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Saito [S1] in the theory of extended affine root systems), prove an analogue of Chevalley Theorem
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0. Introduction

Frobenius manifold is a geometric object (see precise definition in Section 2 below)
designed as a coordinate-free formulatioreqtiations of associativitpr WDVV
equations(they were invented in the beginning of '90s by Witten, Dijkgraaf, E.
and H. Verlinde in the setting of two dimensional topological field theory; see [D]
and references therein). In [D] for an arbitrarydimensional Frobenius manifold
amonodromy groupvas defined. It acts in-dimensional linear space and it is an
extension of a group generated by reflections. Looking at simple examples it might
be conjectured that for a Frobenius manifold with good analytic properties (in the
sense of [D], Appendix A) the monodromy group acts discretely in some domain
of the space. The Frobenius manifold itself can be identified with the orbit space
of the group in the sense to be specified for each class of monodromy groups.

In the present paper we introduce a new class of discrete groups that can be
realized as monodromy groups of Frobenius manifolds (it was shown previously
that any finite Coxeter group can serve as a monodromy group of a polynomial
Frobenius manifold, see [D]). We define certain extensions of affine Weyl groups,
and construct a Frobenius structure on their orbit spaces. Our groups coincide
with the monodromy groups of the Frobenius manifolds. They are labelled by
pairs (R, k) where R is an irreducible reduced root system, ands a certain
simple root (shown in white on Table I, next page). Our construction of Frobenius
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structure includes, particularly, a construction of the flat coordirtates , ¢,, inthe
appropriate ring of invariants of the extended affine Weyl groups (flat coordinates
in the ring of polynomial invariants of finite Coxeter groups were discovered by
Saito, Yano, Sekiguchi [SYS, S]). The correspondent solutions of equations of
associativity are weighted homogeneous (up to a quadratic function) polynomials
inty,...,t,—_1, € with all positive weights of the variables. Heme— 1 is equal

to the rank of the root systeiRR. It can be shown (see [D], Appendix A) that for

n < 3 our construction exhausts all such solutions.

The paper is organized in the following way. In Section 1 we define extended
affine Weyl groups and prove an analogue of Chevalley Theorem [B] for them. In
Section 2 we construct Frobenius structure on the orbit spaces of our groups and
compute explicitly all low-dimensional examples of these Frobenius manifolds. In
Section 3 we show that in the case of the root systedttyfpe, our extended affine
Weyl groups describe monodromy of roots of trigonometric polynomials of a given
bidegree. We discuss topology of the complement to bifurcation variety of such
trigonometric polynomials in terms of the correspondent Frobenius manifolds.

1. Extended affine Weyl groups and their invariants

Let R be an irreducible reduced root systeni-idimensional Euclidean spagé

with Euclidean inner produdt, ). We fix a basisas, az, . . ., a; of simple roots.
Let
2 .
a]V:( S =121
@, aj)

be the correspondent coroots. All the numhéys:= («, oz]V) are integers (these
are the entries of the Cartan matrx= (A;;), (@i, o)) = 2, (o, ) <0 for i #
7). The Weyl groupiW = W(R) is a finite group generated by the reflections

01,02,...,0]
gj(X) =X — (oz]V,X)aj, xeV. (1.1)

We recallthatthe root systemis one ofthe tyheB;, C;, D;, Es, E7, Eg, F4, G2
(see [B]).
The affine Weyl groupV, (R) acts in the spac¥ by affine transformations

!
X = w(X) +ija;-/, weW, mje’.
j=1

So it is isomorphic to the semidirect productl®f by the lattice of coroots.
Let us introduce coordinates, z», . .., z; in V using the basis of coroots

X = x100 + 2003 + -+ + 100 (1.2)
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We defineFourier polynomialas the following functions orl/

f(X) _ Z R eZWi(ml$1+~~~+mlxl)’

mi,...,mEZ

the coefficients are arbitrary complex numbers and only finite number of them could
be nonzero. Alternatively, introducing the fundamental weights..,w; € V

(wi, o)) = by,
we can represent the Fourier polynomial as a sum over the weight lattice

f(x) = Z Amy,...,my efrilmuort-tmiwX)

mai,...,my [=v4

Thus the ring of our Fourier polynomials is identified with the group algebra of the
weight lattice [B]. We define the operation of averaging of a Fourier polynomial

FO) = F(x) = Sw (f(x) :=npt Y flw(x), (1.3)

weWw

wheren; = #{w € W | f(w(x)) = f(x)}. For anyf(x) the Fourier polynomial
f(X) = Sw(f(x)) is a function onV invariant with respect to the action of the
affine Weyl group

!
f (w(X) + ija}/) = f(x).
j=1
Equivalently, this is &V -invariant Fourier polynomial.

THEOREM [B]. The ring of W-invariant Fourier polynomials is isomorphic to
the polynomial ringCly, . . ., yi], whereys = y1(x), ...,y = y;(X) are the basic
W -invariant Fourier polynomials defined by

y; = Sw (™ @iX) i =1L (1.4)

EXAMPLE 1.1. The Weyl grougV (A4;) acts by permutations of the coordinates
21,. .., 241 0N the hyperplane

21+ -+ 241=0.

We choose the standard basis of simple regts- a]V- asin [B, Planches I]. Then
the coordinates, .. ., z; are defined by

21 =11, 2 =x;— Ti—1, 1=2,...,0, z1=—ay. (1.5)
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The basid¥ -invariant Fourier polynomials coincide with the elementary symmet-
ric functions

yj = s; (€47 @A) =1l (1.6)

We are going now to define certain extensions of the affine Weyl group acting
in the (I 4+ 1)-dimensional space with indefinite metric.

For any irreducible reduced root systdtiwe fix a rootqy, indicated in Table .
The Dynkin graphs oA — B — C — D — E — F — (G type are shown in the
Table 1 with one more vertex added (this is indicated by asterisk). We will use this
additional vertex later on. The white vertex of the Dynkin graph corresponds to the
chosenrooty;. Observe that the Dynkin graph &, := {aa, ..., dx, ..., oq} (ag
is omitted consists of 1, 2 or 3 branchesf type for some-. Another observation
is that the number

%(aka O{k)

is an integer for our choice @f.
We construct a group

W =wW®(R)
acting in
V=Va&R

generated by the transformations

l

z = (X, z111) — (w(x) + ija}/, xl+1> , weW,m;eZ, (1.7a)
j=1

and
z = (X z111) = (X +wg, T41— 1) (1.7b)

DEFINITION. A = A®)(R) is the ring of alll¥ -invariant Fourier polynomials of
x1,...,21,(1/f)z41 that are bounded in the limit

x=x%— i wr, T4l = $?+1 +i1, T — 400, (1.8)

foranyz® = (x° 2. ,), heref is the determinant of the Cartan matrixof the
root systemR, see Table 2.
We put

dj = (wjawk:)a .7 = 1&' .. ala (18)

these are certain positive rational numbers that can be found in Table II. All the
numbersf - d; are integers. Indeed, they are the elements oktheolumn of the
matrix A~ times 3 (v, ay,).
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Table II.

R di,...,d; f d.
i(l—k+1) .

A di= o 1Sisk J41  ku=k+D)

v —i . 1+1

BUCED - p+1<i <
i, 1<i<I-1

B, di=¢ ,, 2 I-1
5, =1

C, di=i 2 l
i, 1<i<gI=2

D odi=S ., 4 -2
B2 i=1-11

Es 2,3,4,6,4,2 3 6

E; 4,6,8,12,9,6,3 2 12

Es 10, 15, 20, 30, 24,18, 12, 6 1 30

Fi 3,6,4,2 1 6

G, 3,6 1 6

LEMMA 1.1. The Fourier polynomials
gi(x) = emhtiny(x), j=1,...,1,

. (1.10)
?jl+1($) — 627r1,l'l+1’

are W-invariant. N
Proof. We show that alfj1, . . ., g; areW-invariant (invariance ofj; 1 is obvi-
ous). It suffices to prove that

yi (X + wg) = €7 (). (1.11)

We can represent;(x) as

yi(x) =n;t Y rilwe)X), (1.12)
weW

wheren; = n; for f = >« According to [B, VI, Sect. 1.6, Prop. 18] for
any weWw

w(wj) = wj — Zmiai, (1.13)
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for some non-negative integergy, ..., m;. SO

!
(w(w;) wi) = (wj,wi) = > Mo, wp) = dj — 1y,
i=1
for an integer

My = 3my, (g, ), (1.14)

this leads to (1.11), and we proved the lemma. O

Let us prove now boundedness of the functians. .., g; in the limit (1.8).

LEMMA 1.2. In the limit

x =x0 —iwpr, T — +o0, (1.15)
the functionsg1(x), .. ., y;(x) have the expansion
yi(x) = W20 + O(e7* )], j=1,...,1, (1.16)
where
200 = n7? 3 rilw(@) X0, (1.17)
weEW

(w(wj)—w; ,wk)=0

Proof. From the representation (1.13) we see that the exponential
exp2ri(w(w;), x)] in the limit (1.15) behaves as

eZTF(dj —Maw )T e27r'i(w(wj ),X0) :

where the non-negative integer,, is defined in (1.14). Thus the leading contri-
bution in the asymptotic behaviour of the sum (1.12) comes from thoselW
satisfyingm;, = 0. Lemma is proved. O

COROLLARY 1.1.The functiongjs(z), ..., 7;+1(x) belong toA.
Proof. From (1.16) it follows that

gj(x) = 70(x°) = Ty 0x0), j=1,...,1,

+1— 0
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in the limit (1.8), where the functiong)(x°) are defined in (1.17). Corollary is
proved. O

The main result of this section is

THEOREM 1.1The ringA isisomorphic to the ring of polynomials o1, . . . , ;1.
Proof. We will show that any elemerft(z) of the ring.A can be represented as
a polynomial ofjs, . .., g;+1. This will be enough since the functiogs, . . ., ;11
are algebraically independent.
From the invariance w.r.t¥ it easily follows (using Theorem [B]) that arfyx)
can be represented as a polynomiadgfz), . .., 9;(z), g1+1(x), gjljrll. We need to
show that inf (x) there are no negative powers of

Jrpa(z) = €m0,
Let’'s assume

fl@)= " G Paa(@),. .., 5u(x))
n>—N
and the polynomiaP_ n(91(x), ..., 9;(x)) does not vanish identically for certain

positive integetNV. From Corollary 1.1 we obtain that in the limit (1.8) the function
f(x) behaves as

fx) = ENT 2N P (52(20), .., i0(20) + O(e P,
where
72(a0) = Mot O(x0),  j=1,...,1

and the functiong?(x°) are defined in (1.17).
To obtain a function bounded fer— +oo it is necessary to have
P—N(gg(xo)a s aglo(xo)) = Oa

for any 2% = (x°,2, ). We show now that this is impossible due to algebraic

independence of the functiorjg, e ,gjlo. It is sufficient to prove algebraic inde-
pendence of the functiong(x), . .., y°(x).

