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Abstract. We define certain extensions of affine Weyl groups (distinct from these considered by K.
Saito [S1] in the theory of extended affine root systems), prove an analogue of Chevalley Theorem
for their invariants, and construct a Frobenius structure on their orbit spaces. This produces solutions
F (t1; : : : ; tn) of WDVV equations of associativity polynomial int1, : : : , tn�1, exptn.
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0. Introduction

Frobenius manifold is a geometric object (see precise definition in Section 2 below)
designed as a coordinate-free formulation ofequations of associativity, or WDVV
equations(they were invented in the beginning of ’90s by Witten, Dijkgraaf, E.
and H. Verlinde in the setting of two dimensional topological field theory; see [D]
and references therein). In [D] for an arbitraryn-dimensional Frobenius manifold
a monodromy groupwas defined. It acts inn-dimensional linear space and it is an
extension of a group generated by reflections. Looking at simple examples it might
be conjectured that for a Frobenius manifold with good analytic properties (in the
sense of [D], Appendix A) the monodromy group acts discretely in some domain
of the space. The Frobenius manifold itself can be identified with the orbit space
of the group in the sense to be specified for each class of monodromy groups.

In the present paper we introduce a new class of discrete groups that can be
realized as monodromy groups of Frobenius manifolds (it was shown previously
that any finite Coxeter group can serve as a monodromy group of a polynomial
Frobenius manifold, see [D]). We define certain extensions of affine Weyl groups,
and construct a Frobenius structure on their orbit spaces. Our groups coincide
with the monodromy groups of the Frobenius manifolds. They are labelled by
pairs (R; k) whereR is an irreducible reduced root system, andk is a certain
simple root (shown in white on Table I, next page). Our construction of Frobenius
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Table I
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AFFINE WEYL GROUPS AND FROBENIUS MANIFOLDS 169

structure includes, particularly, a construction of the flat coordinatest1; : : : ; tn in the
appropriate ring of invariants of the extended affine Weyl groups (flat coordinates
in the ring of polynomial invariants of finite Coxeter groups were discovered by
Saito, Yano, Sekiguchi [SYS, S]). The correspondent solutions of equations of
associativity are weighted homogeneous (up to a quadratic function) polynomials
in t1; : : : ; tn�1, etn with all positive weights of the variables. Heren� 1 is equal
to the rank of the root systemR. It can be shown (see [D], Appendix A) that for
n 6 3 our construction exhausts all such solutions.

The paper is organized in the following way. In Section 1 we define extended
affine Weyl groups and prove an analogue of Chevalley Theorem [B] for them. In
Section 2 we construct Frobenius structure on the orbit spaces of our groups and
compute explicitly all low-dimensional examples of these Frobenius manifolds. In
Section 3 we show that in the case of the root system ofA-type, our extended affine
Weyl groups describe monodromy of roots of trigonometric polynomials of a given
bidegree. We discuss topology of the complement to bifurcation variety of such
trigonometric polynomials in terms of the correspondent Frobenius manifolds.

1. Extended affine Weyl groups and their invariants

LetR be an irreducible reduced root system inl-dimensional Euclidean spaceV
with Euclidean inner product( ; ). We fix a basis�1; �2; : : : ; �l of simple roots.
Let

�_j =
2�j

(�j ; �j)
; j = 1;2; : : : ; l

be the correspondent coroots. All the numbersAij := (�i; �
_
j ) are integers (these

are the entries of the Cartan matrixA = (Aij), (�i; �_i ) = 2; (�i; �_j ) 6 0 for i 6=
j). The Weyl groupW = W (R) is a finite group generated by the reflections
�1; �2; : : : ; �l

�j(x) = x� (�_j ; x)�j ; x 2 V: (1.1)

We recall that the root system is one of the typeAl; Bl; Cl; Dl; E6; E7; E8; F4; G2

(see [B]).
The affine Weyl groupWa(R) acts in the spaceV by affine transformations

x 7! w(x) +
lX

j=1

mj�
_

j ; w 2W; mj 2 Z:

So it is isomorphic to the semidirect product ofW by the lattice of coroots.
Let us introduce coordinatesx1; x2; : : : ; xl in V using the basis of coroots

x = x1�
_

1 + x2�
_

2 + � � �+ xl�
_

l : (1.2)
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We defineFourier polynomialas the following functions onV

f(x) =
X

m1;:::;ml2Z

am1;:::;ml e2�i(m1x1+���+mlxl);

the coefficients are arbitrary complex numbers and only finite number of them could
be nonzero. Alternatively, introducing the fundamental weights!1; : : : ; !l 2 V

(!i; �
_

j ) = �ij ;

we can represent the Fourier polynomial as a sum over the weight lattice

f(x) =
X

m1;:::;ml2Z

am1;:::;ml e2�i(m1!1+���+ml!l;x):

Thus the ring of our Fourier polynomials is identified with the group algebra of the
weight lattice [B]. We define the operation of averaging of a Fourier polynomial

f(x) 7! �f(x) = SW (f(x)) := n�1
f

X
w2W

f(w(x)); (1.3)

wherenf = #fw 2 W j f(w(x)) = f(x)g. For anyf(x) the Fourier polynomial
�f(x) = SW (f(x)) is a function onV invariant with respect to the action of the
affine Weyl group

�f

0
@w(x) + lX

j=1

mj�
_

j

1
A = �f(x):

Equivalently, this is aW -invariant Fourier polynomial.

THEOREM [B]. The ring ofW -invariant Fourier polynomials is isomorphic to
the polynomial ringC[y1; : : : ; yl], wherey1 = y1(x); : : : ; yl = yl(x) are the basic
W -invariant Fourier polynomials defined by

yj = SW (e2�i(!j ;x)); j = 1; : : : ; l: (1.4)

EXAMPLE 1.1. The Weyl groupW (Al) acts by permutations of the coordinates
z1; : : : ; zl+1 on the hyperplane

z1 + � � �+ zl+1 = 0:

We choose the standard basis of simple roots�j = �_j as in [B, Planches I]. Then
the coordinatesx1; : : : ; xl are defined by

z1 = x1; zi = xi � xi�1; i = 2; : : : ; l; zl+1 = �xl: (1.5)
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AFFINE WEYL GROUPS AND FROBENIUS MANIFOLDS 171

The basicW -invariant Fourier polynomials coincide with the elementary symmet-
ric functions

yj = sj(e
2�iz1; : : : ;e2�izl+1); j = 1; : : : ; l: (1.6)

We are going now to define certain extensions of the affine Weyl group acting
in the(l + 1)-dimensional space with indefinite metric.

For any irreducible reduced root systemR we fix a root�k indicated in Table I.
The Dynkin graphs ofA � B � C � D � E � F � G type are shown in the
Table 1 with one more vertex added (this is indicated by asterisk). We will use this
additional vertex later on. The white vertex of the Dynkin graph corresponds to the
chosen root�k. Observe that the Dynkin graph ofRk := f�1; : : : ; �̂k; : : : ; �lg (�k
is omitted) consists of 1, 2 or 3 branches ofAr type for somer. Another observation
is that the number

1
2(�k; �k)

is an integer for our choice ofk.
We construct a group

fW = fW (k)(R)

acting in

eV = V � R

generated by the transformations

x = (x; xl+1) 7!

0
@w(x) + lX

j=1

mj�
_

j ; xl+1

1
A ; w 2W; mj 2 Z; (1.7a)

and

x = (x; xl+1) 7! (x + !k; xl+1� 1): (1.7b)

DEFINITION.A = A(k)(R) is the ring of allfW -invariant Fourier polynomials of
x1; : : : ; xl; (1=f)xl+1 that are bounded in the limit

x = x0
� i !k�; xl+1 = x0

l+1 + i �; � ! +1; (1.8)

for anyx0 = (x0; x0
l+1), heref is the determinant of the Cartan matrixA of the

root systemR, see Table 2.
We put

dj = (!j; !k); j = 1; : : : ; l; (1.8)

these are certain positive rational numbers that can be found in Table II. All the
numbersf � dj are integers. Indeed, they are the elements of thekth column of the
matrixA�1 times 1

2(�k; �k).
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Table II.

R d1; : : : ; dl f dk

Al di =

(
i(l�k+1)
l+1 ; 16 i 6 k

k(l�i+1)
l+1 ; k + 16 i 6 l

l+ 1 k(l�k+1)
l+1

Bl di =

(
i; 16 i 6 l� 1
l�1

2 ; i = l
2 l� 1

Cl di = i 2 l

Dl di =

(
i; 16 i 6 l� 2
l�2

2 ; i = l � 1; l
4 l� 2

E6 2, 3, 4, 6, 4, 2 3 6

E7 4, 6, 8, 12, 9, 6, 3 2 12

E8 10, 15, 20, 30, 24, 18, 12, 6 1 30

F4 3, 6, 4, 2 1 6

G2 3, 6 1 6

LEMMA 1.1. The Fourier polynomials

~yj(x) = e2�idjxl+1yj(x); j = 1; : : : ; l;

~yl+1(x) = e2�ixl+1;
(1.10)

arefW -invariant.
Proof. We show that all~y1; : : : ; ~yl arefW -invariant (invariance of~yl+1 is obvi-

ous). It suffices to prove that

yj(x + !k) = e2�idj yj(x): (1.11)

We can representyj(x) as

yj(x) = n�1
j

X
w2W

e2�i(w(!j);x); (1.12)

wherenj = nf for f = e2�i(!j ;x). According to [B, VI, Sect. 1.6, Prop. 18] for
any w 2W

w(!j) = !j �

lX
i=1

mi�i; (1.13)
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AFFINE WEYL GROUPS AND FROBENIUS MANIFOLDS 173

for some non-negative integersm1; : : : ;ml. So

(w(!j); !k) = (!j; !k)�
lX
i=1

mi(�i; !k) = dj �mw;

for an integer

mw = 1
2mk (�k; �k); (1.14)

this leads to (1.11), and we proved the lemma. 2

Let us prove now boundedness of the functions~y1; : : : ; ~yl in the limit (1.8).

LEMMA 1.2. In the limit

x = x0
� i!k�; � ! +1; (1.15)

the functionsy1(x); : : : ; yl(x) have the expansion

yj(x) = e2�dj� [y0
j (x

0) +O(e�2�� )]; j = 1; : : : ; l; (1.16)

where

y0
j (x

0) = n�1
j

X
w2W

(w(!j)�!j ;!k)=0

e2�i(w(!j);x0): (1.17)

Proof. From the representation (1.13) we see that the exponential
exp[2�i(w(!j); x)] in the limit (1.15) behaves as

e2�(dj�mw)� e2�i(w(!j);x0);

where the non-negative integermw is defined in (1.14). Thus the leading contri-
bution in the asymptotic behaviour of the sum (1.12) comes from thosew 2 W

satisfyingmk = 0. Lemma is proved. 2

COROLLARY 1.1.The functions~y1(x); : : : ; ~yl+1(x) belong toA.
Proof. From (1.16) it follows that

~yj(x)! ~y0
j (x

0) = e2�idjx0
l+1y0

j (x
0); j = 1; : : : ; l;

~yl+1 ! 0
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174 BORIS DUBROVIN AND YOUJIN ZHANG

in the limit (1.8), where the functionsy0
j (x

0) are defined in (1.17). Corollary is
proved. 2

The main result of this section is

THEOREM 1.1.The ringA is isomorphic to the ring of polynomials of~y1; : : : ; ~yl+1.
Proof. We will show that any elementf(x) of the ringA can be represented as

a polynomial of~y1; : : : ; ~yl+1. This will be enough since the functions~y1; : : : ; ~yl+1

are algebraically independent.
From the invariance w.r.t.fW it easily follows (using Theorem [B]) that anyf(x)

can be represented as a polynomial of~y1(x); : : : ; ~yl(x); ~yl+1(x); ~y
�1
l+1. We need to

show that inf(x) there are no negative powers of

~yl+1(x) = e2�ixl+1:

Let’s assume

f(x) =
X

n>�N

~ynl+1 Pn(~y1(x); : : : ; ~yl(x))

and the polynomialP�N (~y1(x); : : : ; ~yl(x)) does not vanish identically for certain
positive integerN . From Corollary 1.1 we obtain that in the limit (1.8) the function
f(x) behaves as

f(x) = e2�N��2�iNx0
l+1[P�N (~y

0
1(x

0); : : : ; ~y0
l (x

0)) +O(e�2�� )];

where

~y0
j (x

0) = e2�idjx0
l+1 y0

j (x
0); j = 1; : : : ; l

and the functionsy0
j (x

0) are defined in (1.17).
To obtain a function bounded for� ! +1 it is necessary to have

P�N (~y
0
1(x

0); : : : ; ~y0
l (x

0)) � 0;

for any x0 = (x0; x0
l+1). We show now that this is impossible due to algebraic

independence of the functions~y0
1; : : : ; ~y

0
l . It is sufficient to prove algebraic inde-

pendence of the functionsy0
1(x); : : : ; y

0
l (x).

