (when d ≥ 3, the walk is transient and the correct order
of Rn is n). In all cases there exists a constant c3 > 0 such that, under the assumptions of
Lemma 2, we have, P̃-a.s., Rn > c3n/ln n eventually. For a fixed n in N, we recursively define
the time T n

i by

T n
0 = 0,

T n
i = inf

{
T n

i−1 < k ≤ n, |Xk − XT n
j
| > 2

(
1

ξ
− ε

)
ln n for all j < i

}
for all i ≥ 1,

inf ∅ = +∞.

Note that the balls with center XT n
j

and radius (ξ−1 − ε) ln n are pairwise disjoint, and define
Kn to be the number of such balls, i.e.

Kn = max{i ≥ 0 : T n
i < +∞}.

As the cardinality of these balls is c4 lnd n (for some c4 > 0), it follows from the previous
discussion on the range that, P̃-a.s., Kn > cn/lnd+1 n eventually, where c denotes a positive
constant. From now on we fix a path (Xi)i≥0 such that Kn > cn/lnd+1 n eventually. In the
rest of the proof, we take n large enough so that the inequality holds. Then,

P

(
#

{
i ≤ Kn, CXT n

i
≤

(
1

ξ
− ε

)
ln n

}
≥ Kn − nα

)

= P

(
there exists I ⊂ {1, . . . Kn}, #I = Kn − [nα] : for all i ∈ I, CXT n

i
≤

(
1

ξ
− ε

)
ln n

)

≤
∑

I⊂{1,...Kn}, #I=Kn−[nα]
P

(
for all i ∈ I, CXT n

i
≤

(
1

ξ
− ε

)
ln n

)
.

For all j such that 0 ≤ j ≤ Kn − nα , Bn
i denotes the ball with center XT n

i
and radius

(ξ−1 − ε) ln n. The event {CXT n
i

≤ (ξ−1 − ε) ln n)} is σ {ωx, x ∈ Bn
i }-measurable. As the

balls Bn
i are disjoint and the environment is i.i.d.,

P

(
#

{
i ≤ Kn, CXT n

i
≤

(
1

ξ
− ε

)
ln n

}
≥ Kn − nα

)

≤
(

Kn

[nα]
)(

1 − P

(
C0 >

(
1

ξ
− ε

)
ln n

))Kn−[nα]

≤ c5n
nα

(1 − n−(1−εξ)+o(1))cn/lnd+1 n−nα

for some suitable constant c5 > 0. We now choose α < min(1, εξ), so that

∑
n

P

(
#

{
i ≤ Kn, CXTi

≤
(

1

ξ
− ε

)
ln n

}
≥ Kn − nα

)
< ∞.

We conclude using Borel–Cantelli’s lemma.

Lemma 3. Assume that β > ξ . For d ≥ 2 or λ > 0, we have lim infn ln Sn/ln n ≥ β/ξ P̂-a.s.
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Proof. Let η be a positive real number. With ε := η/β, from Lemma 2, there exists α > 0
such that, P̃ ⊗ P-a.s., there exists a natural number N = N(X, ω) such that, for n > N , the set
I = {i ≤ n, CXi

> (ξ−1 − ε) ln n} has cardinality #I ≥ nα . For n > N ,

Q(Sn < nβ/ξ−η) ≤ Q(Ei exp(βCXi
) < nβ/ξ−η, i ∈ I )

≤ Q(E1 exp(βCX1) < nβ/ξ−η)n
α

≤ Q(E1 < nβε−η)n
α

= (1 − e−1)n
α

.

From the previous inequality, we find that Q(Sn < nβ/ξ−η) is the general term of a convergent
series, and we can use Borel–Cantelli’s Lemma to conclude.

Lemma 4. Assume that β > ξ . For d ≥ 1 and λ ≥ 0, we have, P̂-a.s., lim supn ln Sn/ln n ≤
β/ξ .

Proof. For any α in (0, 1), by subadditivity we have (u + v)α ≤ uα + vα for all positive u

and v, and then

Sα
n ≤

n∑
i=1

Eα
i exp(αβCXi

).

Now, define the function fα as follows:

fα : (RN, �N) → R,

((Ei )i∈N, (ω̃i)i∈N) → Eα
0 exp(αβC0(ω̃0)).

Applying Lemma 1 and the ergodic theorem to (ω̃, E) with the nonnegative function fα , we
obtain, for any α such that αβ < ξ ,

lim sup
n→+∞

Sα
n

n
≤ lim

n→+∞

∑n
i=1 Eα

i exp(αβCXi
)

n
= EQ(Eα

1 ) × E(exp(αβC0)) < ∞ a.s.

Therefore,

lim sup
n→+∞

ln Sn

ln n
<

1

α
.

Since α is arbitrary in (0, ξ/β), the proof is complete.

The following two lemmas deal with the one-dimensional case. Note that when d = 1, for
all n > 0,

P(C ≥ n) = p

n−1∑
k=0

pkpn−1−k = npn,

and, as a consequence, ξ = −ln p.