MAIN LEMMA. The Fourier polynomialg?(x), . .., 4?(x) are algebraically inde-
pendent.

We will prove that these functions are functionally independent, i.e., that the
Jacobian

det <8gg;(:<) )
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does not vanish identically. At this end we derive explicit formulae for these
functions and then prove nonvanishing of the Jacobian.
Consider

R,=ROYURPuU.. .,

here any subsysteR(Y), . . . is aroot system of the typé, for somer (see Table I).
Letw; be a fundamental weight orthogonaly RV .

LEMMA 1.3. Let for someaw € W (R)

such that, = 0, thenc,, # 0only if o, € RWY.

Proof. In W (R, \RW) there existauy such that it maps all positive roots of
R;\RW into negative roots. Clearlyy preserves alk,, € RV, andwo(w;) = w;.
We represent

w(w) =w; —at —a@ —

wherea(’s are sum of some positive roots Bf?). Then

wow(w;) = w; — Y —wp(a® + ) = w; — P + > mam,
amERk\R(l)

for some nonnegative integetg, and not all of these integers vanish if there exists

certaino,,, ¢ R suchthat,, # 0. This contradicts to negativity afyw (w;) —w;.
Lemma is proved. O

A similar statement holds true for other componeRtd, ... (if any) of Ry.

LEMMA 1.4. If for somew € W(R)

w(wg) =wk — Y CmOm,
m#k

then alle,, = 0.
Proof. There existawg € W (Ry,) such that it maps any positive roots®f into
negative ones, and preservgs So

wow(wy) = wy + sum of some positive roats
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which leads to the result of the lemma. O

LEMMA 1.5. Under the assumption of Lemmnz3 there existsv € W (RW)
such that

W(wi) =ww) =wi— Y, CmQm
amER(l)

Proof. We will use induction on the length af. If the length ofw equals one,
then the lemma holds true obviously. We now assume that the lemma holds true
when the length ofv is less tharp. Letw has the reduced expressiop . .. o;,,
then it follows from Lemma 1.3 that

Uil---Uip(wi) = W; — Z Cm Q. (1.18)
amER(l)

Ifall ¢,, = 0, then we can pub = 1, otherwise we rewrite (1.18) in the form

Wi = Uipaip,l . ail(wi) — Z Cmaipaip,l e Uil(am).
ameR(l)

We put

l
TipOiy_y - Oy (W) = Wi — Z by iy,
m=1

for some nonnegative integebs, . .., b;. We claim now that there exists a root
am, € RW such that,,, # 0in (1.18) and

-1
w () = TipOiy g e - i, (am,)
is a negative root. Indeed, otherwise the root
!
Z bmom + Z Cm0i,Ciy_y - - Oiy Oy
m=1 ameR(l)

could not be equal to zero sineg,’s are nonnegative integers. We use now the
following proposition.

PROPOSITION [H, page 50).et ¢, ..., a; be some simple roots @? (not
necessarily distingt If

Ojy " O—jt—l(ajt)
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is a negative root, then for sonieg s < t — 1 we have
Ojp e Ojyg = Oy een Oy Ojy_1Tjy,
where the hat above;, means that this factor is omitted in the product.

According to this statement we can represent

-1_ A .
W T =04, O o Oy Oy s

for some 1< s < p. We can now rewrite (1.18) as
w' (W) = oy (wi) — Z CmOmy (O) = w; — Z Ch s
am€RW am€R®
for some new nonnegative integefs, and for
w':ail...&i e

s " p*

The length ofw/’ is less than the lengthof w. Using the induction assumption we
complete the proof of the lemma. O

COROLLARY 1.2. (1) Let R®) be any branch of?y, then for anya; € R()

we have
Px)=m;t Y @milwenX), (1.19a)
wEW (R()
(2)
yo(x) = 2@ X) = 2wk (1.19b)

wherem; = #{w € W(R®) |w(w;) = w;}.

Proof of the Main LemmaAe proceed now to the proof of algebraic indepen-
dence of the functiong?(x), ..., y°(x) by analyzing the formulae (1.19) for all
the cases of root systems. Let's definei = 1,...,7 as in (1.5), and denote
the jth order elementary symmetric polynomial of variablesus, ..., u, by
sj(ut, ..., up) With so(ut, ..., u,) = 1.

(1) For the root system of typé;, from Example 1.1 and (1.19) we have

Y9X) =v; +vi_qvg, 1<i<k—1,
YR (X) = vg_1vg,

1 1.20
Yp1(X) = Upg1vp—10% + o (1.20)

V451 2
v

y]2+j(x) = Vg4 Uk 1Vk + <J<l—k,
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where
v; = s5;(€2™A, L @TH1) 1K<k — 1,
vy, = €Tk, (1.21)

Vg = s (M @A) 1< i< l— k.

Clearly the variabless, . .., v; are algebraically independent. We have

0
det(%) = (=1)F~v k4t~ 4 lower order terms ofy. (1.22)
J
So the Jacobian d@ty?/dz;) does not vanish identically.
(2) For the root system of typ8; andC;, we havek = [ — 1 andk = |
respectively, all the formulae in (1.20)—(1.22) hold true if we replabg! — 1 and
[ respectively. So in these cases the Jacobian does not vanish identically neither.
(3) Forthe root system of typB,, k = [ — 2, we have

YO(X) =vi +vi_1w_p, 1<i<I—3,

yl{z(x) = V|-3V]—2,

1 1.2
yP 1(X) = v_gu_ov1 + —, (1.23)
V1
0 1
y; (X) = vi—3v_ovj_1v; + )
V10

wherevi,l <i<l—2are defined in (1.21) witk = [ — 2, andv;_; =
e2mi%-1 y; = €2™%, \We have

o0
det<8—%> = (=1)"*Yv,_192 qvi=3 + lower order terms ofy, .
vy

Since the functionsy, . . . , v, are algebraically independent, the Jacobiatttéy 9z ;)
does not vanish identically.
(4) For the root system of typB;, k = 4, let’s define

Br=m, Bi=Ti_it1— T—it2, 2< i<
and
v; = s;(€2P L TPy 1 <igl—4,

v_g = ez,
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Vg = e27”.(5172+5171+5l),
oy = i1 )
v = ezmﬁl.

Then we have

1 v
0__ -1
Yy =v-4v- 3V 2+ —+ —,
V-1 V-2
V-2 U

0_
Yo = Vj—4V—3 )
Uy V2

(1.24)

0__ V-2
Y3 = Vl-4U-3——— +V-4V-3V-1 + —,
v-1 U2

0_
Yg = Vi—4V]-3,
Yo =vi+viimes, 1<i<l—4

and

dy? 2\ v2(v4)®
det(a—yl> —¢ (1— - 2> v 2(021 4 vl~% + lower order terms ofy_3,
vy

V-1 Yy
wheree = —1 or 1, which shows that the Jacobian(dgf /0z,) does not vanish
identically.

(5) For the root system of typgy, k = 2, defines; as for theE,; case with
[ = 4, we have

0 1
Yi = v2v3v4 + —,

V4
0_
Yo = V203, (1.25)
?Jg = V2 + v1V3,
ﬁ=m+%

where v; = s;(e?™P1 b2 j = 1,2 v3 = €7 ¢y = €274 Then

o9
det(ayl ) = vv3 + lower order terms ofs.
Uj

Since the functions, . . . , v4 are algebraically independent, the Jacobiattgy 9z ;)
does not vanish identically.
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(6) Forthe root system of typ@&,, k = 2, we have
yg — e27ri:l:1 + eZWi(mlfmg)’ yg — eZ7rix2’ (126)

soy$ andy? are algebraically independent.
We thus proved the Main lemma and also Theorem 1.1. O

COROLLARY 1.3.The functiordegdefined as
deggjj:dj, j:].,...,l,
degy11=1

determines ot a structure of graded polynomial ring.

We end this section with an important observation about the nurdbers , d;.
Let us again consider the components of the Dynkin gragt,cf R\ay. By R
we denote the component that touches the added vertex (the asterisk) on Table I.
We put

RW = RM U {ay} U {}.

This is again a,-type diagram. ByR(?, . . . we denote other components®f.
We put also

diy1=0.
On any of the diagrank®, R(@ ., .. . there is an involution
;= Q=
corresponding to the reflection of the component w.r.t. the center.
LEMMA 1.6. The numberdy, ..., d;,1 satisfy the duality relation
di + di= = dj. (1.27)

Proof. By obvious inspection of Table II. O

2. Differential geometry of the orbit spaces of extended affine Weyl groups

Let M = M(R, k) = SpecA. We call itorbit spaceof the extended affine Weyl

group W. According to Theorem 1.1 and Corollary 1.3 this is a graded affine
algebraic variety of the dimension = [ + 1. The functiongjsi(z), ..., 7i+1(x)
serve as global coordinates ar. We will however use the local coordinatg's=
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g1(x), ...,y = §i(z) and ¢!t = log§11(x) = 2miz; 1. The last coordinate is
multivalued onM. In other words, it lives on a coveringt of M\ {7, 11 = 0}.
The projection map

PV s M
is given by the formulae
(1, zig1) = (Ga(2), - Gi(2), 2mimge) = (yh ... yt ). (2.1)

For the Jacobian of the projection map we have a formula

det(ayj ) = 2mi ez’”(dﬁ“'*dl)flﬂdet(8yj (X)>
0

0z z)p

= cexp [27ri(d1 + -4 d)zpp — Z mi(«, X)]

acdt

< ] (€0 — 1), (2.2)

pedt

whered T is the set of all positive roots ards a nonzero constant [B, page 185, 228].
So the projection map is a local diffeomorphism outside the hyperplanes

{(X,2141)|(8,X) = m € Z, 2,1 = arbitrary}, [ dT. (2.3)

Recall that the hyperplanég|(/3,x) = m € Z} are the mirrors of the affine Weyl
group.