MAIN LEMMA. The Fourier polynomialsy0
1(x); : : : ; y

0
l (x) are algebraically inde-

pendent.

We will prove that these functions are functionally independent, i.e., that the
Jacobian

det

 
@y0

j (x)

@xi

!
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does not vanish identically. At this end we derive explicit formulae for these
functions and then prove nonvanishing of the Jacobian.

Consider

Rk = R(1) [R(2) [ : : : ;

here any subsystemR(1); : : : is a root system of the typeAr for somer (see Table I).
Let!i be a fundamental weight orthogonal toRnR(1).

LEMMA 1.3. Let for somew 2W (R)

w(!i) = !i �

lX
m=1

cm�m;

such thatck = 0, thencm 6= 0 only if�m 2 R(1).
Proof. In W (RknR

(1)) there existsw0 such that it maps all positive roots of
RknR

(1) into negative roots. Clearly,w0 preserves all�m 2 R(1), andw0(!i) = !i.
We represent

w(!i) = !i � �(1) � �(2) � : : : ;

where�(i)’s are sum of some positive roots ofR(i). Then

w0w(!i) = !i � �(1) � w0(�
(2) + � � �) = !i � �(1) +

X
�m2RknR(1)

~cm�m;

for some nonnegative integers~cm, and not all of these integers vanish if there exists
certain�m =2 R(1) such thatcm 6= 0. This contradicts to negativity ofw0w(!i)�!i.
Lemma is proved. 2

A similar statement holds true for other componentsR(2); : : : (if any) of Rk.

LEMMA 1.4. If for somew 2W (R)

w(!k) = !k �
X
m6=k

cm�m;

then allcm = 0.
Proof. There existsw0 2W (Rk) such that it maps any positive roots ofRk into

negative ones, and preserves!k. So

w0w(!k) = !k + sum of some positive roots;
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which leads to the result of the lemma. 2

LEMMA 1.5. Under the assumption of Lemma1:3 there exists~w 2 W (R(1))
such that

~w(!i) = w(!i) = !i �
X

�m2R(1)

cm�m:

Proof. We will use induction on the length ofw. If the length ofw equals one,
then the lemma holds true obviously. We now assume that the lemma holds true
when the length ofw is less thanp. Letw has the reduced expression�i1 : : : �ip ,
then it follows from Lemma 1.3 that

�i1 : : : �ip(!i) = !i �
X

�m2R(1)

cm�m: (1.18)

If all cm = 0, then we can put~w = 1, otherwise we rewrite (1.18) in the form

!i = �ip�ip�1 : : : �i1(!i)�
X

�m2R(1)

cm�ip�ip�1 : : : �i1(�m):

We put

�ip�ip�1 : : : �i1(!i) = !i �

lX
m=1

bm�m;

for some nonnegative integersb1; : : : ; bl. We claim now that there exists a root
�m1 2 R

(1) such thatcm1 6= 0 in (1.18) and

w�1(�m1) = �ip�ip�1 : : : �i1(�m1)

is a negative root. Indeed, otherwise the root

lX
m=1

bm�m +
X

�m2R(1)

cm�ip�ip�1 : : : �i1�m

could not be equal to zero sincecm’s are nonnegative integers. We use now the
following proposition.

PROPOSITION [H, page 50].Let �j1; : : : ; �jt be some simple roots ofR (not
necessarily distinct). If

�j1 � � � �jt�1(�jt)
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is a negative root, then for some1 6 s 6 t� 1 we have

�j1 : : : �jt�1 = �j1 : : : �̂js : : : �jt�1�jt ;

where the hat above�js means that this factor is omitted in the product.

According to this statement we can represent

w�1 = �ip : : : �̂is : : : �i1�m1;

for some 16 s 6 p. We can now rewrite (1.18) as

w0(!i) = �m1(!i)�
X

�m2R(1)

cm�m1(�m) = !i �
X

�m2R(1)

c0m�m;

for some new nonnegative integersc0m, and for

w0 = �i1 : : : �̂is : : : �ip :

The length ofw0 is less than the lengthp of w. Using the induction assumption we
complete the proof of the lemma. 2

COROLLARY 1.2. (1) Let R(s) be any branch ofRk, then for any�j 2 R(s)

we have

y0
j (x) = m�1

j

X
w2W (R(s))

e2�i(w(!j);x); (1.19a)

(2)

y0
k(x) = e2�i(!k;x) = e2�ixk ; (1.19b)

wheremj = #fw 2W (R(s)) jw(!j) = !jg.

Proof of the Main Lemma. We proceed now to the proof of algebraic indepen-
dence of the functionsy0

1(x); : : : ; y
0
l (x) by analyzing the formulae (1.19) for all

the cases of root systems. Let’s definezi; i = 1; : : : ; l as in (1.5), and denote
the jth order elementary symmetric polynomial ofn variablesu1; : : : ; un by
sj(u1; : : : ; un) with s0(u1; : : : ; un) = 1.

(1) For the root system of typeAl, from Example 1.1 and (1.19) we have

y0
i (x) = vi + vi�1vk; 1 6 i 6 k � 1;

y0
k(x) = vk�1vk;

y0
k+1(x) = vk+1vk�1vk +

1
vl
;

y0
k+j(x) = vk+jvk�1vk +

vk+j�1

vl
; 2 6 j 6 l � k;

(1.20)
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where

vi = si(e2�iz1; : : : ;e2�izk�1); 1 6 i 6 k � 1;

vk = e2�izk ;

vk+j = sj(e2�izk+1; : : : ;e2�izl); 16 j 6 l � k:

(1.21)

Clearly the variablesv1; : : : ; vl are algebraically independent. We have

det

 
@y0

i

@vj

!
= (�1)k�1vl�kk�1v

l�1
k + lower order terms ofvk: (1.22)

So the Jacobian det(@y0
i =@xj) does not vanish identically.

(2) For the root system of typeBl andCl, we havek = l � 1 andk = l

respectively, all the formulae in (1.20)–(1.22) hold true if we replacek by l�1 and
l respectively. So in these cases the Jacobian does not vanish identically neither.

(3) For the root system of typeDl; k = l � 2, we have

y0
i (x) = vi + vi�1vl�2; 1 6 i 6 l � 3;

y0
l�2(x) = vl�3vl�2;

y0
l�1(x) = vl�3vl�2vl�1 +

1
vl�1

;

y0
l (x) = vl�3vl�2vl�1vl +

1
vl�1vl

;

(1.23)

where vi;1 6 i 6 l � 2 are defined in (1.21) withk = l � 2, andvl�1 =
e2�izl�1; vl = e2�izl . We have

det

 
@y0

i

@vj

!
= (�1)l+1vl�1v

2
l�3v

l�1
l�2 + lower order terms ofvl�2:

Since the functionsv1; : : : ; vl are algebraically independent, the Jacobian det(@y0
i=@xj)

does not vanish identically.
(4) For the root system of typeEl; k = 4, let’s define

�1 = xl; �i = xl�i+1 � xl�i+2; 2 6 i 6 l

and

vi = si(e2�i�1; : : : ;e2�i�l�4); 1 6 i 6 l � 4;

vl�3 = e2�i�l�3;
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vl�2 = e2�i(�l�2+�l�1+�l);

vl�1 = e2�i(�l�1+�l);

vl = e2�i�l :

Then we have

y0
1 = vl�4vl�3vl�2 +

1
vl�1

+
vl�1

vl�2
;

y0
2 = vl�4vl�3

vl�2

vl
+

vl

vl�2
;

y0
3 = vl�4vl�3

vl�2

vl�1
+ vl�4vl�3vl�1 +

1
vl�2

;

y0
4 = vl�4vl�3;

y0
l�i+1 = vi + vi�1vl�3; 1 6 i 6 l � 4

(1.24)

and

det

 
@y0

i

@vj

!
= "

 
1�

vl�2

v2
l�1

!
vl�2(vl�4)

3

v2
l

vl�1
l�3 + lower order terms ofvl�3;

where" = �1 or 1, which shows that the Jacobian det(@y0
i =@xj) does not vanish

identically.
(5) For the root system of typeF4; k = 2, define�i as for theEl case with

l = 4, we have

y0
1 = v2v3v4 +

1
v4
;

y0
2 = v2v3;

y0
3 = v2 + v1v3;

y0
4 = v1 + v3;

(1.25)

where vj = sj(e2�i�1;e2�i�2); j = 1;2; v3 = e2�i�3; v4 = e2�i�4. Then

det

 
@y0

i

@vj

!
= v2v

3
3 + lower order terms ofv3:

Since the functionsv1; : : : ; v4 are algebraically independent, the Jacobian det(@y0
i=@xj)

does not vanish identically.
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(6) For the root system of typeG2; k = 2, we have

y0
1 = e2�ix1 + e2�i(x1�x2); y0

2 = e2�ix2; (1.26)

soy0
1 andy0

2 are algebraically independent.
We thus proved the Main lemma and also Theorem 1.1. 2

COROLLARY 1.3.The functiondegdefined as

deg~yj = dj ; j = 1; : : : ; l;

deg~yl+1 = 1

determines onA a structure of graded polynomial ring.

We end this section with an important observation about the numbersd1; : : : ; dl.
Let us again consider the components of the Dynkin graph ofRk = Rn�k. ByR(1)

we denote the component that touches the added vertex (the asterisk) on Table I.
We put

R̂(1) = R(1) [ f�kg [ f�g:

This is again anAr-type diagram. ByR(2); : : : we denote other components ofRk.
We put also

dl+1 = 0:

On any of the diagram̂R(1); R(2); : : : there is an involution

�i 7! �i�

corresponding to the reflection of the component w.r.t. the center.

LEMMA 1.6. The numbersd1; : : : ; dl+1 satisfy the duality relation

di + di� = dk: (1.27)

Proof. By obvious inspection of Table II. 2

2. Differential geometry of the orbit spaces of extended affine Weyl groups

LetM =M(R; k) = SpecA. We call itorbit spaceof the extended affine Weyl
groupfW . According to Theorem 1.1 and Corollary 1.3 this is a graded affine
algebraic variety of the dimensionn = l + 1. The functions~y1(x); : : : ; ~yl+1(x)
serve as global coordinates onM. We will however use the local coordinatesy1 =
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~y1(x); : : : ; y
l = ~yl(x) and yl+1 = log ~yl+1(x) = 2�ixl+1. The last coordinate is

multivalued onM. In other words, it lives on a coveringfM of Mnf~yl+1 = 0g.
The projection map

P : eV ! fM
is given by the formulae

(x1; : : : ; xl+1) 7! (~y1(x); : : : ; ~yl(x);2�ixl+1) = (y1; : : : ; yl+1): (2.1)

For the Jacobian of the projection map we have a formula

det

 
@yj

@xp

!
= 2�ie2�i(d1+���+dl)xl+1det

 
@yj(x)
@xp

!

