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Endoscopy and cohomology growth on U(3)

Simon Marshall

Abstract

We apply the endoscopic classification of automorphic forms on U(3) to study the
growth of the first Betti number of congruence covers of a Picard modular surface. As
a consequence, we establish a case of a conjecture of Sarnak and Xue on cohomology
growth.

1. Introduction

Let U(p, q;R) denote the real unitary group of signature (p, q). Let HC be the globally symmetric
space U(2, 1;R)/(U(2;R) × U(1;R)). Let Γ ⊂ U(2, 1;R) be an arithmetic congruence lattice
arising from a Hermitian form in three variables with respect to a CM extension E/F . If O is
the ring of integers of F and n ⊆ O is an ideal, we may define principal congruence subgroups
Γ(n) ⊆ Γ, and let Y (n) be the arithmetic locally symmetric space Γ(n)\HC. We give the precise
definition of these objects, and the statement of Theorem 1 below, in § 2.3. Put V (n) = |Γ : Γ(n)|.
It is asymptotically equal to the volume of Y (n). We let H1

(2)(Y (n),C) be the space of square

integrable harmonic 1-forms on Y (n), and let b1(2)(Y (n)) be its dimension.

When Γ is cocompact, Sarnak and Xue [SX91] made a general conjecture on the asymptotic
multiplicities of automorphic forms which implies that b1(2)(Y (n)) �ε V (n)1/2+ε. In the case of

U(2, 1;R) they are able to prove the weaker bound b1(2)(Y (n))�ε V (n)7/12+ε. This paper settles

their conjecture in this case, by proving the following upper bound on b1(2)(Y (n)).

Theorem 1. We have b1(2)(Y (n))� V (n)3/8, and there exists Γ such that b1(2)(Y (n))� V (n)3/8.

The proof of Theorem 1 relies on the endoscopic classification of automorphic representations
on U(3) in [Rog90] (bearing in mind the remark below). The essential idea is that the automorphic
forms contributing to H1

(2)(Y (n),C) in Matsushima’s formula are nontempered, and Rogawski
shows that they are all transfers of one-dimensional representations on the endoscopic group
U(2)× U(1) of U(3). Our work lies in making this result quantitative. Note that Rogawski also
proves that b1(2)(Y (n)) = 0 if Y (n) arises from a nine-dimensional division algebra with involution
over E, and when combined with Theorem 1 this provides an understanding of the growth of
b1(2) for all arithmetic congruence lattices in U(2, 1;R).

We note that when F = Q, one should be able to obtain the upper bound in Theorem 1
using the results of Mok [Mok12]. Moreover, if n = apk with a and p fixed, p prime, and k
growing, the lower bound in Theorem 1 is proven in [CM12], while the upper bound follows by
combining [CM12] with [GR91] or [BMM13, Proposition 13.8].
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Remark. There is a question of priority of the work on U(3), see [Fli06, III. 6, pp. 392–396],
and [Rog90, p. xii]. Flicker has identified an error in his work, specifically in the proof of
the global multiplicity one theorem; see [Fli04] and [CF09, Remark (ii), p. 1250]. In [Fli06],
Flicker states that this error appears also in [Rog90], and he gives a plan for an alternative
proof of multiplicity one which relies on a local multiplicity one theorem at all places. He only
establishes this local theorem when the residual characteristic is not 2 (see [Fli04], first line of
the introduction). He states in [Fli04, p. 6] that he believes it should be possible to carry out
the proof in residual characteristic 2 in a similar way to the proof at the other places, but this
has not been done as yet. However, it is proven in [Fli06] that the multiplicity one theorem for
U(3) holds for any automorphic representation each of whose dyadic local components lies in the
packet of a constituent of a parabolically induced representation (see also [CF09, Remark (ii),
p. 1250]). The automorphic representations considered in this paper are of precisely this form,
as they are Saito-Kurokawa lifts, and so we are able to use the multiplicity formula of [Rog92]
and [Fli06, p. 218] in our case.