Lemma 5. Assume that β > ξ . For d = 1 and λ = 0, we have, P̂-a.s., lim supn ln Sn/ln n ≤
β/2ξ + 1

2 .

Proof. Here we need to relabel our sequence of exponential variables (Ei; i ≥ 0). For y ∈ Z

and k ∈ N, define Ey,k by

Ey,k = Ei with i such that Xi = y, #{j : 0 ≤ j ≤ i, Xj = y} = k,
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i.e. the exponential corresponding to the kth passage at y. These new variables are a.s. well
defined when d = 1 and λ = 0, and it is not difficult to see that the sequence (Ey,k)y∈Z, k∈N

is i.i.d. with mean 1 exponential distribution, and independent of X and ω. The number of
visits of the walk to a site y at time n will be denoted by θ(n, y). We can rewrite Sn in the
following way:

Sn =
n−1∑
i=0

exp(βCXi
)Ei =

∑
y∈Z

exp(βCy)

(θ(n,y)−1∑
k=0

Ey,k

)
.

Note that, for any η > 0, P̃-a.s. for large enough n,

θ(n, y) = 0 for all y > n1/2+η (9)

(see, e.g. Theorem 5.7 of [15]). As a consequence, we obtain, P̃-a.s., for any positive α < 1
and for large enough n,

Sα
n ≤

n1/2+η∑
y=−n−1/2+η

exp(αβCy)

(θ(n,y)−1∑
k=0

Ey,k

)α

.

Here and below, the sum
∑b

y=a with real numbers a < b ranges over all y ∈ Z with a ≤ y ≤ b.
Now note that, P̃-a.s., for any ν > 0 and large enough n,

sup{θ(n, y), y ∈ Z} < n1/2+ν (10)

(see, e.g. Theorem 11.3 of [15]), and we obtain for such n,

1

2n1/2+ηn(1/2+ν)α
Sα

n ≤ 1

2n1/2+η

n1/2+η∑
y=−n−1/2+η

exp(αβCy)

(
1

n1/2+ν

n1/2+ν∑
k=0

Ey,k

)α

. (11)

For any y in Z and n in N, we define

uy,n = 1

n1/2+ν

n1/2+ν∑
k=0

Ey,k.

Fix µ > 0. According to the large deviation principle for i.i.d. sequences, there exists Iµ > 0
such that, for any y in Z and any n in N,

Q(|uy,n − 1| > µ) ≤ exp(−Iµn1/2+ν).

Using the independence of the (Ey,k)y∈Z, k∈N, it is easy to check that Q (there exists y ∈
[−n1/2+η, n1/2+η] and |uy,n − 1| > µ) is the general term of a convergent series, and using
Borel–Cantelli’s lemma, we obtain, Q-a.s., for large enough n and for any −n1/2+η < y <

n1/2+η,
|uy,n − 1| < µ. (12)

From the ergodicity of the environment, it is true that P-a.s., as n → +∞,

1

2n1/2+η

n1/2+η∑
y=−n−1/2+η

exp(αβCy) → E(exp(αβC0)). (13)
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Now using (11), (12), and (13), we find that, for any α < ξ/β, there exists M < +∞ such
that, P-a.s., for large enough n,

Sn < Mn1/2α+η/α+1/2+ν .

Since the last inequality is true for η and µ arbitrary small and α arbitrary close to ξ/β, the
proof is complete.

Lemma 6. Assume that β > ξ . For d = 1 and λ = 0, we have, P̂-a.s.,

lim inf
n→∞

ln Sn

ln n
≥ β

2ξ
+ 1

2
.

Proof. Let η and ν be two positive real numbers. As a consequence of (9) and (10), P̃-a.s.,
for large enough n, at least n1/2−νξ/4 sites are visited more than n1/2−η times; we will denote
the set of those sites by On. Now fix a path (Xi)i≥0 such that, for all n ≥ 0, #On ≥ n1/2−νξ/4.
As in the proof of Lemma 3, we can choose a family of

αn := n1/2−νξ/4

(1/2)(1/ξ − ν) ln n

points (yi)i≤αn in On such that the intervals (Ii)i≤αn centered in (yi)i≤αn and of length 1
2 (ξ−1 −

ν) are disjoint. We say that such an interval is open if all its sites are open, and closed otherwise.
Using the fact that the (Ii)i≤αn are disjoint, we obtain,

P(Ii is closed for all i ≤ αn) ≤ (1 − n−1/2(1−νξ)+o(1))αn

≤ exp(−nνξ/4+o(1)).

Borel–Cantelli’s lemma implies that, P-a.s., for large enough n, the following property holds:
there exists at least one site visited more than n1/2−η times, and this site belongs to a cluster of
size greater than 1

2 (ξ−1 − ν) ln n; we will denote this site by ỹn. Therefore,

Sn ≥
n1/2−η∑
i=0

nβ/2ξ−νβEỹn,i .