= cexp

2
42�i(d1 + � � �+ dl)xl+1 �

X
�2�+

�i(�; x)

3
5

�
Y
�2�+

(e2�i(�;x)
� 1); (2.2)

where�+ is the set of all positive roots andc is a nonzero constant [B, page 185, 228].
So the projection map is a local diffeomorphism outside the hyperplanes

f(x; xl+1)j(�; x) = m 2 Z; xl+1 = arbitraryg; � 2 �+: (2.3)

Recall that the hyperplanesfxj(�; x) = m 2 Zg are the mirrors of the affine Weyl
group.

In this section, we will introduce a structure of Frobenius manifold onM (see
definition below, and also in [D]). We define first an indefinite metric( ; )~ oneV = V � R. The restriction of( ; )~ onto V coincides with theW -invariant
Euclidean metric( ; ) onV times 4�2. The coordinatexl+1 is orthogonal toV (so
V � R is orthogonal direct sum). Finally we put

(el+1;el+1)~= �4�2(!k; !k) = �4�2dk;

where el+1 is the unit vector along thexl+1 axis.
We introduce now a symmetric bilinear form on T�M taking projection of( ; )~.

More explicitly (cf. [A1]) the bilinear form on T�M in the coordinatesy1; : : : ; yl+1

is given by a(l + 1)� (l + 1) matrix (gij) of the form

(dyi; dyj)~� gij :=
l+1X
a;b=1

@yi

@xa
@yj

@xb
(dxa; dxb)~; (2.4)
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herexa = xa;1 6 a 6 l + 1, and this notation will also be used later.

LEMMA 2.1. The matrix entriesgij of (2:4) are weighted homogeneous polyno-
mials in ~y1; : : : ; ~yl+1 of the degree

deggij = degyi + degyj ;

(heredegyl+1 = dl+1 = 0). The matrix(gij) does not degenerate outside the
P -images of the hyperplanes(2:3)

Proof. We have for 16 i; j 6 l

gij =
didj

dk
~yi~yj +

1
4�2

lX
p;q=1

@~yi
@xp

@~yj
@xq

(!p; !q): (2.5a)

This is a Fourier polynomial invariant w.r.t.fW . Clearly it is bounded on the
limit (1.8). According to Theorem 1.1 this is a polynomial in~y1; : : : ; ~yl+1. The
homogeneity is obvious.

Forgj;l+1 the computation is even simpler. For 16 j 6 l we obtain

gj;l+1 =
dj

dk
yj: (2.5b)

Finally

gl+1;l+1 =
1
dk
: (2.5c)

Nondegeneracy of(gij) follows from (2.4) and from the formula (2.2) for the
Jacobian. Lemma is proved. 2

According to Lemma 2.1, the image of nonregular orbits (2.3) is an algebraic
subvariety� in M given by the polynomial equation

� = fyjdet(gij(y)) = 0g:

We will call � thediscriminantof the extended affine Weyl group. OnMn� the
matrix (gij) is invertible; the inverse matrix

(gij) = (gij)�1

determines a metric1 onMn�. Of course, this is a flat metric since it is obtained
from a constant metric oneV by a change of coordinates (see formula (2.4)).

1 The word ‘metric’ in this paper will denote a symmetric bilinear non-degenerate quadratic form
on TM. The metric is called flat if by a local change of coordinates it can be reduced to a constant
form.
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Let us now compute the coefficients of the correspondent Levi–Civita con-
nectionr for the metric( ; )~ defined by (2.4). It is convenient to consider the
‘contravariant components’ of the connection

�ijm = (dyi;rmdy
j)~ (2.6)

They are related to the standard Christoffel coefficients by the formula

�ijm = �gis�jsm:

For the contravariant components we have the formula

�ijmdy
m =

@yi

@xp
@2yj

@xq @xr
(dxp; dxq)~dxr; (2.7)

here and henceforth summation over the repeated indices is assumed.

LEMMA 2.2. �ijm’s are weighted homogeneous polynomials in~y1; : : : ; ~yl+1 of the
degreedegyi + degyj � degym.

Proof. From (2.2) and (2.7) we can represent

�ijm = e2�i(di+dj�dm)xl+1
P ijm (x)
J(x)

;

whereP ijm is certain Fourier polynomial inx1; : : : ; xl,

J(x) = e�
P

�2�+
�i(�;x) Y

�2�+

(e2�i(�;x)
� 1)

is anti-invariant w.r.t the Weyl groupW , it has a simple zero on any mirror of the
Weyl group, and it changes sign w.r.t. the reflection in the mirrors. But�ijm must
be invariant w.r.t. the Weyl group (it is invariant even w.r.t. the extended affine
Weyl groupfW ). SoP ijm must be anti-invariant. Hence it is divisible byJ(x) [B].
It follows that�ijm is a Fourier polynomial inx1; : : : ; xl; (1=f)xl+1, wheref is
the determinant of the Cartan matrix of the root system (see Table II). Since it
is invariant w.r.t. the extended groupfW and is bounded in the the limit (1.8), it
belongs toA, we conclude from Theorem 1.1 that it is a polynomial in~y1; : : : ; ~yl+1.
The homogeneity property is then obvious. Lemma is proved. 2

COROLLARY 2.1.The polynomialsgij(y) and�ijm(y) are at most linear inyk.
Proof. This follows from weighted homogeneity and from the following impor-

tant observation

dk > dj for anyj 6= k;
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184 BORIS DUBROVIN AND YOUJIN ZHANG

(see Table II). We need however to prove linearity inyk of the componentsgkk and
�kkl+1. According to (2.5a) we have

gkk = dk~y
2
k +

1
4�2

lX
p;q=1

@~yk
@xp

@~yk
@xq

(!p; !q)

= e4�idkxl+1

0
@dky2

k +
1

4�2

lX
p;q=1

@yk(x)
@xp

@yk(x)
@xq

(!p; !q)

1
A :

The second term in the bracket is aW -invariant Fourier polynomial of the form

g =
1

4�2

lX
p;q=1

@yk(x)
@xp

@yk(x)
@xq

(!p; !q)

= �n�2
k

X
w;w02W

(w(!k); w
0(!k))e2�i(w(!k)+w0(!k);x):

We use now the standard partial ordering of the weights [H, page 69]

! � !0

iff

! � !0 =
lX

m=1

cm�m

for some nonnegative integersc1; : : : ; cl. In this case we will also write

e2�i(!;x)
� e2�i(!0;x):

TheW -invariant Fourier polynomialg has unique maximal term

�(!k; !k)e2�i(2!k;x) = �dk e2�i(2!k;x):

Because of this all the terms in theW -invariant Fourier polynomial

dky
2
k + g (2.8)

are strictly less than e2�i(2!k;x). Hence the representation of (2.8) as a polynomial
in y1(x); : : : ; yl(x) does not containy2

k. That means thatgkk is at most linear inyk.
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For�kkl+1 we have

�kkl+1 =
@x

@yl+1

@yk

@xp
@2yk

@xq @x
(dxp; dxq)~

=
@yk

@xp
@

@yl+1

 
@yk

@xq

!
(dxp; dxq)~

=
1
2
@gkk

@yl+1 :

so it also depends at most linearly onyk. Corollary is proved. 2

We define a new metric on T�M putting

�ij(y) =
@gij

@yk
: (2.9)

Up to multiplication by a nonzero constant this metric does not depend on the
choice of basic homogeneous~W -invariant Fourier polynomials. Indeed, since

degyk > degyj for anyj 6= k

the ambiguity in the choice of the basisy1; : : : ; yl+1 is of the form

yk 7! cyk + fk(y1; : : : ; ŷk; : : : ; yl;expyl+1);

yj 7! f j(y1; : : : ; ŷk; : : : ; yl;expyl+1); j 6= k; l + 1;

yl+1
7! yl+1;

wherec is a nonzero constant and the polynomialsf j are weighted homogeneous
of the degreedj resp. So the vector field@=@yk is invariant within a constant

@

@yk
7! c

@

@yk
:

The same formulae prove that the matrix�ij(y) behaves like a (2,0)-tensor (i.e.,
a symmetric bilinear form on the cotangent bundle) w.r.t. the changes of homoge-
neous coordinates on the orbit space.

MAIN LEMMA. The determinant of the matrix(�ij) is a nonzero constant.

To prove this lemma, we need the following lemmas.

LEMMA 2.3. LetR be a root system of typeAl � Bl � Cl � Dl, denoteRk �
Rn�k = R(1) [R(2) [ : : : .
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(1) If �i and�j belong to different components ofRk, then�ij = 0.
(2) The block�(t) = (�ij)j�i;�j2R(t) of the matrix� = (�ij) corresponding to any

branch R(t) has triangular form, i.e. it has all zero entries above or under
the antidiagonal. The antidiagonal elements of�(t) consist of the constant
numbers�ii

�

for �i 2 R(t).
(3) �i(l+1) = �(l+1)i = (1=dk)�ik.

Proof. As we did in the proof of Corollary 2.1, we use the standard partial
ordering of the weights ofR. When 16 i; j 6 l, we know from (2.5a) that
gij = e2�i(di+dj)xl+1 h(x), where

h(x) =
didj

dk
yi(x)yj(x)� (ni nj)

�1

�
X

w;w02W

(w(!i); w
0(!j))e2�i(w(!i)+w0(!j);x):

All the terms in the Fourier polynomialh(x) are strictly less than e2�i(!i+!j ;x)

except the termce2�i(!i+!j ;x); wherec is certain constant. So ifh(x) as a polyno-
mial in y1; : : : ; yl contains a monomialyp1

1 ; : : : ; y
pl
l with pk = 1 then

!i + !j = p1!1 + � � � + pl!l +
lX

s=1

qs�s; (2.10)

for some nonnegative integersq1; : : : ; ql.
Let’s first consider the root systemAl, and assume 16 i < k < j 6 l. We

multiply (2.10) by!1 to obtain

l � i+ 1+ l � j + 1
l + 1

=

P
ps(l � s+ 1)
l + 1

+ q1: (2.11)

If q1 > 1 then we obtain inequality

l + 1+ k � i� j �
X
s6=k

ps(l � s+ 1) > l + 1:

This is impossible sincek � i� j < 0. Henceq1 = 0 and

l � i+ 1� (j � k) =
X
s6=k

ps(l � s+ 1):

From the last equation we conclude thatps = 0 for s 6 i.
Next we multiply the Equation (2.10) by�1; : : : ; �i�1 to prove recursively that

alsoq2 = � � � = qi = 0. The last step is to multiply the same equation by�i. We
obtain

1 = �qi+1:
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This contradicts nonnegativity ofq’s. So (2.10) is not possible fori < k < j.
For the root systemBl; k = l � 1, we assume (2.10) holds true for 16 i <

l � 1; j = l. We multiply (2.10) by!1 to obtain

1+ 1
2 = p1 + � � � + pl�2 + 1+ 1

2pl + q1;

which leads top1 = � � � = pl�2 = q1 = 0; pl = 1. We now multiply (2.10) by!i+1

to obtain

i+ (!l; !i+1) = i+ 1+ (!l; !i+1) + qi+1;

which is impossible sinceqi+1 is a nonnegative integer. So we proved that (2.10)
is not valid for 16 i < l � 1; j = l.