2. Notation

2.1 Number fields
Let E/F be a CM extension of number fields, with OE and O = OF their rings of integers and
AE and A = AF their rings of adèles. We denote the maximal compact subrings of the finite
adèles AE,f and Af by ÔE and Ô. Let N be the norm map from E to F , A1

E the group of norm 1
idèles of E, and I1

E = A1
E/E

1. We shall denote places of E and F by w and v respectively, with
corresponding completions Ew and Fv, and define Ev = E ⊗F Fv.

Fix a character µ of A×E/E
× whose restriction to A×/F× is the character associated to E/F

by class field theory. Let Sf be a set of finite places of F containing all the places at which E/F
is ramified, all places below those at which µ is ramified, all places dividing a rational prime p
that satisfies p 6 9[F : Q] + 1, and at least one place that is nonsplit in E. Let S∞ be the set of
infinite places of F , and let S = S∞ ∪ Sf .

2.2 Unitary groups
Let Φn = (Φij), where Φij = (−1)i−1δi,n+1−j and δa,b is the Kronecker delta function. The matrix
Φn defines a Hermitian form with respect to E/F if n is odd, and if x ∈ E satisfies trE/F (x) = 0
then xΦn is Hermitian if n is even. We let U(n) be the unitary group of this Hermitian form. It
is a quasi-split F -group, and its group of F -points is

U(n, F ) = {g ∈ GL(n,E) | gΦn
tg = Φn}.

For any ideal n ⊆ O, we define the compact subgroup U(n, n) ⊂ U(n,Af ) by

U(n, n) = {g ∈ U(n, Ô) ⊂ GL(n, ÔE) | g ≡ In(nÔE)}.

We shall denote U(3) by G∗. If n ⊆ O is an ideal, define the compact subgroup K∗(n) =
U(3, n) ⊗v|∞ K∗v (n) of G∗(A) by setting K∗v (n) = U(2;R) × U(1;R) if v|∞. For v - ∞, we put
K∗v (n) = U(3, n) ∩G∗v.

Choose a place v0 ∈ S∞. Let Φ be a Hermitian form on E3 with respect to E/F that is
indefinite at v0 and definite at all other real places of F , and let G be the unitary group of Φ.
It is known, see for instance [PY07, § 1.2], that the isomorphism class of G over F depends only
on the extension E/F and the place v0. In particular, G is quasi-split if and only if F = Q.
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If v is a finite place of F that splits in E, then there are isomorphisms from Gv and
G∗v to GL(3, Fv) that are canonical up to inner automorphism. If v is finite and nonsplit in
E/F , it follows from a theorem of Landherr [Lan36] that there is a unique Hermitian form
on E3

v with respect to Ev/Fv. This gives an isomorphism from Gv to G∗v that is canonical up
to inner automorphism. If we let K = ⊗vKv be a compact open subgroup of G(A) such that
Kv0 = U(2;R)×U(1;R), Kv = U(3;R) when v0 6= v|∞, and Kv is hyperspecial whenever v /∈ S,

we may then fix isomorphisms φv : Gv
∼−−→ G∗v for all finite v such that φvKv = K∗v for v /∈ S.

2.3 Adelic quotients
If n⊆O is relatively prime to Sf , we defineK(n) =⊗vKv(n) by settingKv(n) =Kv for v ∈ S, and
Kv(n) = φv(K

∗
v (n)) for v /∈ S. We define Y (n) to be the adelic quotient G(F )\G(A)/K(n)Z(A). It

is a finite union of finite volume quotients of the globally symmetric space HC, and it is compact
if and only if F 6= Q. If we fix a translation-invariant volume form on HC and let Vol(Y (n)) be
the volume of Y (n) with respect to this form then we have Vol(Y (n)) = c(n)V (n), where

V (n) = |U(3,O)Z(Af ) : U(3, n)Z(Af )| (1)

and c(n) ∈ R+ has the property that |log c(n)| is bounded in terms of our choice of Kv for v ∈ Sf .
Note that the formulas for the orders of GL(3) and U(3) over a finite field (see [Art55]) imply
that Nn8 � V (n)� Nn8.