Using the large deviation upper bound similarly to the lines below (11), we obtain from the last
inequality, P̂-a.s., for large enough n,

Sn ≥ 1
2n1/2+β/2ξ−νβ−η.

Since ν and η can be chosen arbitrary small, this last inequality completes the proof.

Proof of Theorem 2. We first assume that β > ξ . From Lemma 3 and Lemma 4, we know
that, under the assumptions of parts 1 or 2,

lim
n→+∞

ln Sn

ln n
= β

ξ
P̂-a.s.

From the inequalities

ln S(S−1(t))

ln S−1(t)
≤ ln t

ln S−1(t)
<

ln S(S−1(t) + 1)

ln S−1(t)
,
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we deduce that, P̂-a.s.,

lim
t→+∞

ln t

ln S−1(t)
= β

ξ
.

Applying the same arguments as above, we deduce from Lemma 5 and Lemma 6 that, under
the assumptions of part 3,

lim
t→+∞

ln t

ln S−1(t)
= β

2ξ
+ 1

2
P̂-a.s.

Now write
ln |Yt |

ln t
= ln |XS−1(t)|

ln S−1(t)

ln S−1(t)

ln t
.

To conclude the β > ξ case, note that, under the assumptions of part 1, ln |Xn|/ln n converges
P̃-a.s. to 1 and, under the assumptions of parts 2 and 3, P̃-a.s., lim supn→+∞ ln |Xn|/ln n = 1

2 ,
by the law of iterated logarithms.

To extend the results to the border case, β = ξ , we use property (6) of the coupling, which
implies that the long-time limit of ln |Yt |/ln t is nonincreasing in β. This completes the proof of
part 1 with β = ξ . For the other parts, we use property (3), which we will prove independently
below. Again, the results claimed for β = ξ in parts 2 and 3 follow from the monotonicity of
the coupling.

Proof of Theorem 3. First observe that, when λ = 0,

f (Yt ) −
∫ t

0
(2d)−1 exp(−βCYs )

∑
e∼0

(f (Ys + e) − f (Ys)) ds

is a Pω-martingale for continuous and bounded f . Then, for all ω, the process Y is a square
integrable martingale under the quenched law Pω. Its bracket is the unique process 〈Y 〉, taking
its values in the space of nonnegative symmetric d × d matrices such that YtY

�
t − 〈Y 〉t is a

martingale and 〈Y 〉0 = 0. (Here ‘�’ denotes the transposition.) We easily compute

〈Y 〉t =
(∫ t

0
exp(−βCYs ) ds

)
d−1Id .

By Corollary 1, we see that the bracket Zε is such that, for all t ≥ 0,

〈Zε〉t = ε〈Y 〉ε−1t

= ε

(∫ ε−1t

0
exp(−βCYs ) ds

)
d−1Id

−→ t� P̂-a.s. as ε ↘ 0,

and then in Pω-probability for a.e. ω. Let us fix such an ω, and use the law Pω. Since the
martingale Zε has jumps of size ε−1/2 tending to 0 and since its bracket converges to a deter-
ministic limit, it is well known (e.g. Theorem VIII-3.11 of [8]) that the sequence (Zε, ε > 0)

converges to the centered Gaussian process with variance t�, yielding the desired invariance
principle under Pω.

We now prove (3). Since λ = 0, we have lim supn ln |Xn|/ ln n = 1
2 P̃-a.s., and since

E(exp(βC0)) < ∞, it holds that limt ln S−1(t)/ ln t = 1 a.s. This implies the claim.
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4. Concluding remarks

(i) Part 2 of Theorem 2 deals with the upper limit in the subdiffusive case, λ = 0 and β > ξ .
We comment here on the lower limit. In dimension d ≥ 3, n−1/2|X[ns]| converges to a transient
Bessel process, and it is not difficult to see that

lim sup
t→∞

ln |Yt |
ln t

= lim
t→∞

ln |Yt |
ln t

= ξ

2β
.

In dimension d ≤ 2, X is recurrent. Then lim inf t |Yt | = 0 and

lim inf
t→∞

ln |Yt |
ln t

= −∞.

(ii) A natural question is: What does the environment seen from the walker look like in the
subballistic case? In fact, the prominent feature is that the size of the surrounding cluster is
essentially the largest one which was visited so far. Consider, for instance, the case of positive
λ. We can prove that, for β > ξ and ε > 0,

1

t
|{s ∈ [0, t] : (ln t)−1CYs ∈ [β−1 − ε, β−1 + ε]}| −→ 1 P̂-a.s. as t ↗ ∞.

(iii) We end the paper with a short comment on the case when the environment is a general
random field, not necessarily coming from site percolation. It is easy to check that Theorems 1
and 3, together with their proofs, remain valid for a stationary, ergodic random field (Cx, x ∈
Z

d). On the contrary, our proof of Theorem 2 uses some independence property specific to the
percolation model.
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