In this section, we will introduce a structure of Frobenius manifold\dr(see
definition below, and also in [D]). We define first an indefinite mefric )" on
V = V & R. The restriction of( , )" onto V coincides with thel¥-invariant
Euclidean metri¢ , ) onV times 4r2. The coordinate;_  is orthogonal td” (so
V @ R is orthogonal direct sum). Finally we put

(el+1,el+1)”: —47r2(wk,wk) = —47T2dk,

where ¢, 1 is the unit vector along the;, ; axis.

We introduce now a symmetric bilinear form o taking projection of , ).
More explicitly (cf. [A1]) the bilinear form on TM in the coordinateg?, . . . , 31
is given by a(l + 1) x (I + 1) matrix (¢*/) of the form

I+1
y' oy’ .,
(dy dy =g Z 895“8:15” (dz®, dx ) (2.4)
a,b=1
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herez® = x,,1 < a <1+ 1, and this notation will also be used later.

LEMMA 2.1. The matrix entrieg” of (2.4) are weighted homogeneous polyno-
mials ingy, ..., ;41 Of the degree

degg® = degy’ + degy’,

(heredegy'™ = d;,1 = 0). The matrix(¢*”/) does not degenerate outside the
P-images of the hyperplané2.3)
Proof. We have for 1< i,5 <1

o did; ! 0y; 07
U= =gy § j L2 : 2.5
g d Yy ] 4 N2 8331) axq pthI) ( a)

This is a Fourier polynomial invariant W.rHY . Clearly it is bounded on the
limit (1.8). According to Theorem 1.1 this is a polynomialgm, . .., 4;+1. The
homogeneity is obvious.

For ¢/'*+1 the computation is even simpler. Fokd;j < I we obtain

. di .
gt = d_]y]‘ (2.5b)
k
Finally
TENTER
g ? = d_ (25C)
k

Nondegeneracy ofg*/) follows from (2.4) and from the formula (2.2) for the
Jacobian. Lemma is proved. O

According to Lemma 2.1, the image of nonregular orbits (2.3) is an algebraic
subvariety> in M given by the polynomial equation

% = {y|det(g" (y)) = O}.

We will call 3 the discriminantof the extended affine Weyl group. Ov(\X the
matrix (¢'7) is invertible; the inverse matrix

(9i7) = (¢7)~*

determines a metrfoon M\X. Of course, this is a flat metric since it is obtained
from a constant metric ol by a change of coordinates (see formula (2.4)).

1 The word ‘metric’ in this paper will denote a symmetric bilinear non-degenerate quadratic form
on TM. The metric is called flat if by a local change of coordinates it can be reduced to a constant
form.
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Let us now compute the coefficients of the correspondent Levi—Civita con-
nectionV for the metric( , )" defined by (2.4). It is convenient to consider the
‘contravariant components’ of the connection
T = (dy', Vindy’y (2.6)
They are related to the standard Christoffel coefficients by the formula
ry) =—g¢"I" .

For the contravariant components we have the formula

i gy — Oy’ 0%y’
m

= 527 92 00" (dz?, dz?) dz", 2.7)

here and henceforth summation over the repeated indices is assumed.

LEMMA 2.2. ri’s are weighted homogeneous polynomialgin . ., 4,1 of the
degreedegy’ + degy’ — degy™.
Proof. From (2.2) and (2.7) we can represent

i — @milditd;—dm)ai1a PH(x)

whereP? is certain Fourier polynomial imy, ..., z;,

J(X) = e Y wcat mi(eX) H (ezm'(g,X) —1)

BeDT

is anti-invariant w.r.t the Weyl grouf@’, it has a simple zero on any mirror of the
Weyl group, and it changes sign w.r.t. the reflection in the mirrors TBumust

be invariant w.r.t. the Weyl group (it is invariant even w.r.t. the extended affine
Wey! groupW). So PY must be anti-invariant. Hence it is divisible byx) [B.

It follows thatT'% is a Fourier polynomial incy, ..., z;, (1/f)zi41, Wheref is

the determinant of the Cartan matrix of the root system (see Table II). Since it
is invariant w.r.t. the extended grod§ and is bounded in the the limit (1.8), it
belongs ta4, we conclude from Theorem 1.1 thatit is a polynomia}in. . . , ;1.

The homogeneity property is then obvious. Lemma is proved. O

COROLLARY 2.1.The polynomialg® () andT% (y) are at most linear in/*.
Proof. This follows from weighted homogeneity and from the following impor-
tant observation

di, > d; foranyj # k,
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(see Table Il). We need however to prove linearity/irof the componentg®* and

¥, According to (2.5a) we have
Ok 3yk
Kk _
g - yk+ 4 2 Z awp axq P?wq)
pyg=1

; 1 & Ayk(x) Ay (x)
Amidy, x 2
— @hmidpziin (dkyk + o Z dsg (wp,wg) | -

p,g=1 Op

The second term in the bracket i$i&invariant Fourier polynomial of the form

B Oyk(X) Oyk(X)
9= 471'2 z; (93:,, 0z, (p; )

p,q

= 2 Y (w(wr), v (wy) @00,

w,2w'eW
We use now the standard partial ordering of the weights [H, page 69]

wsw

!
= Z CmQm
m=1
for some nonnegative integers . . ., ¢;. In this case we will also write
e27ri(w,X) - eZWi(w’,X)‘
The W -invariant Fourier polynomiagj has unique maximal term
Because of this all the terms in thE-invariant Fourier polynomial

dyys + g (2.8)

are strictly less than%(2#x-X) Hence the representation of (2.8) as a polynomlal
iny1(X), ..., 4(x) does not contaip?. That means thaf** is at most linear in/*.

https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000258122329

AFFINE WEYL GROUPS AND FROBENIUS MANIFOLDS 185

ForI['}*, we have
ozrY oYk 9%k
Oy!t1 OxP Oz Oz

B ayk 0 oyF .
a7 Oy (a— (da?, dz)

Kk
iy =

(dz?, dz?)y

1 agkk
2 oy

so it also depends at most linearly gh Corollary is proved. |

We define a new metric on*JM putting

g dg¥
1] _
y) =%

Up to multiplication by a nonzero constant this metric does not depend on the
choice of basic homogeneoUus-invariant Fourier polynomials. Indeed, since

(2.9)

degy® > degy’ foranyj # k

the ambiguity in the choice of the bagi . . ., y*t1 is of the form

yF eyt + R 0R, Ly expy'T),
y] '_>f](y]-’"'7gk7"'7yl7expyl+l)7 ] #k7l+17
yl+l '_>yl—|—l’

wherec is a nonzero constant and the polynomigisare weighted homogeneous
of the degreel; resp. So the vector field/dy* is invariant within a constant

9 ., .9
oyk oyk”

The same formulae prove that the matii(y) behaves like a (2,0)-tensor (i.e.,
a symmetric bilinear form on the cotangent bundle) w.r.t. the changes of homoge-
neous coordinates on the orbit space.

MAIN LEMMA. The determinant of the matr{x’/) is a nonzero constant.

To prove this lemma, we need the following lemmas.

LEMMA 2.3. Let R be a root system of typ4, — B, — C;, — D;, denote R, =
R\ar, =RMDURPU... .
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(1) If @i and; belong to different components Bf, thenn®/ = 0.

(2) The blocky") = (7'7)|,,, .. re Of the matrix) = (n'7) corresponding to any
branch R(® has triangular form, i.e. it has all zero entries above or under
the antidiagonal. The antidiagonal elementsn®f consist of the constant
numbers;®” for a; € R,

(3) n'HY) = DT = (1/dy) i,

Proof. As we did in the proof of Corollary 2.1, we use the standard partial
ordering of the weights of:. When 1< i,5 < [, we know from (2.5a) that
g = emilditdj)riis p(x), where

) = S350 — ()

xS (w(w), w' (w))) i@t @) X),

w,w'eW

All the terms in the Fourier polynomial(x) are strictly less than2&(wi+;-X)
except the terna €27(witw;-X) 'wherec is certain constant. Sof(x) as a polyno-

mial iny1, ..., y; contains a monoml ...,y with p, = 1then
!
Wi+ wj = prwr+ - P+ Y gsas, (2.10)
s=1

for some nonnegative integers - .., q;.
Let’s first consider the root systeny, and assume X i < k < j < I. We
multiply (2.10) byw; to obtain

l—i+1+l—j+1 Y p(l—s+1)
I+1 o [+1

If ¢1 > 1 then we obtain inequality

+qu. (2.11)

I+1+k—i—j—> p(l—s+1)>1+1
s#k

This is impossible sinck — i — j < 0. Hencey; = 0 and
l—i+1- = ps(l—s+1).
s#k

From the last equation we conclude that= 0 for s < i

Next we multiply the Equation (2.10) s, . .., «; 1 to prove recursively that
alsog, = --- = ¢; = 0. The last step is to multiply the same equatiomby\We
obtain

1= —gis1
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This contradicts nonnegativity gfs. So (2.10) is not possible for< k£ < 7.
For the root systenB;,k = [ — 1, we assume (2.10) holds true forgli <
[ —1,7 = 1. We multiply (2.10) byw; to obtain

1+3=pr1+-+p2+1+3p+a,

which leadst@, = --- = p;_2 = q1 = 0, p; = 1. We now multiply (2.10) by, ;1
to obtain

i+ (whwiz1) =1+ 14 (Wi, wit1) + Giv1,

which is impossible since;, 1 is a nonnegative integer. So we proved that (2.10)
isnotvalidforl<i <l —1,5=1.