With this notation, the precise statement of Theorem 1 is that b1(2)(Y (n)) � V (n)3/8, and

that b1(2)(Y (n))� V (n)3/8 if Kv are chosen small enough for all v ∈ Sf .

2.4 Endoscopic groups
Let H ' U(2) × U(1) be the unique elliptic endoscopic group of G∗, which we consider to be
embedded in the quasi-split group G∗ as ∗ ∗

∗
∗ ∗

 .

We let det0 : H → U(1) and λ : H → U(1) be the maps given by the determinant on the
U(2) factor and projection onto the U(1) factor. We fix an embedding of L-groups LH →

LG∗

associated to the character µ as in [Rog90, § 4.8.1] and [Fli06, p. 208]. The centers of G and
G∗ will both be denoted by Z ' U(1). We identify Z with the diagonal subgroup of H. As
Z(F )\Z(A) ' I1

E , µ defines a character of Z(F )\Z(A) by restriction. It will also be denoted by
µ. We shall denote the restriction of µ to Ew by µw, and its restriction to Zv by µv.

2.5 Measures and function spaces
Choose Haar measures dg = ⊗dgv, dg∗ = ⊗dg∗v , and dh = ⊗dhv on G(A), G∗(A) and H(A)
respectively, where dgv and dg∗v match under the isomorphism φv : Gv

∼−→ G∗v at all finite places.
We assume that the local measures give mass 1 to the hyperspecial maximal compacts for all
v /∈ S. Let dz = ⊗vdzv be the Haar measure on Z(A) that gives the maximal compact mass 1
everywhere. Let dg = ⊗vdgv be the measure on G(A)/Z(A) given by dgv = dgv/dzv.

For any place v and a character ω of E1
v ' Zv, we define C(Gv, ω) to be the space of

smooth complex-valued functions f on Gv such that f is compactly supported modulo Zv,
f(zg) = ω(z)−1f(g), and if v is infinite then f is Kv-finite. If ω is a character of I1

E , we define
C(G,ω) to be the analogous space in the global case. The spaces C(G∗, ω) and C(H,ω) are
defined similarly.
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If π is an admissible representation of Gv with central character ω, and f ∈ C(Gv, ω), we
define π(f) to be

π(f) =

∫
Gv/Zv

f(g)π(g) dg.

2.6 Automorphic forms
If ω is a unitary character of Z(F )\Z(A) ' I1

E , we let L2(G,ω) be the space of square integrable
complex-valued functions φ on G(F )\G(A) that satisfy φ(zg) = ω(z)φ(g). We let L2

d(G,ω) be
the subspace that decomposes discretely under the action of G(A). We define L2

d(H,ω) similarly,
recording only the action of the subgroup Z of Z(H). We denote the set of discrete L-packets on
G and H by Π(G) and Π(H); see [Rog90, §§ 12 and 13.3], and [Fli06, p. 217], for the definition
and description of these sets.

3. The packets Π(ξ)

In [Rog90, §§ 13 and 14], and [Fli06, pp. 211–218], Rogawski and Flicker define an L-packet
Π(ξ) ∈ Π(G) for every one-dimensional representation ξ ∈ L2

d(H,ω) satisfying certain conditions.
In this section we recall the definition and important properties of these packets.

3.1 Split finite places
Let v be a finite place that splits in E/F , so that Ev = Ew⊕Ew′ . We identify Ew with Ew′ . Put
Φ = Φ3. We have

Gv = {(g, h) | g, h ∈ GL(3, Ew), h = Φtg−1Φ−1},

and
Zv = {(xI, x−1I) | x ∈ E×w } ' E1

v ' E×w .

Note that under the identification Zv ' E×w , we have µv(x) = µw(x)2.
Let ξ be a unitary character of Hv ' GL(2, Ew)×GL(1, Ew). Let ω denote the restriction of

ξ to Zv. If P is a parabolic subgroup of Gv with Levi Hv, the local packet Πv(ξ) is the unitarily
induced representation I(ξ⊗det0 ◦µw) from P to Gv [Fli06, Proposition 4, p. 279]. It has central
character ω ⊗ µv, and we shall denote it by πn(ξ) as in [Rog90]; it is denoted by π×ξ in [Fli06].