For the root systemDl; k = l � 2, similar to the case ofBl we can see that
when 16 i < l � 2 andj = l � 1, or 16 i < l � 2 andj = l the relation (2.10)
cannot be valid. Wheni = l � 1; j = l we multiply (2.10) by!1 to obtain

1
2 +

1
2 = p1 + � � �+ pl�3 + 1+ 1

2pl�1 +
1
2pl + q1;

which leads top1 = � � � = pl�3 = pl�1 = pl = q1 = 0. We now multiply (2.10)
by!l�1 to obtain

1
4l +

1
4(l � 2) = 1

2(l � 2) + ql�1;

which leads toql�1 =
1
2, this contradicts to the fact thatql�1 is an integer. So under

our assumption oni; j, (2.10) is not valid.
The first statement of the lemma follows from the above arguments and from the

fact that for the root systemCl; Rk has only one component. To prove the second
statement of the lemma, we note that in any component ofRk, the numbersdi are
distinct and ordered monotonically (see Table II). Since�ij(y) is a polynomial of
degreedi + dj � dk, we have�ij(y) = 0 whendi + dj < dk, and�ij = constant
whendi+dj = dk, note that this happens if the labelsi andj are dual to each other
in the sense of Lemma 1.6. So we proved the second statement of the lemma. The
third statement of the lemma follows from (2.5b) and (2.5c). Lemma is proved.2

COROLLARY 2.2. det(�ij) is a constant, modulo a sign it equals to
Ql
i=1 �

ii� .
Proof. For the root systemAl�Bl�Cl�Dl the above statement follows from

Lemma 2.3.
For the root systemE8; F4; G2 we observe that all the numbersdi are distinct.

We can re-label the simple roots in such a way that the numbersdi are ordered
monotonically. Since�ij(y) is a polynomial of degreedi+dj�dk, we have�ij = 0
whendi+ dk < dk and�ij = constant whendi+ dj = dk. The last equality holds
true whenj = i�. We conclude that the matrix(�ij) is triangular, and its anti-
diagonal elements are the numbers�ii

�

. So the statement of the corollary holds
true.
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For the root systemE6, we have

d1 = 2; d2 = 3; d3 = 4; d4 = 6; d5 = 4; d6 = 2; d7 = 0:

We change the labels as follows

4 7! 1; 3 7! 2; 5 7! 3; 2 7! 4; 6 7! 5; 1 7! 6; 7 7! 7:

Under the new labels the numbersdi are ordered as follows

~d1 = 6; ~d2 = 4; ~d3 = 4; ~d4 = 3; ~d5 = 2; ~d6 = 2; ~d7 = 0

and the matrix(�ij) becomes(~�ij). We claim that the matrix(~�ij) is triangular,
and its anti-diagonal elements consist of the constant numbers�ii

�

. To see this, it
suffices to show that~�36 = �15 = 0. If �15 6= 0, then by using a similar argument
as we gave in the proof of Lemma 2.3 we have

!1 + !5 = p1!1 + � � � + p6!6 +
6X
s=1

qs�s;

with p4 = 1 andpi; qj are some nonnegative integers. This is impossible due to

!1 + !5� !4 =
2
3�1 +

1
3�3 +

2
3�5 +

1
3�6

and the fact that(!i; !j) > 0 for 1 6 i; j 6 6. So we proved that the corollary
holds true for the root systemE6.

For the root systemE7, we have

d1 = 4; d2 = 6; d3 = 8; d4 = 12;

d5 = 9; d6 = 6; d7 = 3; d8 = 0:

Similar to theE6 case, to prove the statement of the corollary, we only need to
prove that�26 = 0, this easily follows from

!2 + !6� !4 = ��1 �
5
4�2� 2�3 � 3�4�

7
4�5 �

1
2�6�

1
4�7:

Corollary is proved. 2

LEMMA 2.4. There existsx0 such thaty0
j (x

0) = 0 for j 6= k andy0
k(x

0) 6= 0.
Proof. We give the requiredx0 explicitly for all cases of the root systems. As in

the proof of the Main Lemma in Section 1, we denotez0
1 = x0

1; z
0
i = x0

i � x0
i�1

and�0
1 = x0

l ; �
0
i = x0

l�i+1� x0
l�i+2 for 2 6 i 6 l.
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ForAl, we take

(z0
1; : : : ; z

0
l ) =

�
0;

1
k
;

2
k
; : : : ;

k � 1
k

; c; c �
1

l � k + 1
; : : : ; c�

l � k � 1
l � k + 1

�
;

wherec = (l � 2k + 1)=2(l � k + 1).
ForBl, we take

(z0
1; : : : ; z

0
l ) =

�
0;

1
l � 1

; : : : ;
l � 2
l � 1

;
3� l

4

�
:

ForCl, we take

(z0
1; : : : ; z

0
l ) =

�
0;

1
l
; : : : ;

l � 1
l

�
:

ForDl we take

(z0
1; : : : ; z

0
l ) =

�
0;

1
l � 2

; : : : ;
l � 3
l � 2

;
4� l

4
;0
�
:

ForE6 we take

(�0
1; : : : ; �

0
6) = (2

3;
1
3;0;�

2
3;�

1
12;�

1
4):

ForE7 we take

(�0
1; : : : ; �

0
7) = (3

4;
2
4;

1
4;0;�

5
6;�

1
6;�

1
3):

ForE8 we take

(�0
1; : : : ; �

0
8) = (4

5;
3
5;

2
5;

1
5;0;�1;�1

4;�
5
12):

ForF4 we take

(x0
1; x

0
2; x

0
3; x

0
4) = (0; 1

2;
2
3;

1
2):

ForG2 we take

(x0
1; x

0
2) = (1

2;
3
2):

It is now easy to see from the formulae in (1.20), (1.23)–(1.26) that thesex0 =
(x0

1; : : : ; x
0
l ) satisfy the requirement of the lemma. Lemma is proved. 2

Remark. Thex0 given in Lemma 2.4 satisfies the following relation

�1�2 : : : �k�1�k+1 : : : �l(x0) = �
1
dk
!k +

kX
i=1

�_i + x0; (2.12)
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where�’s are defined in (1.1). From this relation and (1.17) we obtain

y0
j (�1 : : : �k�1�k+1 : : : �l(x

0))

= n�1
j

X
w2W

(w(!j)�!j ;!k)=0

e2�i(w(!j);�(1=dk)!k+
Pk

i=1
�_i +x0)

= n�1
j

X
w2W

(w(!j)�!j ;!k)=0

e�(2�i=dk)(!j ;!k)+2�i(w(!j);x0)

= e�(2�idj=dk)y0
j (x

0): (2.13)

On the other hand from (1.17) we have

y0
j (�1 : : : �k�1�k+1 : : : �l(x

0))

= n�1
j

X
w2W

(w(!j)�!j ;!k)=0

e2�i(�l:::�k+1�k�1:::�1w(!j);x0) = y0
j (x

0): (2.14)

So from (2.13), (2.14) and the fact that 0< dj=dk < 1 whenj 6= k it follows that
y0
j (x

0) = 0 whenj 6= k.

Proof of the Main Lemma. By using Corollary 2.2 we only need to prove that
det(�ij) does not vanish.

Let’s denote

	+ = f� 2 �+j(�; !k) = 0g; (2.15)

where�+ is the set of all positive roots ofR. Let’s takex = (x; xl+1) = (x0 �

i�!k; i�), wherex0 is given by Lemma 2.4, then from (2.2) we have

det

 
@yi(x)

@xj

!

= c exp

0
@2�i(d1 + � � �+ dl)xl+1�

X
�2�+

�i(�; x)

1
A

�
Y
�2�+

(e2�i(�;x)
� 1)

= c0
Y
�2	+

(e2�i(�;x0)
� 1)

Y
�2�+n	+

(e2�i(�;x0)+2�(�;!k)� � 1); (2.16)
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here

c0 = ce�
P

�2�+
�i(�;x0)�

P
�2�+

2�(�;!k)�

= ce�
P

�2�+
�i(�;x0)�

P
�2�+n	+

2�(�;!k)�

and we have used the identity [B, H]

1
2

X
�2�+

� =
lX

i=1

!i:

Now let’s take the limit� ! +1, by using (2.16) we obtain

� := lim
�!+1

det

 
@yi(x)

@xj

!

= ce�
P

�2�+
�i(�;x0)

Y
�2	+

(e2�i(�;x0)
� 1)

Y
�2�+n	+

e2�i(�;x0):

From the explicit form ofx0 given in Lemma 2.4 and the above formula we know
that� 6= 0.

Finally, by using Lemma 1.2, Lemma 2.1, Lemma 2.3–2.4 and Corollary 2.1
we have

det(�ij) =
1

(y0
k(x

0)l+1
lim

�!+1
det(gij(x))

= c00 lim
�!+1

 
det

 
@yi(x)

@xj

!!2

= c00�2
6= 0;

wherec00 is a nonzero constant. The main lemma is proved. 2

COROLLARY 2.3.The function�ij is equal to a nonzero constant if and only
if j is dual toi, i.e.,j = i�.

Proof. For the root system of typeAl � Bl � Cl � Dl � E8 � F4 � G2, the
corollary follows from the above Main Lemma, Lemma 2.3, Corollary 2.2, Table II
and the weighted homogeneity of�ij .

For the root system of typeE6�E7, the corollary follows from the above Main
Lemma, Corollary 2.2, Table II, the weighted homogeneity of�ij and the fact that
�15 = �36 = 0 forE6 and�26 = 0 forE7. In the proof of Corollary 2.2 we showed
that�15 = 0 forE6 and�26 = 0 forE7, we can show in a same way that�36 = 0
for E6. Corollary is proved. 2

COROLLARY 2.4.The orbit spaceM carries a flat pencil of metrics

gij(y) and �ij(y) =
@gij(y)

@yk
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192 BORIS DUBROVIN AND YOUJIN ZHANG

and the correspondent contravariant Levi–Civita connections

�ijm(y) and ijm(y) =
@�ijm(y)

@yk
:

Particularly, the metric(�ij(y)) is flat.
Proof. This follows from the linearity ofgij(y) and�ijm in yk and from nonde-

generacy of�ij(y) (cf. [D], Appendix D). Corollary is proved. 2

We recall [D] that this means that the Levi–Civita connection for a linear combi-
nation of the metrics

agij(y) + b�ij(y) (2.17)

must have the form

a�ijm(y) + bijm(y); (2.18)

for arbitrary values of the constantsa; b, and the metric (2.17) must be flat for any
a; b.

Note thatgij(y);�ijm(y), and also�ij(y); ijm(y) are weighted homogeneous
polynomials iny1; : : : ; yl;ey

l+1
, where

degyj = dj ; 1 6 j 6 l; deg ey
l+1

= 1:

COROLLARY 2.5.There exist weighted homogeneous polynomials

t� = t�(y1; : : : ; yl;ey
l+1
); � = 1; : : : ; l

of the degreesd� such that the metric�ij(y) becomes constant in the coordinates
t1; : : : ; tl; tl+1 = yl+1, and the linear part oft� is equal toy�.