For the root systenb;, k = [ — 2, similar to the case oB; we can see that
whenlg<i<l—2andj=1—1,0orlgi <[ —2andj =1the relation (2.10)
cannot be valid. Wheh=1 — 1, j = [ we multiply (2.10) byw; to obtain

sHa=pitoFpat 14 gpoa+ g+ a

which leads t; = --- = p;—3 = pi—1 = pr = ¢1 = 0. We now multiply (2.10)
by w;_1 to obtain

+30-2=301-2) +q-u,
1

which leads tay;, ;1 = 3, this contradicts to the fact thgt ; is aninteger. So under
our assumption o j, (2.10) is not valid.

The first statement of the lemma follows from the above arguments and from the
fact that for the root systeifi;, R, has only one component. To prove the second
statement of the lemma, we note that in any componeR}.pthe numberd; are
distinct and ordered monotonically (see Table Il). Sintéy) is a polynomial of
degreed; + d; — di, we havey* (y) = 0 whend, + d; < di, andp®/ = constant
whend; +d; = dy,, note that this happens if the labéind; are dual to each other
in the sense of Lemma 1.6. So we proved the second statement of the lemma. The
third statement of the lemma follows from (2.5b) and (2.5c). Lemma is praved.

COROLLARY 2.2. det;™/) is a constant, modulo a sign it equals[i_, n".

Proof. For the root systed; — B; — C; — D, the above statement follows from
Lemma 2.3.

For the root systenis, F4, G» we observe that all the numbeisare distinct.
We can re-label the simple roots in such a way that the numheaise ordered
monotonically. Since* (y) is a polynomial of degreé; + d; —dy., we have;*’ = 0
whend; + d;, < dj, andn* = constant whed; + d; = d;. The last equality holds
true when; = *. We conclude that the matri¢g*’) is triangular, and its anti-
diagonal elements are the numbefs. So the statement of the corollary holds
true.
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For the root systeniig, we have
di=2 dy=3 d3=4, di=6, ds=4, dg=2, d7=0.
We change the labels as follows
41 3—2, 5—3 2—4 6—5 1—6 7—17.

Under the new labels the numbeksare ordered as follows

di=6, do=4, dz3=4, di=3, ds=2 dg=2 d7=0

and the matrix(n”’) becomeg7*). We claim that the matrixs*/) is triangular,
and its anti-diagonal elements consist of the constant numﬁér§'o see this, it
suffices to show thaj®® = 5> = 0. If »1° # 0, then by using a similar argument
as we gave in the proof of Lemma 2.3 we have

6

w1 + w5 = p1w1 + - -+ + pewe + quas,
s=1

with p4 = 1 andp;, ¢; are some nonnegative integers. This is impossible due to
w1+ ws —wg = %Ozl—i- %0134- %0154-%016

and the fact thafw;,w;) > 0 for 1 < i,j < 6. So we proved that the corollary
holds true for the root systeif.
For the root systent7, we have

di=4, dp=6, d3=8, ds=12
ds=9, dg=6, d7=3, dg=0.

Similar to the Eg case, to prove the statement of the corollary, we only need to
prove that;?® = 0, this easily follows from

w2+ we —wa = —aq — %az — 203 — 304 — lzla5— %as— %a7.

Corollary is proved. O

LEMMA 2.4. There existx® such thaty?(x%) = 0for j # k andyJ(x°) # 0.

Proof. We give the requires® explicitly for all cases of the root systems. As in

the proof of the Main Lemma in Section 1, we denefe= z9, 20 = 20 — 20 |

7
0_ ,0 g0 _ .0 0 .
andﬂl - $za/3i =T 41 Ty for 2 <@ <.
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For A;, we take
0 0y _ -z - = - S ]
(zl,...,zl)—<0,k,k,..., L ,C C l—k—{—l’...’c l—k+l>

wherec = (I — 2k +1)/2(1 — k + 1).
For B;, we take

1 [—2 3—1
0 0y _
(Zl,...,zl)—<O,l_1,...,l_1, 4 )

For C;, we take

1 [—1
(Z]c_),,zlo): <O,j,,T>

For D; we take

1 1—3 4-—1
0 0y _
(Zl,...,zl)—<O,l_2,...,l_2, 4 ,O)

For Es we take

(B, 38) = 3:.3.0.-3,—%. ).
For E; we take
('BJO'""’B7) (:743 421 %’Ov_gv_%v_%).
For E5 we take
0
(ﬂl""’58) (g :_g %’%707_17_%7_%).

For F, we take
0,.0.,0.0 121
(z1, 73, 73, 24) = (O, 553 z)-
For G, we take
0.0
(331,332) = (%7 :_23)

It is now easy to see from the formulae in (1.20), (1.23)—(1.26) that tkitse

(xcl’, e ,g:?) satisfy the requirement of the lemma. Lemma is proved. O

Remark Thex? given in Lemma 2.4 satisfies the following relation

1
0102...Uk_10k+1...01(xo) = dkwk—l-Zoz +X (212)
=1
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whereo’s are defined in (1.1). From this relation and (1.17) we obtain

Y01 .. op—10k41 - .. 01(X°))

-l ) 2ri(w(w;),—(1/di)wp+3 1 af +X°)
weW
(w(wj)—wj,wi)=0
=n; 1 Z g (2mi/di)(wj wi)+2mi(w(w;),X°)
weW
(w(wj)—wj,wi)=0
= e~ (@midj/di)y0(x0), (2.13)
On the other hand from (1.17) we have

y?(Ul o Ok—10k41--- Uz(XO))

— nj_l Z e27ri(al...ak+1ak_1...01w(wj),XO) — y?(XO). (2.14)
weWw
(w(wj)—wj wi)=0

So from (2.13), (2.14) and the fact that0d; /d;, < 1 whenj # £ it follows that
y3(x%) = Owhenj # k.

Proof of the Main LemmaBy using Corollary 2.2 we only need to prove that

det(n*) does not vanish.
Let’s denote

Ut = {a € &F|(a,wy) = 0}, (2.15)

where®™ is the set of all positive roots dk. Let's takez = (X,z;41) = (X0 —
itwy, i), wherex? is given by Lemma 2.4, then from (2.2) we have

)

0z
=c exp (Zﬂ'i(dl + 4 dy)xpy1 — Z mi(«, X))

acdt
x [ (€% —1)

Bedt
= ] (2mi(8X) _ 1) II (X0 2m(Buwi)T _ 1), (2.16)

BeET+ peP+\T+
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here
Cl = ce Eae@Jr Wi(a,XO)—Za€¢+ 27 (o,wi )T

— ce Eaeq)Jr Wi(a,XO)—Za€q>+\‘I,+ 2r(owi)T

and we have used the identity [B, H]

1 l

acdt
Now let’s take the limitr — 400, by using (2.16) we obtain

x = lim det(ayi(x)>

T—+00 0z

= ce Eae<1>+ Wi(a,XO) H (eZﬂ'i(ﬁ,Xo) o 1) H ezﬂ-i(ﬁ’xo)_

pewt peDT\w+
From the explicit form o&® given in Lemma 2.4 and the above formula we know
thaty # 0.
Finally, by using Lemma 1.2, Lemma 2.1, Lemma 2.3-2.4 and Corollary 2.1
we have
. 1 .
gy - = H 19
det(n") 000 lim__det(g”(x))
9y’ @)\
) li _ .2
c T_I)Too <det< oz, >> c'x#0,
wherec” is a nonzero constant. The main lemma is proved. O

COROLLARY 2.3.The function;” is equal to a nonzero constant if and only
if 7 is dual tos, i.e.,j = i*.

Proof. For the root system of typd, — B, — C; — D; — Eg — F4 — G5, the
corollary follows from the above Main Lemma, Lemma 2.3, Corollary 2.2, Table II
and the weighted homogeneity g .

For the root system of typEs — E7, the corollary follows from the above Main
Lemma, Corollary 2.2, Table I, the weighted homogeneity‘dfand the fact that
n*® = 136 = 0 for Eg andn?® = 0 for E;. In the proof of Corollary 2.2 we showed
thatn'® = 0 for Es andn?® = 0 for E7, we can show in a same way thgf = 0
for Fs. Corollary is proved. O

COROLLARY 2.4.The orbit spaceM carries a flat pencil of metrics

_ 99"(y)

97(y) and n(y) oy
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and the correspondent contravariant Levi—Civita connections

T (y)

T(y) and yi(y) = o

Particularly, the metrign™ (y)) is flat. B B
Proof. This follows from the linearity of* (y) andI'}), in y* and from nonde-
generacy of)"/ (y) (cf. [D], Appendix D). Corollary is proved. O

We recall [D] that this means that the Levi—Civita connection for a linear combi-
nation of the metrics

ag” (y) + bn" (y) (2.17)
must have the form

AT W) + il (), (2.19)
for arbitrary values of the constantsb, and the metric (2.17) must be flat for any

a,b.
Note thatg”( ),T (
polynomials iny?, ..., 1!

), and alson (), (y) are weighted homogeneous
ey ' where

degy’ =d;, 1<j<l; dege' ™ =
COROLLARY 2.5.There exist weighted homogeneous polynomials
=1yt e, a=1,...,1

of the degreed,, such that the metrig®/ (y) becomes constant in the coordinates
t1, ..., th 1 = ¢!+ and the linear part of® is equal toy®.