3.2 Nonsplit finite places
If v is a finite place that does not split in E/F and ξ is a unitary character of Hv, the local packet
Πv(ξ) contains two representations πn(ξ) and πs(ξ). The representation πn(ξ) is nontempered,
and unramified whenever all data are unramified, while πs(ξ) is cuspidal. If the restriction of ξ
to Zv is ω, both representations in Πv(ξ) have central character ω ⊗ µv.

3.3 Real places
We take the following results from [Rog90, § 12.3] and [Fli06, I.5]. For any real place v, let tv ∈ Z
be such that µv(z) = (z/z)tv+1/2.

To describe Π(ξ) at the place v0, we recall the classification of cohomological representations
of U(2, 1;R) ([Rog90, Proposition 15.2.1], [Fli06, I.5, p. 293], and [BW00, Theorem 4.11]). If π
is an irreducible unitary Gv0-module, we have H1(g,K;π) = 0 unless π ∈ {J+, J−}, where J+

and J− are nontempered. When π = J±, we have H1(g,K;π) = C with Hodge types (1, 0) and
(0, 1) respectively. In addition, H2(g,K;π) = 0 unless π ∈ {1, D,D+, D−}, where 1 is the trivial
representation, and D, D+, and D− are discrete series representations with Hodge types (1, 1),
(2, 0) and (0, 2) respectively.
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For any one-dimensional representation ξ of Hv0 , the local packet Πv0(ξ) is disjoint from
{J±} unless ξ = (det0)−tv0−1λ (case 1) or ξ = (det0)−tv0λ−1 (case 2). In the remaining two
cases, we have

Πv0(ξ) =

{
{J+, D−} in case 1,

{J−, D+} in case 2.

We will denote the nontempered member of Π(ξ) by πn(ξ), and the tempered member by πs(ξ).
At the remaining places, we have Gv = U(3;R). The packet Πv(ξ) is only defined for ξ

of the form (det0)p−tvλq with p − q > 1 or q − p > 2, and when it is, it consists of one
irreducible representation of Gv which we denote πs(ξ). The packet Πv(ξ) consists of the trivial
representation exactly when ξ is either (det0)−tv−1λ or (det0)−tvλ−1.

3.4 Global packets
Let ξ ∈ L2

d(H,ω) be a one-dimensional representation. Define the global L-packet Π(ξ) to be
⊗vΠv(ξv). It is proven that Π(ξ) ∈ Π(G) ([Rog90, Theorem 13.3.2 and § 14], and [Fli06, p. 218]),
and that any representation π = ⊗vπv ∈ L2

d(G,ω) satisfying πv0 ' J± must lie in a packet Π(ξ)
for some ξ ([Rog90, Theorem 13.3.6], and [Fli06, p. 219]). If π = ⊗vπv ∈ Π(ξ), define n(π) to
be the number of places at which πv = πs(ξv). By [Rog92] and [Fli06, p. 218], there is a global
factor ε(ξ, µ) = ±1 such that

m(π) = 1
2(1 + ε(ξ, µ)(−1)n(π)).

In particular, m(π) is either 0 or 1.

3.5 Transfers and character identities
Suppose that v is finite and f ∈ C(Gv, ω). There exists a function fH ∈ C(H,ωµ−1

v ), called
a transfer of f , such that the unstable orbital integrals of f match the stable integrals of fH ;
see [Rog90, § 4.9], and [Fli06, I.2] for details. Note that we define this transfer in the non-quasi-

split case by applying the identification φv : Gv
∼−→ G∗v defined in § 2.2 followed by the usual

transfer for G∗. When ξ is a character of Hv such that the restriction of ξ to Zv is ωµ−1
v and v

is split, we have [Rog90, Lemma 4.13.1]

tr(πn(ξ))(f) = ξ(fH),

and when v is nonsplit we have (see [Rog90, Corollary 12.7.4] and [Fli06, p. 215])

tr(πn(ξ))(f) + tr(πs(ξ))(f) = ξ(fH). (2)