Proof. (cf. [D, page 272]) Local existence of the coordinatest� follows from
vanishing of the curvature of�ij (see Corollary 2.4). The flat coordinatest = t(y)
are to be found from the system of linear differential equations

�is
@�j

@ys
+ isj �s = 0;

@t

@ys
= �s:

(2.19)

From the Main Lemma we know that the inverse matrix(�ij) = (�ij)�1 is also
polynomial iny1; : : : ; yl;ey

l+1
. By using the formulae (2.7) we have


i;l+1
j =

@�i;l+1
j

@yk
= 0;
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it follows that

tl+1 = yl+1

is one of the solutions of the system (2.19). We choose remaining solutions
t�(y1; : : : ; yl;ey

l+1
) in such a way that

@t�

@yj
(0; : : : ;0;0) = ��j ; �; j = 1; : : : ; l:

The solutionst�(y) are power series iny1; : : : ; yl;ey
l+1

. The system (2.19) is
invariant w.r.t. the transformations

yj 7! cdjyj; j = 1; : : : ; l; yl+1
7! yl+1 + logc;

for any nonzero constantc. So the functionst�(y);1 6 � 6 l are weighted homo-
geneous of the same degreesd� > 0. Hence the power seriest�(y) must be
polynomials. Corollary is proved. 2

COROLLARY 2.6.In the flat coordinatest1; : : : ; tl+1 we have

(1)

�ij =
@gij(t1; : : : ; tl+1)

@tk
:

(2) �ij is equal to a nonzero constant if and only ifj = i�, and

�ii
�

(t1; : : : ; tl+1) = �ii
�

(y1; : : : ; yl+1):

Proof. From Corollary 2.5 we have

@

@tk
=

@

@yk
;

which leads to the first statement of the corollary.
The second statement of the corollary follows from the fact that the linear part

of t� is y�. Corollary is proved. 2

It follows from our normalization of the flat coordinates that

�l+1;� = ��k :

Remark. For the orbit spaces of finite reflection groups flat coordinates were
constructed by Saito, Yano and Sekiguchi in [SYS] (see also [S]).
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194 BORIS DUBROVIN AND YOUJIN ZHANG

We recall now the definition of Frobenius manifold.

DEFINITION. (Smooth, polynomial etc.)Frobenius structureon an-dimensional
manifoldM consists of:

(1) A structure of commutative Frobenius algebra with a unitye on the tangent
plane TtM that depends smoothly, polynomially etc. ont 2 M . (We recall
that a commutative associative algebraA is called Frobenius algebra if it is
equipped with a symmetric nondegenerated bilinear formh ; i satisfying the
invariance condition

ha b; ci = ha; bci;

for any a; b; c 2 A.)
(2) A vector fieldE is fixed onM . We will call it Euler vector field. These objects

must satisfy the following properties:
(i) The curvature of the invariant metrich ; i onM is equal to zero;
(ii) denotingr the Levi–Civita connection forh ; i, we require that

re= 0; (2.20)

(iii) the four-tensor

d(a1; : : : ; a4) := (ra4c)(a1; a2; a3);

where

c(a1; a2; a3) = ha1a2; a3i;

must be symmetric w.r.t. any permutation of the vectorsa1; : : : ; a4.
(iv) The vector fieldE must be linear w.r.t.r

rrE = 0: (2.21)

The eigenvaluesq1; : : : ; qn of the linear operator id�rE are calledcharges
of the Frobenius structure.
(v) The Lie derivativeLE along the vector fieldE must act by rescalings

LEe = �e;

LE(ab)� (LEa)b� a(LEb) = ab; (2.22)

LEha; bi � hLEa; bi � ha;LEbi = (2� d)ha; bi;

for arbitrary vector fieldsa; b and for certain constantd. (Observe that, due to
(2.20) and (2.22), zero andd are among the chargesq1; : : : ; qn):

A manifoldM with a Frobenius structure on it is called aFrobenius manifold.
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If we choose locally flat coordinatest1; : : : ; tn for the invariant metric, then the
condition (iii) provides local existence of a functionF (t1; : : : ; tn) such that

ha b; ci = a�b�c
@3F

@t� @t� @t
; (2.23)

for any three vectorsa = a�(@=@t�); b = b�(@=@t�); c = c(@=@t). Choosing
the coordinatet1 along the unity vector fielde we obtain

@3F (t1; : : : ; tn)

@t1 @t� @t�
= ���; (2.24a)

for a constant symmetric nondegenerate matrix(���) coinciding with the metric
h ; i in the chosen coordinates. Associativity of the algebras implies an overdeter-
mined system of equations for the functionF

@3F

@t� @t� @t�
���

@3F

@t� @t @t�
=

@3F

@t @t� @t�
���

@3F

@t� @t� @t�
; (2.24b)

for arbitrary�; �; ; � from 1 ton. The components of the Euler vector fieldE
in the basis@=@t� are linear functions oft1; : : : ; tn. They enter into the following
scaling condition for the functionF

LEF = (3� d)F + quadratic polynomial int: (2.24c)

The system (2.24(a)–(c)) is just theWDVV equations of associativitybeing equiv-
alent to our definition of Frobenius manifold in the chosen system of local coordi-
nates.

We recall also an important construction ofintersection formof a Frobenius
manifold. This is a symmetric bilinear form( ; )� on T�M defined by the formula

(w1; w2)
� = iE(w1 � w2);

here the product of two 1-formsw1; w2 at a pointt 2 M is defined by using the
algebra structure on TtM and the isomorphism

TtM ! T�tM

established by the invariant metrich ; i. Choosing the flat coordinatest1; : : : ; tn for
the invariant metric, we can rewrite the definition of the intersection form as

(dt�; dt�)� = LEF
��; (2.25)

where

F�� = ���
0

���
0 @2F (t)

@t�
0
@t�

0
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and the functionF (t) is defined in (2.23). According to the general theory of
Frobenius manifolds,( ; )� defines a new flat metric on the open subset ofM

where det( ; )� 6= 0. The discriminant� = ft j det( ; )�t = 0g is a proper
analytic subvariety in an analytic Frobenius manifoldM . The holonomy of the
local Euclidean structure defined onMn� by the intersection form( ; )� gives a
representation

�1(Mn�)! IsometriesV;

whereV is the standard complex Euclidean space. The image of this representation
is calledmonodromy groupof the Frobenius manifold.

THEOREM 2.1.There exists a unique Frobenius structure on the orbit space
M =M(R; k) polynomial int1; : : : ; tl;et

l+1
such that

(1) the unity vector field coincides with@=@yk = @=@tk;
(2) the Euler vector field has the form

E =
1

2�idk

@

@xl+1
=

lX
�=1

d�

dk
t�

@

@t�
+

1
dk

@

@tl+1 : (2.26)

(3) The intersection form of the Frobenius structure coincides with the metric( ; )~
onM.

Observe that the chargesq1; : : : ; ql are

qj =
(!k � !j; !k)

(!k; !k)
; j = 1; : : : ; l; ql+1 = d = 1:

COROLLARY 2.7.The monodromy group ofM(R; k) is isomorphic to the groupfW (k)(R).

The proof of the theorem will be based on the following lemmas (cf. [D, pp. 273–
275]).

LEMMA 2.5. In the coordinatest1; : : : ; tl+1

g�;l+1 =
d�

dk
t�; � = 1; : : : ; l; gl+1;l+1 =

1
dk
;

�l+1;�
� =

d�

dk
��� ; 1 6 �; � 6 l + 1:

The proof of this lemma is straightforward using (2.5b), (2.5c), (2.7),tl+1 =
yl+1 and the quasi-homogeneity oft1; : : : ; tl.
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LEMMA 2.6. There exists a unique weighted homogeneous polynomialG =

G(t1; : : : ; tk�1; tk+1; : : : ; tl;et
l+1
) of the degree2dk such that the function

F = 1
2(t

k)2tl+1 + 1
2t
k
X
�;� 6=k

���t
�t� +G

satisfies the equations

(dt�; dt�)~= LEF
��: (2.27)

Proof. Let ��� (t) be the coefficients of the Levi–Civita connection for the
metric ( ; )~ in the coordinatest1; : : : ; tl+1. We use now the theory of flat pencils
of metrics (see [D, Appendix D]). According to Proposition D.1 of [D] we can
represent these functions as

��� (t) = ��"@" @f
�(t); (2.28)

for some functionsf�(t). From the weighted homogeneity of��� (t) and Corol-
lary 2.6 we obtain that

@�@

�
LEf

�
�
dk + d�

dk
f�
�
= 0;

for any�; �. So

LEf
�(t) =

(d� + dk)

dk
f�(t) +A��t

� +B�; (2.29)

for some constantsA�� ,B�. Doing a transformation

f�(t) 7! ~f�(t) = f�(t) +R
�
�t
� +Q�;

we can kill all the coefficientsA�� , B� in (2.29) exceptAl+1
k . Indeed, after the

transformation we obtain

LE
~f�(t) =

(d� + dk)

dk
~f�(t) +

lX
=1

�
R�

d � dk � d�

dk
+A�

�
t

+
1
dk
R
�
l+1 +B�

�
dk + d�

dk
Q�

+

�
A
�
l+1�

dk + d�

dk
R
�
l+1

�
tl+1:
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The function~f�(t) does still satisfy (2.28). Choosing

R
�
l+1 =

dk

dk + d�
A
�
l+1;

Q� =
dk

dk + d�

�
B� +

1
dk
R
�
l+1

�
;

we kill the constant term in the right-hand side of (2.29) and the term linear intl+1.
To kill other linear terms we are to put

R� =
dk

d� + d�
A� ;

where� is the index dual to in the sense of duality (1.27). We can do this unless
d� = d� = 0. The last equation holds only for� = � = l+ 1, i.e. for� = l+ 1,
 = k. So, we can kill all the linear terms butAl+1

k in (2.29).
Thus for� 6= l + 1 the polynomialsf�(t) can be assumed to be homogeneous

of the degreed� + dk.
We show now that for 16 � 6 l the functionsf� are polynomials int1; : : : ; tl,

exptl+1. We already know that this is true for the Christoffel coefficients��� . Let
us denote

��"�
"�
l+1(t) =

NX
m=0

C��;m expmtl+1
� @� @l+1f

�(t);

where the coefficientsC��;m are polynomials int1; : : : ; tl andN is certain positive
integer. From compatibility

@l+1(@� @l+1f
�) = @�(@

2
l+1f

�);

we obtain that

@�C
�
l+1;0 = 0; � = 1; : : : ; l:

SoC�l+1;0 is a constant. But@2
l+1f

� must be a weighted homogeneous polynomial

of the positive degreedk + d� . HenceC�l+1;0 = 0 and we obtain

f� =
NX
m=1

1
m2C

�
l+1;m expmtl+1 + tl+1D� +H�;

for some new polynomialsD� = D�(t1; : : : ; tl) andH� = H�(t1; : : : ; tl). Since
the derivatives@� @f� must not contain terms linear intl+1, the polynomialD�

is at most linear int1; : : : ; tl. Using homogeneity off� we conclude thatD� = 0.
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The coefficient��� (t) must also satisfy the conditions [D]

g����� = g����� : (2.30)

For� = l + 1 because of (2.28), (2.30) and Lemma 2.5 we obtain

LE(�
�"@"f

) =
d

dk
g� :

Because of degf = d + dk we have deg(��"@"f) = d� + d for  6= l+ 1, so

(d + d�)�
�"@"f

 = dg
� ;  6= l + 1: (2.31)

We introduce functionsF  for  6= l + 1 putting

F  =
dk

d
f :

From (2.31) we obtain the equation

��"@"F
 = �"@"F

�; 1 6 ; � 6 l: (2.32)

From (2.32) it follows that a functionF (t) exists such that

F  = �"@�F; 1 6  6 l: (2.33)

The dependence ofF on tk is not determined from (2.33). However, putting
� = l + 1 in (2.31) we obtain

@kF
 = t ; 16  6 l; (2.34)

from (2.33), (2.34) and Corollary 2.6 we obtain

@l+1(@kF ) = tk;

@(@kF ) =
lX

�=1

��t
�;  6= k; l + 1:

Hence we have

@kF = tktl+1 +
1
2

X
�;� 6=k;l+1

���t
�t� + g(tk);
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for some functiong. ShiftingF 7! F+
R
g(tk)dtk we can kill this function, and the

equations in (2.33) still hold true due to�ik = �i;l+1. We obtain the representation

F =
1
2
(tk)2tl+1 + 1

2t
k

X
�;� 6=k;l+1

���t
�t� +G; (2.35)

with someG independent ontk.
From the definition (2.33) ofF and the weighted homogeneity off ;  6= l+1

we obtain that

LEF (t) = 2F (t) + a(tk);

for some unknown functiona. Using the duality condition (1.27) and Corollary 2.6
we obtain

LEF (t) =
1

2dk
(tk)2 + (tk)2tl+1 + tk

X
�;� 6=k;l+1

���t
�t� + LEG(t);

or, equivalently

LEG(t) = 2G(t) + a(tk)�
1

2dk
(tk)2:

ButLEG(t) does not depend ontk. We obtain

a(tk) =
1

2dk
(tk)2 + c;

for some constantc. Killing the constant by a shift, we obtain thatG(t1; : : : ; t̂k; : : : ;
tl+1) is a weighted homogeneous function of the degree 2dk. The above conditions
determine this function uniquely. ClearlyG is a polynomial int1; : : : ; t̂k; : : : ; tl;
exptl+1 (it was obtained by integrating polynomials).