Proof. (cf. [D, page 272]) Local existence of the coordinatégollows from
vanishing of the curvature of’ (see Corollary 2.4). The flat coordinates: #(y)
are to be found from the system of linear differential equations

' 851 +7;°¢, =0,

o (2.19)

oy*

= fs-

From the Main Lemma we know that the inverse mafrjx) = (n¥/) 1 is also
polynomial iny?, ..., y!, e/ *". By using the formulae (2.7) we have

i l+1
i+l 81_‘; -0

https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000258122329

AFFINE WEYL GROUPS AND FROBENIUS MANIFOLDS 193

it follows that

fHL i

is one of the solutions of the system (2.19). We choose remaining solutions
to(yL, ...yl e ™) in such a way that

ot®

@(0,...,0,0):6‘?‘ a,j=1,...,1.

770

The solutionst®(y) are power series in?,...,y!,e¥'"". The system (2.19) is
invariant w.r.t. the transformations

y e chiyl, =10, eyt loge,
for any nonzero constant So the functiong®(y), 1 < a < [ are weighted homo-
geneous of the same degreés > 0. Hence the power serig§(y) must be

polynomials. Corollary is proved. O

COROLLARY 2.6.In the flat coordinates!, . . ., !+ we have

(1) N
ogh (1, ... tth)
otk

' =
(2) n is equal to a nonzero constant if and only if= i*, and
nn* (tl, tet 7tl+l) = nn* (y17 e 7yl+l)'
Proof. From Corollary 2.5 we have

0 0

otk oyk’

which leads to the first statement of the corollary.
The second statement of the corollary follows from the fact that the linear part
of t¢ isy®. Corollary is proved. O

It follows from our normalization of the flat coordinates that

I+l _ s«

Remark For the orbit spaces of finite reflection groups flat coordinates were
constructed by Saito, Yano and Sekiguchi in [SYS] (see also [S]).
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We recall now the definition of Frobenius manifold.

DEFINITION. (Smooth, polynomial etchrobenius structur@n an-dimensional
manifold M consists of:

(1) A structure of commutative Frobenius algebra with a uaibn the tangent
plane .M that depends smoothly, polynomially etc. b M. (We recall
that a commutative associative algebtras called Frobenius algebra if it is
equipped with a symmetric nondegenerated bilinear form satisfying the
invariance condition

(ab,c) = {(a,be),

forany a,b,c € A.)
(2) Avector fieldE is fixed onM . We will call it Euler vector fieldThese objects
must satisfy the following properties:
(i) The curvature of the invariant metric ) on M is equal to zero;
(i) denotingV the Levi—Civita connection fof, ), we require that

Ve=0; (2.20)
(iii) the four-tensor
d(ai,...,aa) = (Vgc)(ar,az,a3),
where
c(a1,az,a3) = (a1a2, az),

must be symmetric w.r.t. any permutation of the vectars. . , a4.
(iv) The vector fieldE must be linear w.r.tv

VVE = 0. (2.21)

The eigenvaluesgy, .. ., ¢, of the linear operator id- VFE are calleccharges
of the Frobenius structure.
(v) The Lie derivativel ; along the vector field must act by rescalings

Lpe = —e,
Lg(ab) — (Lga)b — a(Lpb) = ab, (2.22)
Lg(a,by — (Lga,b) — (a, Lgb) = (2 — d)(a,b),

for arbitrary vector fields, b and for certain constaat (Observe that, due to
(2.20) and (2.22), zero anbare among the charges, . .., q,).

A manifold M with a Frobenius structure on it is calledRiobenius manifold
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If we choose locally flat coordinates . . . , t” for the invariant metric, then the

condition (iii) provides local existence of a functidt(#!, . .., ") such that
O’F
— oy _
(ab,c) =a"b’c 555 518 517 (2.23)

for any three vectors: = a®(9/0t),b = b%(9/0tP),c = ¢?(9/0t7). Choosing
the coordinatet! along the unity vector field we obtain

BFL,... ")
ott ot ots
for a constant symmetric nondegenerate mafyixz) coinciding with the metric

(, ) in the chosen coordinates. Associativity of the algebras implies an overdeter-
mined system of equations for the functidn

= Nags (2.24a)

#®F  ,, &®F ®¥F . PF
R R T T R I T T T Tk
for arbitrary o, 3,7, d from 1 ton. The components of the Euler vector figil

in the basis)/0t* are linear functions of, . . ., #*. They enter into the following
scaling condition for the functiof’

(2.24b)

LpF = (3— d)F + quadratic polynomial ir. (2.24c¢)

The system (2.24(a)—(c)) is just tieDVV equations of associativibeing equiv-
alent to our definition of Frobenius manifold in the chosen system of local coordi-
nates.

We recall also an important construction oftersection fornof a Frobenius
manifold. This is a symmetric bilinear for(n )* on T*M defined by the formula

(w1, w2)" = ig(wy - wa),

here the product of two 1-forms;, w, at a pointt € M is defined by using the
algebra structure on, I/ and the isomorphism

.M = T:M

established by the invariant mettic ). Choosing the flat coordinates . . . , " for
the invariant metric, we can rewrite the definition of the intersection form as

(dt®, dt’)* = LpFs, (2.25)
where

' gy O°F(t)
Faﬁ _ pad BB . .
N T
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and the functionF'(¢) is defined in (2.23). According to the general theory of
Frobenius manifolds( , )* defines a new flat metric on the open subsef\bf
where det, )* # 0. Thediscriminant® = {¢| det , ); = O} is a proper
analytic subvariety in an analytic Frobenius manifaltl The holonomy of the
local Euclidean structure defined @i\ by the intersection form( , )* gives a
representation

m1(M\X) — IsometriesV,

whereV is the standard complex Euclidean space. The image of this representation
is calledmonodromy groupf the Frobenius manifold.

THEOREM 2.1.There exists a unique Frobenius structure on the orbit space
M = M(R, k) polynomial intL, ..., ¢, """ such that

(1) the unity vector field coincides witly dy* = 9/0t*;

(2) the Euler vector field has the form

1 1 9
271'de 81‘l+1 Z 8ta dk dp O+ (2.26)

(3) The intersection form of the Frobenius structure coincides with the metiic
on M.

Observe that the charges . . ., ¢, are

(wk — Wj, wk) .
e L L T —d=1
QJ (wk’ wk:) ) J ) 3 by qi+1

COROLLARY 2.7.The monodromy group d¥1(R, k) is isomorphic to the group
W F)(R).

The proof of the theorem will be based on the following lemmas (cf. [D, pp. 273—
275)).

LEMMA 2.5. In the coordinates?, . . ., ¢*1

d, 1
1 1,041

ga,l—i— - d_Zta’ o = 17 b 7l7 gl+ 7l+ - d_k7
phrle _ do

The proof of this lemma is straightforward using (2.5b), (2.5¢), (2/7), =
y'*1 and the quasi-homogeneity df, . . . , ¢!
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LEMMA 2.6. There exists a unique weighted homogeneous polynaghiat
G(t,... th=1 ¢k+1 4l &'*") of the degre@d;, such that the function

F =3t 38 N st + G
o ftk

satisfies the equations
(dt®, dt?y = LgF*P. (2.27)

Proof. Let Fg‘ﬂ(t) be the coefficients of the Levi—Civita connection for the

metric (, )7in the coordinates!, ..., t 1. We use now the theory of flat pencils
of metrics (see [D, Appendix D]). According to Proposition D.1 of [D] we can
represent these functions as

57 () = 1°°0: 0, (1), (2.28)

for some functions’?(t). From the weighted homogeneity Bf;ﬁ(t) and Corol-
lary 2.6 we obtain that

di +d
00, (Lof” - A7) —o,

foranya, 8. So

(ds + di)

y fPt) + APt + BP, (2.29)
k

Lpfi(t) =

for some constantag, BP. Doing a transformation
PRty = FPt) = () + RO + Q7

we can kill all the coefficientst?, B in (2.29) exceptd;™. Indeed, after the
transformation we obtain

dy, — dy, — dg

!
Leff@t) = (dﬂc-lzdk)fﬁ(t)Jr 3 {Rg T + A8

r=1

+iRﬁ +BP — MQﬁ

dk 1+1 dk
g ditdg g ] 4
+ A — g |t
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The functionf#(¢) does still satisfy (2.28). Choosing

d
B _ k B
Rl—l—l - dk: +dﬁAl+l’
d 1
B _ k BA B
@ dy, +d5 { + dle+1 ’

we kill the constant term in the right-hand side of (2.29) and the term lingatin
To Kill other linear terms we are to put

6__ % 48
R7 N dﬂ + dy* AW
wherey* is the index dual tey in the sense of duality (1.27). We can do this unless
ds = dy- = 0. The last equation holds only fgr=~* =1+ 1,i.e.forg =1 +1,
v = k. So, we can kill all the linear terms bt in (2.29).

Thus forg # [ + 1 the polynomialg?(t) can be assumed to be homogeneous
of the degreels + d,.