4. Proof of Theorem 1

4.1 The upper bound
We modify our notation sightly, and now define J± to be the representation of G∞ = ⊗v|∞Gv
that is equal to J± at Gv0 and trivial at all other places. We also define Ξ∞ to be the set
of characters of H∞ that are equal to either (det0)−tv−1λ or (det0)−tvλ−1 at each place v. By
Matsushima’s formula, we have

b1(2)(Y (n)) =
∑

π∈L2
d(G,1)

π∞'J±

m(π) dim(π
Kf (n)
f ).
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The results recalled in § 3 allow us to rewrite this as

b1(2)(Y (n)) =
∑

ξ∈L2
d(H,µ−1)
ξ∞∈Ξ∞

∑
π∈Π(ξ)
π∞'J±

m(π) dim(π
Kf (n)
f ).

Let 1K(n) ∈ C(G(Af ), 1) be the characteristic function of Z(Af )Kf (n). We have∫
G(Af )/Z(Af )

1K(n) dg = cV (n)−1,

where V (n) is as in (1) and c depends only on our choice of Kv for v ∈ Sf , and so applying the
upper bound m(π) 6 1 (see the remark in the introduction) gives

b1(2)(Y (n))� V (n)
∑

ξ∈L2
d(H,µ−1)
ξ∞∈Ξ∞

∑
π∈Π(ξ)

tr(πf (1K(n))). (3)

We now transfer 1K(n) to a function 1TK(n) = ⊗v1TKv(n) ∈ C(H(Af ), µ−1). If v ∈ Sf , we let

1HKv(n) ∈ C(Hv, µ
−1
v ) be any transfer of 1Kv(n), and set 1TKv(n) = 1HKv(n). When v /∈ S, we let KH

v

be a hyperspecial maximal compact subgroup of Hv, and let KH
v (pn) be its standard principal

congruence subgroups. We define 1KH
v (n) ∈ C(Hv, µ

−1
v ) to be the function supported on ZvK

H
v (n)

and equal to 1 on KH
v (n). This is well defined as µv was assumed to be unramified. Set 1TKv(n) =

Nv−2 ordv n1KH
v (n). When v is split, the character identity

tr(πn(ξv))(1Kv(n)) = ξv(1
T
Kv(n)) (4)

may be directly verified. When v is inert, the character identity

tr(πn(ξv))(1Kv(n)) + tr(πs(ξv))(1Kv(n)) = ξv(1
T
Kv(n)) (5)

follows from (2) and the following proposition of Ferarri [Fer07]. We are grateful to Sug Woo
Shin for making us aware of this.

Proposition 2. If v /∈ S is inert, the functions 1Kv(n) and Nv
−2 ordvn1KH

v (n) are a transfer pair.

Proof. This is an application of [Fer07, Theorem 3.2.3] in the caseG= U(3) andH = U(2)×U(1).
The sign εG,H appearing in the theorem is 1 in our case because we may take the F -tori T and
TH appearing in the definition of the character χG,H on [Fer07, p. 372] to be isomorphic. The
assumption that Sf contained all primes dividing a rational prime p with p 6 9[F : Q]+1 implies
that the residual characteristic of v is ‘assez grande’ in the sense of [Fer07, p. 371]. 2

The identities (4) and (5) and our description of the packet Π(ξ) imply that∑
π∈Π(ξ)

trπf (1K(n)) = 2ξf (1TK(n)),

so that (3) becomes

b1(2)(Y (n))� V (n)
∑

ξ∈L2
d(H,µ−1)
ξ∞∈Ξ∞

ξf (1TK(n)). (6)

Any ξ ∈ L2
d(H,µ

−1) is of the form ξθ = (θ ◦ det0)⊗ (θ−2µ−1 ◦ λ) for some character θ ∈ Î1
E ,

and the condition that (ξθ)∞ ∈ Ξ∞ restricts θ∞ to a finite set Θ∞. We define the conductor fθ
of θ to be the largest ideal m such that θ is trivial on U(1,m).
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Assume that θ ∈ Î1
E satisfies θ∞ ∈ Θ∞ and (ξθ)f (1TK(n)) 6= 0. For v ∈ Sf , the condition