SubstitutingF (t) into (2.31) we obtain (2.27) for 16 � 6 l. Finally, for
� = � = l + 1 the Equation (2.27) reads

1
dk

= LE
@2F

@tk @tk
:

This follows immediately from the explicit form ofF . Lemma is proved. 2

LEMMA 2.7. The functions

c�� (t) = ���
0

���
0 @3F (t)

@t�
0
@t�

0
@t
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are weighted homogeneous polynomials int1; : : : ; tl;et
l+1

of the degreesd�+d��
d . They satisfy the associativity equations

c��� c
�
� = c��� c�� :

Proof. Weighted homogeneity ofc�� for � or � 6= l + 1 follows from those of
the functions��� since

��� =
d�

dk
c�� ; (2.36)

which follows from (2.28). Due to (2.35) we also have

c�;l+1
 = �� : (2.37)

This is also a weighted homogeneous function.
To prove associativity we use again the theory of linear pencils of the flat metrics

g�� ; ��� . Using [D, Eqn. (D.2)] we obtain

���� ��� = ��� ���� : (2.38)

Substitute (2.36), (2.37) into (2.38) we obtain

c��� c
�
� = c�� c

��
� :

Due to commutativity of the multiplication we obtain needed associativity. Lemma
is proved. 2

Proof of Theorem2.1. From Lemma 2.5–2.7 we know that we only need to
verify thate = @=@tk is the unity of the algebra and that

LEe = �e:

This is very simple. Theorem is proved. 2

Remark. Any orthogonal mapT :V ! V preserving the set of simple roots defines
an isomorphism of Frobenius manifolds

M(R; k)!M(R; k0);

where

T (�k) = �k0 :
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Particularly, for the root system of the typeAl we obtain an isomorphism

M(Al; k) 'M(Al; l � k + 1)

corresponding to the reflection of the Dynkin graph w.r.t. the center.
We now give some examples to illustrate our above construction. For conve-

nience, instead oft1; : : : ; tl+1 we will denote the flat coordinates of the metric(�ij)
by t1; : : : ; tl+1, and we will also denote@i = @=@ti in these examples.

EXAMPLE 2.1. For the root system of the typeA1 the affine Weyl group acts on
x1-line by transformations

x1 7! �x1 +m;

for an integerm. Our extension~W (A1) consists of transformations of(x1; x2)-
plane of the form

(x1; x2) 7! (�x1 +m+ 1
2n; x2� n);

for arbitrary integersm, n. Basic invariants of this group bounded along the lines

(x1; x2) = (x0
1 �

1
2i�; x

0
2 + i�); � ! +1

are

t1 = 2 e�ix2 cos 2�x1 and e2�ix2:

The extended invariant metric on the dual space has the matrix

((dxi; dxj)~) =
1

8�2

 
1 0

0 �4

!
:

In the coordinatest1, t2 = 2�ix2 this metric has the matrix

(g��) =

 
2 et2 t1

t1 2

!
:

So the Frobenius structure is determined by the function

F = 1
2t

2
1t2 + et2:

Up to normalization this is the free energy ofCP1 topological sigma-model [D].
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EXAMPLE 2.2. LetR be the root systemA2, we takek = 1, thend1 =
2
3; d2 =

1
3,

and

y1 = e(4=3)�ix3(e2�ix1 + e�2�ix2 + e2�i(x2�x1));

y2 = e(2=3)�ix3(e2�ix2 + e�2�ix1 + e2�i(x1�x2));

y3 = 2�ix3:

The metric( ; )~has the form

((dxi; dxj)~) =
1

12�2

0
BB@

2 1 0

1 2 0

0 0 �9
2

1
CCA :

The flat coordinatest1 = y1; t2 = y2; t3 = y3, the intersection form is given by

(gij) =

0
BBB@

2t2 et3 3 et3 t1

3 et3 2t1� 1
2t

2
2

1
2t2

t1
1
2t2

3
2

1
CCCA :

The free energy

F = 1
2t

2
1t3 +

1
4t1t

2
2 + t2 et3 � 1

96t
4
2

and the Euler vector field reads

E = t1@1 +
1
2t2@2 +

3
2@3:

EXAMPLE 2.3. LetR be the root systemC2, thenk = 2; d1 = 1; d2 = 2, and

y1 = e2�ix3(e2�ix1 + e�2�ix1 + e2�i(x2�x1) + e�2�i(x2�x1)):

y2 = e4�ix3(e2�ix2 + e�2�ix2 + e2�i(2x1�x2) + e�2�i(2x1�x2));

y3 = 2�ix3:

The metric( ; )~has the form

((dxi; dxj)~) =
1

4�2

0
BB@

1 1 0

1 2 0

0 0 �1
2

1
CCA :
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The flat coordinatest1 = y1; t2 = y2 + 2 e2y3
; t3 = y3, the intersection form is

given by

(gij) =

0
BB@

2t2� 1
2t

2
1 + 4 e2t3 6t1 e2t3 1

2t1

6t1 e2t3 8 e4t3 + 4t21 e2t3 t2

1
2t1 t2

1
2:

1
CCA :

The free energy

F = 1
4t

2
1t2 +

1
2t

2
2t3 �

1
96t

4
1 +

1
2t

2
1 e2t3 + 1

4 e4t3

and the Euler vector field reads

E = 1
2t1@1 + t2@2 +

1
2@3:

Remark. The root systemB2 gives a Frobenius structure which is isomorphic
to the one given by the root systemC2.

EXAMPLE 2.4. LetR be the root systemG2, thenk = 2; d1 = 3; d2 = 6, and

y1 = e6�ix3(e2�ix1 + e�2�ix1 + e2�i(2x1�x2) + e�2�i(2x1�x2)

+e2�i(x1�x2) + e�2�i(x1�x2)):

y2 = e12�ix3(e2�ix2 + e�2�ix2 + e2�i(3x1�2x2) + e�2�i(3x1�2x2)

+e2�i(x2�3x1) + e�2�i(x2�3x1));

y3 = 2�ix3:

The metric( ; )~has the form

((dxi; dxj)~) =
1

4�2

0
BB@

2 3 0

3 6 0

0 0 �1
6

1
CCA :

The flat coordinatest1 = y1 + 2 e3y3
; t2 = y2 + 3y1 e3y3

+ 6 e6y3
; t3 = y3, the

intersection form is given by

(gij) =

0
BB@

2t2� 1
2t

2
1 + 8t1 e3t3 + 4 e6t3 9(2t1 e6t3 + t21 e3t3) 1

2t1

9(2t1 e6t3 + t21 e3t3) 6(6t21 e6t3 + t31 e3t3 + 4 e12t3) t2

1
2t1 t2

1
6:

1
CCA :
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The free energy

F = 1
4t

2
1t2 +

1
2t

2
2t3 �

1
96t

4
1 +

1
3t

3
1 e3t3 + 1

2t
2
1 e6t3 + 1

12 e12t3

and the Euler vector field

E = 1
2t1@1 + t2@2 +

1
6@3:

Remark. All the above examples was found in [D] (although the relation of
Example 2.4 to an extension of the affine Weyl group of the typeG2 was not
proved in [D]). It is important to notice that these are alln-dimensional Frobenius
manifolds withn 6 3 being polynomial int1; : : : ; tn�1;exptn with deg exptn > 0
(see [D], Appendix A). It would be natural to conjecture that our construction gives
all such Frobenius manifolds (with semisimplicity condition [D] added) for anyn.

We proceed now to the list of all four-dimensional Frobenius manifolds given
by our construction.

EXAMPLE 2.5. LetR be the root systemA3, takek = 1, thend1 = 3
4; d2 =

1
2; d3 =

1
4, and

y1 = e(3=2)�ix4(e2�ix1 + e2�i(x2�x1) + e2�i(x3�x2) + e�2�ix3);

y2 = e�ix4(e2�ix2 + e�2�ix2 + e2�i(x1�x3) + e�2�i(x1�x3)

+e2�i(x1+x3�x2) + e�2�i(x1+x3�x2));

y3 = e(1=2)�ix4(e2�ix3 + e2�i(x1�x2) + e2�i(x2�x3) + e�2�ix1);

y4 = 2�ix4:

The metric( ; )~has the form

((dxi; dxj)~) =
1

16�2

0
BBBBB@

3 2 1 0

2 4 2 0

1 2 3 0

0 0 0 �16
3

1
CCCCCA :

The flat coordinatest1 = y1; t2 = y2 � 1
6(y

3)2; t3 = y3; t4 = y4, the intersection
form is given by

(gij) =

0
BBBBBBB@

2(t2 + 1
6t

2
3)et4 5

3t3 et4 4 et4 t1

5
3t3 et4 2

9t2t
2
3�

2
3t

2
2�

1
54t

4
3 + 4 et4 1

18t
3
3 � t2t3 + 3t1 2

3t2

4 et4 1
18t

3
3� t2t3 + 3t1 2t2� 1

3t
2
3

1
3t3

t1
2
3t2

1
3t3

4
3

1
CCCCCCCA
:
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The free energy

F = 1
2t

2
1t4 +

1
3t1t2t3 +

1
18t

3
2�

1
36t

2
2t

2
3 +

1
648t2t

4
3�

1
19440t

6
3 + (t2 +

1
6t

2
3)et4

and the Euler vector field reads

E = t1@1 +
2
3t2@2 +

1
3t3@3 +

4
3@4:

EXAMPLE 2.6. LetR be the root systemA3, takek = 2, thend1 = 1
2; d2 =

1; d3 =
1
2, and

y1 = e�ix4(e2�ix1 + e2�i(x2�x1) + e2�i(x3�x2) + e�2�ix3);

y2 = e2�ix4(e2�ix2 + e�2�ix2 + e2�i(x1�x3) + e�2�i(x1�x3)

+e2�i(x1+x3�x2) + e�2�i(x1+x3�x2));

y3 = e�ix4(e2�ix3 + e2�i(x1�x2) + e2�i(x2�x3) + e�2�ix1);

y4 = 2�ix4:

The metric( ; )~has the form

((dxi; dxj)~) =
1

16�2

0
BBBB@

3 2 1 0

2 4 2 0

1 2 3 0

0 0 0 �4

1
CCCCA :

The flat coordinatest1 = y1; t2 = y2; t3 = y3; t4 = y4, the intersection form is
given by

(gij) =

0
BBBBBBB@

2t2� 1
2t

2
1 3t3et4 4et4 1

2t1

3t3 et4 2t1t3 et4 + 4 e2t4 3t1 et4 t2

4 et4 3t1 et4 2t2� 1
2t

2
3

1
2t3

1
2t1 t2

1
2t3 1

1
CCCCCCCA
:

The free energy

F = 1
4t

2
1t2 +

1
2t

2
2t4 +

1
4t2t

2
3�

1
96t

4
1 �

1
96t

4
3 + t1t3 et4 + 1

2 e2t4

and the Euler vector field is given by

E = 1
2t1@1 + t2@2 +

1
2t3@3 + @4:
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EXAMPLE 2.7. LetR be the root systemB3, thenk = 2; d1 = 1; d2 = 2; d3 = 1,
and

y1 = 2 e2�ix4(cos(x1) + cos(x2 � x1) + cos(2x3� x2));

y2 = 4e4�ix4(cos(x1) cos(x2 � x1) + cos(x1) cos(2x3 � x2)

+ cos(x2 � x1) cos(2x3� x2));

y3 = 8 e2�ix4

�
cos

�
x1

2

�
cos

�
x2 � x1

2

�
cos

�
2x3� x2

2

��
;

y4 = 2�ix4:

The metric( ; )~has the form

((dxi; dxj)~) =
1

4�2

0
BBBBBB@

1 1 1
2 0

1 2 1 0
1
2 1 3

4 0

0 0 0 �1
2

1
CCCCCCA
:

The flat coordinatest1 = y1 + 2 ey
4
; t2 = y2 + 2y1 ey

4
+ 6 e2y4

; t3 = y3; t4 = y4,
the elements of the intersection form are given by

g11 = 2t2� 1
2t

2
1 + 4 e2t4;

g12 = 3t23 et4 + 6t1 e2t4;

g13 = 4t3 et4;

g14 = 1
2t1;

g22 = 2t1t23 et4 + 4t21 e2t4 + 8t23 e2t4 + 8 e4t4;

g23 = 3t1t3 et4 + 6t3 e2t4;

g24 = t2;

g33 = t2�
1
4t

2
3 + 2t1 et4 + 2 e2t4;

g34 = 1
2t3;

g44 = 1
2:

The free energy

F = 1
4t2t

2
1 +

1
2t2t

2
3 +

1
2t

2
2t4�

1
96t

4
1�

1
48t

4
3

+t1t
2
3 et4 + 1

2t
2
1 e2t4 + t23 e2t4 + 1

4 e4t4
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and the Euler vector field is given by

E = 1
2t1@1 + t2@2 +

1
2t3@3 +

1
2@4:

EXAMPLE 2.8. LetR be the root systemC3, thenk = 3; d1 = 1; d2 = 2; d3 = 3,
and

y1 = e2�ix4(�1 + �2 + �3);

y2 = e4�ix4(�1�2 + �1�3 + �2�3);

y3 = e6�ix4(�1�2�3);

y4 = 2�ix4;

where�1 = e2�ix1 + e�2�ix1; �2 = e2�i(x2�x1) + e�2�i(x2�x1); �3 = e2�i(x3�x2) +
e�2�i(x3�x2). The metric ( ; )~has the form

((dxi; dxj)~) =
1

4�2

0
BBBB@

1 1 1 0

1 2 2 0

1 2 3 0

0 0 0 �1
3

1
CCCCA :

The flat coordinatest1 = y1; t2 = y2� 1
6(y

1)2+3 e2y4
; t3 = y3+2y1 e2y4

; t4 = y4,
the elements of the intersection form are given by

g11 = �1
3t

2
1 + 2t2 + 6 e2t4;

g12 = 3t3 + 1
18t

3
1� t1t2 + 3t1 e2t4;

g13 = 4
3t

2
1 e2t4 + 8t2 e2t4;

g14 = 1
3t1;

g22 = � 1
54t

4
1 +

2
9t

2
1t2 �

2
3t

2
2 + 2t21 e2t4 + 4t2 e2t4 + 6 e4t4;

g23 = 5
9t

3
1 e2t4 + 10

3 t1t2 e2t4 + 10t1 e4t4;

g24 = 2
3t2;

g33 = 1
9t

4
1 e2t4 + 4

3t
2
1t2 e2t4 + 4t22 e2t4 + 8t21 e4t4 + 12 e6t4;

g34 = t3;

g44 = 1
3:

The free energy

F = 1
3t1t2t3 +

1
2t

2
3t4 +

1
18t

3
2 �

1
36t

2
1t

2
2 +

1
648t

4
1t2 �

1
19440t

6
1

+1
6t

2
1t2 e2t4 + 1

72t
4
1 e2t4 + 1

2t
2
2 e2t4 + 1

4t
2
1 e4t4 + 1

6 e6t4
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and the Euler vector field is given by

E = 1
3t1@1 +

2
3t2@2 + t3@3 +

1
3@4:

3. GroupsfW (k)(Al) and the spaces of trigonometric polynomials

A trigonometric polynomial of one variable of bidegree(k;m) is a function of the
form

�(�) = a0 eik� + a1 ei(k�1)� + � � �+ ak + ak+1 e�i� + � � �+ ak+m e�im�;

a0; : : : ; ak+m 2 C; a0ak+m 6= 0:

We will usually normalize�(�) by the conditiona0 = 1.
We denoteMk;m the affine space of normalized trigonometric polynomials.

Equivalently,Mk;m coincides with certain covering of the space of rational func-
tions with two poles of the ordersk andm respectively. Geometry of these spaces
was described in [D] as a part of general differential geometry of Hurwitz spaces of
branched coverings over�C (our spaceMk;m in the notations of [D] isM̂0;k�1;m�1).
Recall that, according to this paper, the spaceMk;m carries a natural structure of
Frobenius manifold. The invariant inner product of two vectors@0; @00 tangent to
Mk;m at a point�(�) equals

h@0; @00i� = (�1)k+1
X

j�j<1

res
d�=0

@0(�(�)d�) @00(�(�)d�)
d�(�)

: (3.1)

In this formula the derivatives@0(�(�)d�); @00(�(�)d�) are to be calculated keep-
ing � fixed. The intersection form is given by the formula

(@0; @00)� = �
X

j�j<1

res
d�=0

@0(log�(�)d�) @00(log�(�)d�)
d log�(�)

: (3.2)

The discriminant� � Mk;m consists of all functions�(�) which fail to have
all simple roots of the equation�(�) = 0. The intersection form is defined only
outside�.

The formulae (3.1), (3.2) uniquely determine multiplication of tangent vectors
onMk;m assuming that the Euler vector fieldE has the form

E =
k+mX
j=1

j

k
aj

@

@aj
: (3.3)

For any three tangent vectors@0; @00; @000 toMk;m we obtain

h@0 � @00; @000i� = �
X

j�j<1

res
d�=0

@0(�(�)d�) @00(�(�)d�) @000(�(�)d�)
d�(�)d�

: (3.4)
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The canonical coordinatesu1; : : : ; uk+m for this multiplication are the critical
values of�(�)

@

@u�
�
@

@u�
= ���

@

@u�
; (3.5)

(see [D] for details).
In this section we will show that the spaceMk;m as a Frobenius manifold is

isomorphic to the orbit space of our extended affine Weyl groupfW (k)(Al) for
l = k +m� 1.

We start with factorizing the trigonometric polynomial

�(�) = e�im�
k+mY
�=1

(ei� � ei��): (3.6)

LEMMA 3.1. The map

(x1; : : : ; xk+m) 7! (�1; : : : ; �k+m); (3.7)

where

�1 = 2�
�
x1 +

m

k +m
xk+m

�
;

�j = 2�
�
xj � xj�1 +

m

k +m
xk+m

�
;

�k+m = 2�
�
�xk+m�1 +

m

k +m
xk+m

�
;

j = 2; : : : ; k +m� 1

(3.8)

establishes a diffeomorphism of the orbit space of the groupfW (k)(Ak+m�1) to the
space of normalized trigonometric polynomials.

Proof. From the explicit formulae (1.6), (1.10), (2.1) and (3.8) it follows that in
the coordinatesy1; : : : ; yk+m the map (3.7) has the form

a1 = �y1;

� � �

ak = (�1)kyk;

ak+1 = (�1)k+1yk+1 exp(yk+m);

� � �

ak+m�1 = (�1)k+m�1yk+m�1 exp((m� 1)yk+m);

ak+m = (�1)k+m exp(myk+m):

(3.9)
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Lemma is proved. 2

According to this Lemma, our groupfW (k)(Al) describes monodromy of loga-
rithms of the roots of a trigonometric polynomial along closed loops in the space
of coefficients nonintersecting the discriminant�.

THEOREM 3.1.The diffeomorphism(3:7) is an isomorphism of Frobenius mani-
folds.

Proof. Since the Euler vector fields (2.26) and (3.3) coincide, it suffices to prove
that the intersection form (3.2) coincides with the intersection form of the orbit
spaces, and the metric (3.1) coincides with the metric (2.9).

Let’s denote the roots of�0(�) by j;1 6 j 6 k +m. Then we have

�0(�) = kie�im�
k+mY
�=1

(ei� � ei �): (3.10)

We defineu� = �( �);1 6 � 6 k +m, then

@u��(�)j�= � = ��� : (3.11)

By using (3.10), (3.11) and the Lagrange interpolation formula we obtain

@u��(�) =
iei ��0(�)

(ei� � ei �)�00( �)
: (3.12)

Formulae (3.6) and (3.12) lead to

�

k+mX
a=1

i@u��a ei�a
�(�)

ei� � ei�a
=

iei ��0(�)
(ei� � ei �)�00( �)

: (3.13)

By putting� = �� in the above formula we obtain

@u��� = �
iei �

(ei�� � ei �)�00( �)
: (3.14)

We denote
�1 = x1; �j = xj � xj�1;

j = 2; : : : ; k +m� 1; �k+m = xk+m:
(3.15)

It follows from (3.8) and (3.14) that

@��

@u�
=

1
2�i

ei �

(ei�� � ei �)�00( �)

�
m

k +m

@�k+m

@u�
; 1 6 � 6 k +m� 1;

@�k+m

@u�
=

1
2m�i

k+mX
a=1

ei �

(ei�a � ei �)�00( �)
:

(3.16)
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From (3.2) and (3.11) we obtain

~g�� := (@u� ; @u� )� = �
���

u��00( �)
: (3.17)

In a similar way we can compute the inner product of the vectors@u� w.r.t. the
bilinear form (3.1), the result reads

~��� := h@u� ; @u� i� = (�1)k+1 ���

�00( �)
: (3.18)

We observe now that the vector fielde = @=@yk in the coordinatesa1; : : : ; ak+m
coincides with

e = (�1)k
@

@ak
:

This follows from (3.9). Shift

ak 7! ak + c

produces the correspondent shift

ui 7! ui + c; i = 1; : : : ; k +m

of the critical values. This shift does not change the critical points � neither the
values of the second derivative�00( �). So

Le~g
�� = Le(�u��

00( �)���) = (�1)k+1�00( �)��� = ~��� ; (3.19)

where(~g��) = (~g��)
�1; (~���) = (~���)

�1.
Now we proceed to the computation of the bilinear form (3.2) in the coordinates

x1; : : : ; xk+m of (3.7) (or, equivalently in the coordinates�1; : : : ; �k+m of the form
(3.15)). It turns out that this coincides with the form( ; )~ defined in Section 2
above.