We show now that for X 3 < [ the functionsf? are polynomials int, . . ., ¢,
expt'*1. We already know that this is true for the Christoffel coefficidPs. Let

us denote
N
naerlafl(t) = Z Cg,m expmtl+l = 804 al‘i‘lfﬁ(t)’
m=0

where the coefficient§? ,, are polynomials intt, ...t/ and XV is certain positive
integer. From compatibility

8[+1(3a 8lJrlfﬁ) = aa(al%rlfﬂ)a

we obtain that

0aCl10=0, a=1,...1L
SOCzﬁH,o is a constant. Bui?lzﬂfﬁ must be a weighted homogeneous polynomial

of the positive degreé;, + dg. HenceC’fH’0 = 0 and we obtain

N
1 5 I+1 | 441
=3 —Cllypm OXPE T 1t D’ + HP,
m=1
for some new polynomial®” = DA(t, ... #) andH® = HP (¢, ... ). Since
the derivatives), 9, f° must not contain terms linear #*2, the polynomialD?
is at most linear i, . . ., . Using homogeneity of  we conclude thaD?® = 0.
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The coefﬁcien[‘;“ﬁ(t) must also satisfy the conditions [D]
gooThr = ghorer, (2.30)

Fora =1+ 1 because of (2.28), (2.30) and Lemma 2.5 we obtain

d
Lpn™o.f7) = d—zgm-

Because of de§” = d, + dj, we have de@;**0.f7) = ds +d, fory #1+ 1, s0

(dy +dg)n™0:f = dvg™, v #1+1 (2.31)
We introduce functiong™ for v # [ + 1 putting

d

F7' = f .
From (2.31) we obtain the equation

8. FY = 9. F°% 1<~,6<l. (2.32)
From (2.32) it follows that a functiof’(¢) exists such that

F"=n"0.F, 1<~vy<l. (2.33)

The dependence af on t* is not determined from (2.33). However, putting
0 =1+1in(2.31) we obtain

OF" =17, 1<vy<l, (2.34)
from (2.33), (2.34) and Corollary 2.6 we obtain

O 11(0kF) = t¥,

l
0y(OkF) =Y myat™, y#kI+1
a=1
Hence we have

1
OpF =tFt 4 = N apttf 4 g(th),
o3k, 1+1
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for some functiory. Shifting F — F+ [ g(t*) dt* we can kill this function, and the
equations in (2.33) still hold true due#é® = §;,,,1. We obtain the representation

1
F=("2 43k > st + G, (2.35)

2 o,B7k,1+1

with someG independent orf.
From the definition (2.33) of" and the weighted homogeneity pf,v # [+ 1
we obtain that

LpF(t) = 2F(t) + a(t*),

for some unknown function. Using the duality condition (1.27) and Corollary 2.6
we obtain

1
LF(t) = =— )2+ ()2 + 8 > napt™” + LeG(1),
21 o Bk, 41

or, equivalently

LEG(t) = 2G(8) + at®) — T‘llk(tk)z.

But LG (t) does not depend afi. We obtain

1
a(th) = Tdk( "2+,

for some constant Killing the constant by a shift, we obtain that!, ..., &%, ...,
t'+1) is a weighted homogeneous function of the degrie Phe above conditions
determine this function uniquely. Clearty is a polynomial intt, ..., &% ... #,
expt‘t1 (it was obtained by integrating polynomials).

SubstitutingF'(¢) into (2.31) we obtain (2.27) for X «a < [. Finally, for
a = (3 =1+ 1the Equation (2.27) reads

1_, O’F
dp otk otk
This follows immediately from the explicit form of. Lemma is proved. O

LEMMA 2.7. The functions

O3F(t)

ﬁ _ ! ﬁﬂ/
o) =" e o

Y
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are weighted homogeneous polynomialgtin. . , &' of the degreed, +dg —
d,. They satisfy the associativity equations

af oY _ a0 By
¢y s =c5lcy.

Proof. Weighted homogeneity Oﬁﬁ for a or 8 # [ + 1 follows from those of
the functions"? since

dg
ref = d—kcgﬂ , (2.36)

which follows from (2.28). Due to (2.35) we also have
Pt = 50, (2.37)

Y
This is also a weighted homogeneous function.
To prove associativity we use again the theory of linear pencils of the flat metrics
g*? n™8. Using [D, Eqn. (D.2)] we obtain
refre” = rorg?, (2.38)
Substitute (2.36), (2.37) into (2.38) we obtain

aB oY _ oy, 0B
cles’ =clcs".

Due to commutativity of the multiplication we obtain needed associativity. Lemma
is proved. O

Proof of Theoren2.1. From Lemma 2.5-2.7 we know that we only need to
verify thate = 9/0t* is the unity of the algebra and that

Lrpe = —e.
This is very simple. Theorem is proved. O

RemarkAny orthogonal mag™: V' — V preserving the set of simple roots defines
an isomorphism of Frobenius manifolds

M(R, k) = M(R,E'),
where

T(ag) = oy
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Particularly, for the root system of the typle we obtain an isomorphism
M(A; k) ~ M(A,l -k + 1)
corresponding to the reflection of the Dynkin graph w.r.t. the center.
We now give some examples to illustrate our above construction. For conve-
nience, instead af, . . . , ¢+ we will denote the flat coordinates of the meffi¢/)
by ti,..., 1, and we will also denotg; = 9/0t; in these examples.

EXAMPLE 2.1. For the root system of the typh the affine Weyl group acts on
z1-line by transformations

T1— *x1+m,

for an integerm. Our extensiori¥ (A1) consists of transformations ¢#1, 25)-
plane of the form

(x1,22) = (£x1 +m + %n, Tg—mn),

for arbitrary integersn, n. Basic invariants of this group bounded along the lines
(1, 22) = (29 — %iT, 29 +ir), T — 400

are
t; = 262 cos2ry; and &72,

The extended invariant metric on the dual space has the matrix

. 1 /1 O
((dwi, dz;)) = g (0 _4> :
In the coordinates;, t» = 2mwix> this metric has the matrix
2¢2 g
(9°7) = ( ) 2) :
1

So the Frobenius structure is determined by the function
F = %t%tz + etz.

Up to normalization this is the free energy®P* topological sigma-model [D].
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EXAMPLE 2.2. LetR be the root system,, we takek = 1, thend; = §,dz = 3,
and

yl — e(4/3)7riz3(627riz1 +e727riz2 +e27ri(z27:1:1));
y2 — e(2/3)7riz3(627riz2 +e727riz1 +e27ri(z17:1:2));

y® = 2mizrs.

The metric(, ) has the form

21 0
- 1
00 -3

The flat coordinates, = y?,t, = y?, t3 = 42, the intersection form is given by

2t,el3 33 t1

(¢) = 3¢ée 2t1—3t3 it
t1 %tz %

The free energy
F =133+ 2113 + 1€ — 443
and the Euler vector field reads
E = 1101 + 120, + 30s.
EXAMPLE 2.3. LetR be the root syster@’, thenk = 2,dy = 1,d» = 2, and
yl _ ezng(ezmzl 4 @ 2mizy | @mi(wp—w1) 4 efZWi(zzle))‘
yz _ e47riz3(eZ7riz2 4 @ 2mivz  @2mi(21—w2) | efzm(zmrmz)),
y° = 2mizrs.

The metric(, )”has the form

11 0
- 1
00 -3
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The flat coordinates; = y1,t, = y2 + 2€%°,t3 = 43, the intersection form is
given by

2ty — 33+ 4€s 6ty et L
(Qij) = 6tq e2ts 8efts 4,5% Q2ts 4
%tl t2 %
The free energy
F = %t%tz + %tgtg - 9i6t‘11 + %t% s | %e4t3
and the Euler vector field reads

E = 34101 + t0; + 30

Remark The root systenB, gives a Frobenius structure which is isomorphic
to the one given by the root systeih.

EXAMPLE 2.4. LetR be the root systeré',, thenk = 2,d, = 3,d» = 6, and

yl — e67riz3(eZ7riz1 +e727ri:1:1 +e27ri(2:1:17:1:2) +e727ri(2m17m2)

+e2ﬂi(x1—m2) + e—27ri(x1—x2) ) )

y2 _ e127ria:3(e27riz2 +e727riz2 +e27ri(3z172z2) +e727ri(3:1:172z2)
+e27ri(x2—3x1) +e—27ri(:v2—3x1))’
y3 = 2riza.

The metric(, ) has the form

23 0
. 1
00 —3

The flat coordinates; = y! + 2€¥° 4, = y2 + 3y1e®’ + 6’ t3 = 43, the
intersection form is given by

2t) — 312 + 81 €% + 4 fls

9(2t1 €53 + 12 %3) it
(¢7) = 9(2t1 €%'2 - 1% €¥2) 6(6t2 €% + t3 €3 + 4€l%3) ¢,
3t t2 2.
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The free energy

F = 23ty + St5ts — &t1 + 3 e¥e + L2 4 L el?e
and the Euler vector field

E = %tlal + to0o + (1383.

Remark All the above examples was found in [D] (although the relation of
Example 2.4 to an extension of the affine Weyl group of the tgpewas not
proved in [D]). It is important to notice that these areralflimensional Frobenius
manifolds withn < 3 being polynomial irty, .. ., t, 1, expt, with deg exg,, > 0
(see[D], Appendix A). It would be natural to conjecture that our construction gives
all such Frobenius manifolds (with semisimplicity condition [D] added) forany

We proceed now to the list of all four-dimensional Frobenius manifolds given
by our construction.

EXAMPLE 2.5. LetR be the root systems, takek = 1, thend; = 2,d, =
1 d.=1 d
2,03 = gz, an

yl — e(3/2)7rix4(e27rix1 +e27ri(x2—x1) +e27ri(:v3—:v2) +e—27ri:v3);

y2 — e7ri$4(e27ri$2 +e727ri:£2 +e27ri(:£17:£3) +e727ri(:£17:£3)

+e27ri(x1+:v3—:v2) + e—27ri(x1+:v3—:v2));
y3 — e(1/2)7riz4(e27riz3 _{_eZm'(zlfzz) +e27ri(:£27:£3) +e727ri:£1);

y* = 2riza.

The metric(, ) has the form
321 0
1 242 0
162|123 0

000 -%

((dzi, dzj)) =

The flat coordinatety, = y*,t, = y? — 3(y3)?,t3 = y®,t4 = y*, the intersection
form is given by

2(t2 + 3t3) € Staeh ez t
5 24 42 242 1.4 1.3 2
(g") = 3ta€t glali— 55— g3 AEh g tala 3 St
4¢s 213 — totg + 3t 2t, — 312 13
t1 %tZ %tg %
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The free energy

F = Jt3ts + 3tatots + 1513 — 35155 + syatets — Tomts + (f2 + §t3) €4
and the Euler vector field reads

E = 1101+ %202 + 11303 + 20a.

EXAMPLE 2.6. LetR be the root systems, takek = 2, thend; = 3, dp =
1,ds = 3, and
Yt = erima(griny | @rilez—m) | milrs—nz) | g-2mivs),
JP = eRrins(ghriny | g-2miny | ri(ri—3) | g-2mi(y—ws)
perilertrs-mz) | g-2mi(ertrs—2)).
)3 = rina(gmins | rilei—az) | Pmilry—w3) | g-2miaa).

y* = 2riza.