(ξθ)v(1
T
Kv(n)) 6= 0 and the fact that 1TKv(n) is a smooth function that is independent of n imply

that ordv fθ is bounded by a constant depending only on Kv. If v /∈ S, it may be easily seen
that (ξθ)v(1

T
Kv(n)) 6= 0 if and only if ordv fθ 6 ordv n. Consequently, there exists an ideal a ⊆ O

that is divisible only by primes in Sf such that fθ|an. The number of characters with θ∞ ∈ Θ∞
and fθ|an is ∼ |U(1,O) : U(1, n)|, and for each θ we have

(ξθ)f (1TK(n))� Nn−2|U(2,O) : U(2, n)|−1.

Combining these bounds with (6) and substituting the definition of V (n), we obtain

b1(2)(Y (n))�
|U(1,O) : U(1, n)||U(3,O)Z(Af ) : U(3, n)Z(Af )|

Nn2|U(2,O) : U(2, n)|

=
|U(3,O) : U(3, n)|

Nn2|U(2,O) : U(2, n)|
.

The formulas for the order of the groups GL(3) and U(3) over a finite field [Art55] imply that
this is � Nn3, which completes the proof. 2

4.2 The lower bound
Let ξ0

∞ ∈ Ξ∞ be the character that is equal to (det0)−tv−1λ at every infinite place v, so that
Πv0(ξ0

v0) = {J+, D−}. Define

Θ(n) = {θ ∈ ÎE | fθ = n, (ξθ)∞ = ξ0
∞} and Ξ(n) = {ξθ | θ ∈ Θ(n)}.

As n was assumed relatively prime to Sf , θ ∈ Θ(n) is unramified at Sf and hence trivial at all
nonsplit v ∈ Sf . Because E/F is CM, the elements x ∈ OE with Nx = 1 are exactly the roots
of unity in E, and it follows that |Ξ(n)| = |Θ(n)| � Nn.

For nonsplit v ∈ Sf , choose Kv so that πn(1v)
Kv and πs(1v)

Kv are both nonzero. For split
v ∈ Sf and ξ ∈ Ξ(n), πn(ξv) is the principal series representation I(ξv ⊗ det0 ◦µw). We see that
we may choose Kv so that πn(ξv)

Kv 6= 0 for all unramified ξv. Matsushima’s formula and the
results of § 3 once again imply that

b1(2)(Y (n)) >
∑
ξ∈Ξ(n)

∑
π∈Π(ξ)
π∞=J+

m(π) dim(π
Kf (n)
f ).

Let ξ ∈ Ξ(n), and let I be a finite set of inert places disjoint from S. Then, because we assumed
there was at least one nonsplit v ∈ Sf , there exists πI ∈ Π(ξ) with πI,∞ = J+ and m(πI) = 1,

and such that the set of v /∈ S with πI,v = πs(ξv) is exactly I. We have assumed that πKv
I,v 6= 0

for all v ∈ Sf , and so πI makes a contribution of at least∏
v∈I

dim(πs(ξv)
Kv(n))

∏
v/∈S∪I

dim(πn(ξv)
Kv(n))

to b1(2)(Y (n)). Summing over I, we obtain

b1(2)(Y (n)) >
∏
v/∈S
v split

dim(πn(ξv)
Kv(n))

∏
v/∈S
v inert

(dim(πn(ξv)
Kv(n)) + dim(πs(ξv)

Kv(n))).

We now define 1SK(n) ∈ C(G(AS), 1) to be the characteristic function of ⊗v/∈SKv(n)Z(Fv), and

let 1S,TK(n) ∈ C(H(AS), µ−1) be the product over the places v /∈ S of the transfers defined in § 4.1.
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Applying the character identities (4) and (5) and summing over Ξ(n) gives

b1(2)(Y (n))� V (n)
∑
ξ∈Ξ(n)

ξS(1S,TK(n)).

We have
ξS(1S,TK(n))� Nn−2|U(2,O) : U(2, n)|−1

when ξ ∈ Ξ(n), and reasoning as in the case of the upper bound gives b1(2)(Y (n))� Nn3.
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