We will use the following identity

k+mX
�=1

u� e2i �

(ei�a � ei �)(ei�b � ei �)�00( �)
= �ab �

1
k
: (3.20)

In fact the left-hand side of (3.20) equals

k+mX
�=1

res
�= �

�(�)e2i�

(ei� � ei�a)(ei� � ei�b)�0(�)

=
k+mX
�=1

res
v=ei �

�(�i logv) v2 1
iv

(v � ei�a)(v � ei�b)�0(�i logv)
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=

�
res

v=ei�a
+ res
v=ei�b

+ res
v=1

�
i�(�i logv) v

(v � ei�a)(v � ei�b)�0(�i logv)

= �ab �
1
k
:

By using (3.16), (3.17) and (3.20) we obtain

(d�k+m; d�k+m)� =
k+mX
�=1

1
~g��(u)

@�k+m

@u�

@�k+m

@u�

=
k+mX
�=1

(�u��
00( �))

1
(2m�i)2

k+mX
a;b=1

e2i �

(ei�a � ei �)(ei�b � ei �)�00( �)2

=
1

4m2�2

k+mX
�=1

k+mX
a;b=1

u� e2i �

(ei�a � ei �)(ei�b � ei �)�00( �)

=
1

4m2�2

k+mX
a;b=1

�
�ab �

1
k

�

=
1

4m2�2

 
k +m�

(k +m)2

k

!

= �
1

4�2

k +m

mk
= �

1
4�2dk

: (3.21)

For any 16 � 6 k +m� 1, it follows from (3.16), (3.17), (3.20) and (3.21) that

(d�k+m; d��)� =
k+mX
a=1

1
~gaa(u)

@�k+m

@ua

@��

@ua

=
k+mX
a=1

1
~gaa(u)

@�k+m

@ua

 
1

2�i
ei a

(ei�� � ei a)�00( a)
�

m

k +m

@�k+m

@ua

!

= �
m

k +m

�
�

1
4�2

k +m

mk

�
+

1
2�i

k+mX
a=1

1
~gaa(u)

�
@�k+m

@ua

ei a

(ei�� � ei a)�00( a)

comp4074.tex; 11/11/1994; 13:38; v.7; p.47

https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000258122329


214 BORIS DUBROVIN AND YOUJIN ZHANG

=
1

4k�2 +
1

4m�2

k+mX
a;b=1

ua e2i a

(ei�� � ei a)(ei�b � ei a)�00( a)

=
1

4k�2 +
1

4m�2

k+mX
b=1

�
��b �

1
k

�

=
1

4k�2 +
1

4m�2

�
1�

k +m

k

�
= 0: (3.22)

Finally, for any 16 �; � 6 k +m � 1, by using (3.16), (3.17) and (3.20)–(3.22)
we obtain

(d��; d��)� =
k+mX
a=1

1
~gaa(u)

@��

@ua

@��

@ua

=
k+mX
a=1

1
~gaa(u)

 
1

2�i
ei a

(ei�� � ei a)�00( a)
�

m

k +m

@�k+m

@ua

!

�

 
1

2�i
ei a

(ei�� � ei a)�00( a)
�

m

k +m

@�k+m

@ua

!

=
k+mX
a=1

1
~gaa(u)

1
(2�i)2

e2i a

(ei�� � ei a)(ei�� � ei a)�00( �)2

�
m

2�i(k +m)

k+mX
a=1

1
~gaa(u)

ei a

(ei�� � ei a)�00( a)
@�k+m

@ua

=
1

4�2

�
��� �

1
k

�
�

m

2�i(k +m)

2�i
4m�2

�
1�

k +m

k

�

=
1

4�2

�
��� �

1
k +m

�
: (3.23)

Now the coincidence of(dxi; dxj)� and(dxi; dxj)~ follows easily from (3.21)–
(3.23). Hence the intersection form (3.2) coincides with the intersection form of
the orbit spaces. The coincidence of the metric (3.1) with the metric (2.9) follows
from (3.19). Theorem is proved. 2

We construct now the flat coordinatest1; : : : ; tk+m on the space of trigonomet-
ric polynomials (essentially, following [D]). Let’s define
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t� = (�1)�+1ki

�
res

ei�=1
�(�)�=k d�; 1 6 � 6 k � 1;

tk+m�� = (�1)�
mi

�
res

e�i�=1
[(�1)k+m�(�)]�=m d�; 1 6 � 6m; (3.24)

tk+m = yk+m:

From the above definition we have

t� = y� + f�(y
1; : : : ; y��1); 1 6 � 6 k � 1;

tk+m�� = yk+m�� + h�(y
k+m�1; : : : ; yk+m��+1);

1 6 i 6m� 1; (3.25)

tk = yk; tk+m = yk+m;

wheref ’s andh’s are some polynomials, and the relation betweeny’s anda’s is
given in (3.9).

PROPOSITION 3.1.The variablest� are the flat coordinates for the metric(3:1).
Proof. Let’s denote

� = �(�)1=k; � = [(�1)k+m�(�)]1=m;

it follows from (3.24) that when ei� tends to infinity we have

� = �i log� �
i

k

"
t1

�
�
t2

�2 + � � �+ (�1)k
tk�1

�k�1

#
+O

�
1
�k

�

and when e�i� tends to infinity we have

� = i log� � i tk+m

+
i

m

"
tk+m�1

�
�
tk+m�2

�2 + � � �+ (�1)m�1 t
k

�m

#
+O

�
1
�m

�
:

By using the ‘thermodynamical identity’ [D]

@t�(�d�)�=constant= �@t�(�d�)�=constant;

we obtain

@t�(�(�)d�) =

8<
:
(�1)�+1 i�k���1 d� +O(1

� )d�; ei� !1;

O( 1
�
)d�; e�i� !1;
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@tk+m�� (�(�)d�) =

8<
:
O(1

� )d�; ei� !1;

(�1)k+m�� i�m���1 d� +O( 1
� )d�; e�i� !1;

@tk+m(�(�)d�) =

8<
:
O(1

�
)d�; ei� !1;

(�1)k+mmi�m�1 d� +O( 1
� )d�; e�i� !1;

where 16 � 6 k � 1, 16 � 6 m. Thus for 16 �; � 6 k � 1 we have

h@t� ; @t� i� = (�1)k
�

res
ep=1

+ res
e�p=1

�
@t�(�(�)d�) @t� (�(�)d�)

d�(�)

= (�1)k(�1)�+�+1 res
ep=1

�k���1 d� �k���1 d�
d�k

=
1
k
��+�;k;

similarily, we have

h@t� ; @tk+m�� i� = 0; 1 6 � 6 k � 1;1 6 � 6 m;

h@tk+m�� ; @tk+m�� i� =
1
m
��+�;m; 1 6 �; � 6 m;

h@tk+m ; @t�i� = ��;k; 1 6 � 6 k +m:

Proposition is proved. 2

We conclude this section with an example of topological application of Theo-
rem 3.1. LetM0

k;m be the subspace consisting of all trigonometric polynomials
havingk +m pairwise distinct critical valuesu1; : : : ; uk+m. What is the topology
ofM0

k;m? Particularly, how to compute the numberN(k;m) of trigonometric poly-
nomials of the bidegree(k;m) with given pairwise distinct nondegenerate critical
values?

More generally, for an-dimensional complex Frobenius manifoldM satisfying
semi-simplicity condition (i.e., the algebra on TtM is semisimple for a generict) we
may consider the open subsetM0 consisting of all pointst such that the eigenvalues
u1(t); : : : ; un(t) of the operator of multiplication by the Euler vector field are
pairwise distinct. According to [D], onM0 the eigenvalues can serve as local
coordinates. They are calledcanonical coordinatessince the multiplication table
of tangent vectors takes the very simple form (3.5) in the coordinates(u1; : : : ; un).
[As we have explained above, for the spaceMk;m of trigonometric polynomials
�(�) the canonical coordinates coincide with the critical values of�(�)]. According
to [D], the map

M0
! (Cn

ndiagonals)=Sn;
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t 7! (u1(t); : : : ; un(t))modulo permutations

establishes an equivalence betweenM0 and the space of isomonodromy deforma-
tions of certain linear differential operator with rational coefficients. What is the
topology of this space? Particularly, how to compute the numberN(M) of the
pointst 2M0 with given pairwise distinct canonical coordinatesu1; : : : ; un?

To find this number we will compute the degree of the map

M0
! Cn

given by the formula

t 7! (b1(t); : : : ; bn(t)); (3.26)

whereb1(t); : : : ; bn(t) are coefficients of the characteristic polynomial

(�1)n [un + b1(t)u
n�1 + � � �+ bn(t)]

:= det((E(t)�) � u) = (deth ; it)
�1

� det(( ; )t � uh ; it) =
nY
i=1

(ui(t)� u);

here( ; )t andh ; it are the intersection form and the invariant metric respectively
considered as bilinear forms on T�tM . We call it generalized Looijenga–Lyashko
map (LL-map) of the Frobenius manifold (cf. [A3, Lo, Ly]).

The degree of LL-map can be computed easily in the case of polynomial Frobe-
nius manifolds. More precisely, let the free energyF defining the Frobenius struc-
ture in the flat coordinatest1; : : : ; tn has the form

F = cubic term+G(t1; : : : ; tp; q1; : : : ; qr);

whereG is a polynomial,

p+ r = n; qi = exptp+i; i = 1; : : : ; r

and the degrees of the variablestp+1; : : : ; tn are equal to zero. Let us assume that
all the degrees

degti; 1 6 i 6 p; degqi; 1 6 i 6 r

are positive. Then LL-map is a polynomial mapM ! Cn. We recall that the
degrees are normalized in such a way that degt1 = 1. Then the degrees of the
canonical coordinatesu1; : : : ; un are equal to 1 [D]. Hence the weighted degrees
of the functionsb1(t); : : : ; bn(t) are equal to 1; : : : ; n respectively.
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Thus to compute the degree of the LL-map (3.26) we can use the graded Bezout
theorem. We obtain

N(M) = deg LL=
n!

degt1 � � � degtp degq1 � � � degqr
: (3.27)

In the case of the orbit space of the groupfW (k)(Ak+m�1) the degrees of the
variablest1; : : : ; tk+m�1 are expressed via inner products of fundamental weights
(i.e., via entries of inverse of theAk+m�1 Cartan matrix)

degtj =
(!j ; !k)

(!k; !k)
; j = 1; : : : ; k +m� 1

and

deg exptk+m =
1

(!k; !k)
:

We arrive at the following formula for the degree of LL-map of the Frobenius
manifoldMk;m

deg LL=
(k +m)! (!k; !k)k+mQk+m�1

j=1 (!j ; !k)
:

Using the explicit expression for(!j ; !k) (see Table II above)we derive the formula
for the numberN(k;m) (obtained first by Arnold in [A2])

N(k;m) = kkmm (k +m� 1)!
(k � 1)! (m� 1)!

:

We hope that our extendedaffine Weyl groups could be useful for other problems
arising in topological study of spaces of rational functions.
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Note added.In January of ’97 after the article has been submitted to the journal,
the authors received an interesting paper of P. Slodowy ‘A remark on a recent
paper by B. Dubrovin and Y. Zhang’. In this paper it is shown that our analogue of
Chevalley theorem for extended affine Weyl groups can be derived from the results
of K. Wirthmüller ‘Torus embeddings and deformations of simple space curves’,
Acta Mathematica157 (1986) 159–241. This raises a natural question (already
formulated by P. Slodowy) to extend (if possible) our construction of Frobenius
structures to the more general setting of Wirthmüller. We hope to address the
problem in subsequent publications.
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