The metric(, )" has the form

3210
(i dn)) = 155 | 5 o 5 o
00O0-4
The flat coordinates, = y1,t> = y2 t3 = 43, ¢4 = y*, the intersection form is
given by
2ty — 32 3tzes dels Ity
y 3tgels  2qgtzelt + 4 3Bt elh oty
&%) = -z 3¢, et 2t — 313 3t3
ity to 1t3 1

The free energy
F =312t + 1t3ta + 10013 — &t} — &td+ tatgele + 12
and the Euler vector field is given by

E = %tlal + to0o + :—thgag + Oa.

https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000258122329

AFFINE WEYL GROUPS AND FROBENIUS MANIFOLDS 207

EXAMPLE 2.7. LetR be the root system®s, thenk = 2, d1 =1,d> = 2,d3 = 1,
and

yt = 2™ (cogx1) 4+ coza — 1) + €O 223 — 22));
y? = 4 (coqx1) cogza — 1) + cOgx1) COY 213 — z2)

+cogzp — 21) €04 223 — 72));

3 _ TiT I T2 — 1 2x3 — $2>> )
y? = 8¢ (cos( > > cos( 5 >cos<72 ;

y* = 2riza.

The metric(, ) has the form

1

((dr d)) = 55

O dW | NI
o

1
2
1
0

O Nk R R

|
NI

The flat coordinates, = y* + 2&° ¢, = y2 + 2y1e¥" + 6 ° t3 = 43, ta = y4,
the elements of the intersection form are given by

gt = 2t — 3t + 4,

g2 = 3t5e 4 6ty e,

g = 4tz

= in

g% = 2t1t5€/ + 42?4 + 85 et + B4,
g% = Biitz € + 6tz e,

g% = 1,

g% =ty — Jth+ 2t €4+ 2,

7 = §ts

g¥ = %

The free energy
F = 3tot? + 3totd + Lt5ts — gett — th

+iytd el + J12 e 4 12l 4 1 ela
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and the Euler vector field is given by
E = 31101 + t20, + 3t305 + 304

EXAMPLE 2.8. LetR be the root syster@'s, thenk = 3,d1 = 1,d> = 2,d3 = 3,
and

yt = ETN(E+ &+ &);

y? = (68 + Ea8a + Exka);
y® = €T (E18oka);

= 2riza,

Wherefl — e27ri:1:1 + e727riz1,€2 — eZWi(zzle) + 6727ri(1;27z1)’£3 — eZ7ri(:z:3fz2) +

e 2ri(#s=2) The metric(, ) has the form
111 O
B 1 122 0
(midz)) =75 | 5 5 o
000 -1

The flat coordinatess = 4%, 2 = y?— L (y')2+ 3", 13 = 3+ 2y ' 14 = ¢4,
the elements of the intersection form are given by

gt = -2 4+ 2t + 674,

g2 = Btz + 55 — tatp + 3t €24,

g3 = e + 8t €%,

M = i,

g2 = — &t + L3ty — 23 4 27X 4 Ay e 1 6 ee
g% = 3t3e? + Qi1 4 10 M4,

2 = B2

g% = dt1e?s 4 Si2t M 4 A3 e + B2 M 4 1214
g% = ts,

g* = %

The free energy
_ 1 1,2 1,3 1,42,2, 1,4 1 46
F = ztitals + 5t5ta + 5515 — 3Et1l5 + saat1l2 — 1oaa0ta

+i2t, e + el + et 4 L2 etta 4 L els
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and the Euler vector field is given by

E = 11101 + 21205 + t305 + 104

3. Groups VT/(’“)(AZ) and the spaces of trigopnometric polynomials

A trigonometric polynomial of one variable of bidegrge m) is a function of the
form

@) = ag€*? + a1 €FD 4. Lap +ap1€ + o Fap, €0,
a0y -+ ag4m € C,  aotpym # 0.

We will usually normalize\(¢) by the conditiomy = 1.

We denoteM,, ,, the affine space of normalized trigonometric polynomials.
Equivalently,M;, ,,, coincides with certain covering of the space of rational func-
tions with two poles of the ordefsandm respectively. Geometry of these spaces
was described in [D] as a part of general differential geometry of Hurwitz spaces of
branched coverings over(our spacé}. ., in the notations of [D] |sMo h—1m—1)-

Recall that, according to this paper, the spafg,, carries a natural structure of
Frobenius manifold. The invariant inner product of two vec@r$)” tangent to
M, ., at a point\(¢) equals

N ' (A(¢) dp) 9"(A(¢) d9)
(0,0") ) = (—1)Ft? Z res NG . (3.1)

|\ <oo

In this formula the derivatived' (\(¢) d¢), 9" (A(¢) d¢) are to be calculated keep-
ing ¢ fixed. The intersection form is given by the formula

P 9’ (log A(¢) dp) 0" (log A(¢) dg)
0.0 =~ > B dlogA(¢) '

(3.2)
[A|<o0

The discriminants C M;, ,,, consists of all functions\(¢) which fail to have
all simple roots of the equatiok(¢) = 0. The intersection form is defined only
outsideX..

The formulae (3.1), (3.2) uniquely determine multiplication of tangent vectors
on My, ,, assuming that the Euler vector fieltihas the form

= kiné 0 (3.3)
ajaal] .

For any three tangent vectad§ 9", 0" to M, ,,, we obtain

P &' (A(¢) dp) 9" (A(¢) dp) 9" (A(¢) d
(@-9",0 >A:_A|Z res (A(¢) do) ch((i))d? (A(¢) dg)

. (3.4)
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The canonical coordinates, ..., ugt,, for this multiplication are the critical
values ofA(¢)

9 .9 _5. 9

Ouq Oug — Jab Oug,’
(see [D] for details).

In this section we will show that the spadé; ,, as a Frobenius manifold is

isomorphic to the orbit space of our extended affine Weyl grtﬁf’é’f)(Al) for
Il=k+m-1.
We start with factorizing the trigonometric polynomial

(3.5)

k+m
o) = e m? ﬁ (€9 — ge). (3.6)
a=1

LEMMA 3.1. The map
(T2, Thgm) = (P15, Prtm), 3.7)

where

m
¢$1=12m <£U1 + m$k+m> )

¢; =2m (fﬁj —Tj-1+ d wk+m> )
k+m (3.8)

m
Phtm = 21 <—$k+m1 + m$k+m> )
j=2,....k+m—1

establishes a diffeomorphism of the orbit space of the gl (A;,,_1) to the
space of normalized trigonometric polynomials.

Proof. From the explicit formulae (1.6), (1.10), (2.1) and (3.8) it follows that in
the coordinateg?, . .., y*+™ the map (3.7) has the form

1

a1 = -y,
ar = (_1)kyka
apg1 = (—DF Ly lexpytm), (3.9)

Wpym-—1 = (—1)FFm-Iykrm=Lexp((m — 1)yF+m),

Qpim = (—1)F+m exp(myt+m).
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Lemma is proved. O

According to this Lemma, our grou’ﬁ’(’“)(Al) describes monodromy of loga-
rithms of the roots of a trigonometric polynomial along closed loops in the space
of coefficients nonintersecting the discriminant

THEOREM 3.1.The diffeomorphisnB.7) is an isomorphism of Frobenius mani-
folds.

Proof. Since the Euler vector fields (2.26) and (3.3) coincide, it suffices to prove
that the intersection form (3.2) coincides with the intersection form of the orbit
spaces, and the metric (3.1) coincides with the metric (2.9).

Let's denote the roots of (¢) by ¢;,1 < j < k + m. Then we have

k+m
N(g) =kie "™ ] (€% — ). (3.10)
a=1
We defineu,, = A(1q),1 < a < k + m, then
azm)‘(¢)|¢:wg = 6aﬁ- (3'11)
By using (3.10), (3.11) and the Lagrange interpolation formula we obtain
i €%\ (¢)
o AMP) = — . ) 3.12
8 o (¢) (@45 _ g,‘/}a)A//(wa) ( )
Formulae (3.6) and (3.12) lead to
k+m . g !
. e NP i€V X(¢)
- W €0 0 — T : 3.13
; Zaua¢ € el‘b — el‘ba (el¢ _ elwa)A”('(/)a) ( )
By putting¢ = ¢4 in the above formula we obtain
/L'ei"pa
0 = —— _ . 3.14
Ua¢ﬁ (ezqﬁﬁ _ @wa)A”(@ba) ( )
We denote
0r=x1, 0;=x;—xz;_1,
S A (3.15)
j:23"'ak+m_1a 9k+m:xk)+m-
It follows from (3.8) and (3.14) that
Wy 1 e
Oug  2mi (6198 — @%a) N (1hy)
m 89k+m
- -1
ktm Ouy 1<p<k+m—1, (3.16)
i 1 ’“i" Ve
oue  2mmi o (€0 — @)X (¢hg)
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From (3.2) and (3.11) we obtain

__Oap
U X" (o)

In a similar way we can compute the inner product of the veatprsw.r.t. the
bilinear form (3.1), the result reads

Gos = (Dues Oug)r = (3.17)

)
~ _ k+1_ %aB
Map = (Ouy s Oug)r = (—1) ) (3.18)
We observe now that the vector figdld= 9/9y" in the coordinateay, ..., ax m
coincides with
0
_ k
e= Vg

This follows from (3.9). Shift
ap — ar +c¢

produces the correspondent shift
ui—u;+c, 1=1....k+m

of the critical values. This shift does not change the critical pajntseither the
values of the second derivativé(1,). So

Le§? = Lo(~uaX"(a)dag) = (DN (¢ha)das = 17, (3.19)

Whel’E(gaﬂ) = (gaﬂ)ila (ﬁaﬁ) = (ﬁaﬂ)il

Now we proceed to the computation of the bilinear form (3.2) in the coordinates
Z1,. .., Tp+m Of (3.7) (Or, equivalently in the coordinatés . . ., 0, of the form
(3.15)). It turns out that this coincides with the fofm )™ defined in Section 2
above.

We will use the following identity

k+m 1o
S — g € Gy — < (3.20)
o (ez¢a — ezwa)(e“bb — ewa))\"(@ba) k
In fact the left-hand side of (3.20) equals
kin res M) 7
o =va (€0 —@0a) (€0 — @)X (¢)
kim A(—ilogv) v?1

= az::l rgon (0 — &%) (0 — 9N (—ilogo)
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—< res + res + res) iA(~ilogv) v
— \v=eba  yegts v=00) (v — €%)(v — &)\ (—ilogw)

1
:5ab_E-

By using (3.16), (3.17) and (3.20) we obtain

"1 g O

(A0t g ) = a; () Due  Oua

k+m 1 k+m 2ita
= > (uX (o)) oz Y TS e ST
a=1 (2mmi)? 9= (€0 — @) (&% — &Wa )" (1)q)
" Amn? g 4 (€0 — @) (@ — €)X (iha)

= dm2n2? Z (6‘“’ B E)
a,b=1

1 (k 4+ m)?
—m<’“+m—T>

1 k+m 1
- __— = _ . 3.21
A2 mk An2d), ( )

Forany 1< a < k+m — 1, it follows from (3.16), (3.17), (3.20) and (3.21) that

R 1 90 004

(d9k+mad9a))\ = agl gaa(u) Oug Oug

& 1 e (1 gta  m m
T = Gaa(u) Qug \2mi (€9 — PN (yy)  k+m Oug
() PR

 k+m \ 472 mk 216 4= Gaa(u)

80k+m gita
Oug (€9 — &Va)X(1hy)
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1 1 Hkm Uq €7Ya
= 5+ 2 Z i Ve ) (@i ® D\ M
Akm?  Amm? 4= (€0 —eVe) (e — @Va) N (1))

,0=

= Akn? 4m71'2 bz—:l < ab ™ _>

1 1 k+m
= W—FW (1_T> =0. (3.22)

Finally, for any 1< o, 8 < k +m — 1, by using (3.16), (3.17) and (3.20)—(3.22)
we obtain

B ktm o q i ea om Ot
T Gaa(u) \ 2mi (€9 —€P)N' () k+m Oug
% i eiwa . m 89k+m
2mi (698 — e@Va) N (1hy)  k+m Oug
pasig 1 2t
2:: 271'7,) (ei¢a _ eiwa)(ei% _ eiwa))\//(z/)a)z
1 Ve 89k+m

m +
 2ni(k +m) 2 Jaa(u) (€90 — @)\ (1,) Oug

2

_i<5 _})_ m 2mi <1_k~l—m>
" a2 \"" T %) 7 2ri(k + m) dmn2 2

1 1
- (M _ m) . (3.23)

Now the coincidence ofdx;, dx;), and (dz;,dz;)” follows easily from (3.21)-
(3.23). Hence the intersection form (3.2) coincides with the intersection form of
the orbit spaces. The coincidence of the metric (3.1) with the metric (2.9) follows

from (3.19). Theorem is proved. O

We construct now the flat coordinaté’s. . ., t**™ on the space of trigonomet-
ric polynomials (essentially, following [D]). Let’s define
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41k Jk
th = (_1)# — Ies )\((ﬁ)ﬂ d¢a 1 <M< k — 13
U e€¢=co
rtmen — (1™ res [(—DMA(Gmdp, 1< p<m,
M e~iP=o0

tk+m — yk+m
From the above definition we have

=yt + fulyt .y, 1< <k -1,

k+m—p _ , k+m— k+m—1 k+m—p+1
gt =y H+ hy(y ;- “),

T
1<i<m—1,

215

(3.24)

(3.25)

where f’s andh’s are some polynomials, and the relation betwgsranda’s is

givenin (3.9).

PROPOSITION 3.1The variableg* are the flat coordinates for the metri8.1).

Proof. Let's denote

E=XN@)YF, n=[(=DFmA)Y™,

it follows from (3.24) that when? tends to infinity we have
. i [ttt L tF1 1

and when g tends to infinity we have

¢ = ilogn —ith+m

m n n

By using the ‘thermodynamical identity’ [D]

atﬂ (Ad(ﬁ) ¢=constant— _atﬂ (QbCD\))\:constant

we obtain

nm

(1)ttigh-etde + O(3) d¢, €9 — oo,

3ta(>‘(¢) d¢) = { O(%)dn, it _y 0,
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O(3) d, €% — o0,

Opk+m—5(A(¢) dop) = ;
th+ B( (¢) ¢) {(_l)k—i-m—ﬁ inm_ﬂ—ldn+0(%)dn, e_z¢—>OO,

O}k, ¢ - o0,

8k m A d -
e ( (¢) ¢) {(—1)k+mm2nmld’f]+0(%)dna eiid) — 00,

wherel< a < k—1,1< B8 <m. Thusforl< a,8 < kK — 1 we have

Ohe (A(¢) dg) 9y (A(#) d)
dA(¢)

(Ope, D)\ = (—1)’“( res + res >

eP=00 e P=00

N gk—a—l df fk—ﬁ—l df 1 .

similarily, we have
<8tﬂ,8tk+mfﬁ>A:O, 1<a<k—1,1<6<m,

1
<8tk+m*aaatk+m*ﬁ>)\ = Eda+ﬁ,mv 1<a, /3 <Lm,

<8tk+m,ata>)\:(5a7k, l1<a<k+m.
Proposition is proved. O

We conclude this section with an example of topological application of Theo-
rem 3.1. LetM,Sm be the subspace consisting of all trigonometric polynomials
havingk + m pairwise distinct critical valuesy, . . . , ug,,. What is the topology

of M/?,m? Particularly, how to compute the numbé(k, m) of trigonometric poly-
nomials of the bidegreg:, m) with given pairwise distinct nondegenerate critical
values?

More generally, for a-dimensional complex Frobenius manifdid satisfying
semi-simplicity condition (i.e., the algebra op¥T is semisimple for a generigwe
may consider the open sub3é? consisting of all pointssuch that the eigenvalues
ui(t),...,uy(t) of the operator of multiplication by the Euler vector field are
pairwise distinct. According to [D], od/° the eigenvalues can serve as local
coordinates. They are callednonical coordinatesince the multiplication table
of tangent vectors takes the very simple form (3.5) in the coordinfages. . , u,, ).

[As we have explained above, for the spadg,, of trigonometric polynomials
A(¢) the canonical coordinates coincide with the critical valueg ¢§]. According
to [D], the map

M° — (C™\diagonal$/S,,,
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t — (u1(t),...,u,(t)) modulo permutations

establishes an equivalence betw@éh and the space of isomonodromy deforma-
tions of certain linear differential operator with rational coefficients. What is the
topology of this space? Particularly, how to compute the nunbgV/) of the
pointst € M° with given pairwise distinct canonical coordinates. . . , u,?

To find this number we will compute the degree of the map

M°—Cn
given by the formula
t = (b1(t),...,bn(t)), (3.26)
wherebs(t),. .., b, (t) are coefficients of the characteristic polynomial
(=)™ [u" + by () u™ -+ b ()]
= det(B(1):) —u) = (det(, )~

n
xdet((, )i —u(, ) = [[(wi(t) —w),

i=1
here(, ); and(, ), are the intersection form and the invariant metric respectively
considered as bilinear forms orf . We call it generalized Looijenga—Lyashko
map (LL-map) of the Frobenius manifold (cf. [A3, Lo, Ly]).

The degree of LL-map can be computed easily in the case of polynomial Frobe-

nius manifolds. More precisely, let the free enefgydefining the Frobenius struc-
ture in the flat coordinates!, . .. , ¢ has the form

F = cubic term+ G(t%,..., ¢, ¢4, ..., q"),
wheredG is a polynomial,
p+r=mn, ¢ =expt!t i=1...r

and the degrees of the variablgs?, . .. " are equal to zero. Let us assume that
all the degrees

degt’, 1<i<p, degs, 1<i<r
are positive. Then LL-map is a polynomial map — C". We recall that the
degrees are normalized in such a way thattdeg 1. Then the degrees of the

canonical coordinates,, . . ., u, are equal to 1 [D]. Hence the weighted degrees
of the function9(t), ..., b,(t) are equal to 1 .., n respectively.
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Thus to compute the degree of the LL-map (3.26) we can use the graded Bezout
theorem. We obtain

nl

degt!---degtr degql- - - degq”

N(M) =deglLL= (3.27)

In the case of the orbit space of the grd%’f)(AHm_l) the degrees of the
variablest!, . .., t**™m—1 are expressed via inner products of fundamental weights
(i.e., via entries of inverse of théy,, ,,,_1 Cartan matrix)

degt/ = M, ji=1,...,k+m—-1
(Wi, wi)
and
degexpht™ = 1
(wg, wi)

We arrive at the following formula for the degree of LL-map of the Frobenius
manifold Mj, ,,,

dogLL_ ) ()
H?i{n_l(wja wk)

Using the explicit expression féw;, wy,) (See Table Il above) we derive the formula
for the numberV (k, m) (obtained first by Arnold in [A2])

(k +m — 1)!
(k— 1) (m— 1)’

N(k,m) = kFm™

We hope that our extended affine Weyl groups could be useful for other problems
arising in topological study of spaces of rational functions.
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Note added.In January of '97 after the article has been submitted to the journal,
the authors received an interesting paper of P. Slodowy ‘A remark on a recent
paper by B. Dubrovin and Y. Zhang'. In this paper it is shown that our analogue of
Chevalley theorem for extended affine Weyl groups can be derived from the results
of K. Wirthmdiller ‘Torus embeddings and deformations of simple space curves’,
Acta Mathematical57 (1986) 159—-241. This raises a natural question (already
formulated by P. Slodowy) to extend (if possible) our construction of Frobenius
structures to the more general setting of Wirthier. We hope to address the
problem in subsequent publications.
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