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Abstract
In multi-population mortality modeling, autoregressive moving average (ARMA)
processes are typically used to model the evolution of mortality differentials between
different populations over time. While such processes capture only short-term serial
dependence, it is found in our empirical work that mortality differentials often exhibit
statistically significant long-term serial dependence, suggesting the necessity for using
long memory processes instead. In this paper, we model mortality differentials between
different populations with long memory processes, while preserving coherence in the
resulting mortality forecasts. Our results indicate that if the dynamics of mortality
differentials are modeled by long memory processes, mean reversion would be much
slower, and forecast uncertainty over the long run would be higher. These results imply
that the true level of population basis risk in index-based longevity hedges may be
larger than what we would expect when ARMA processes are assumed. We also study
how index-based longevity hedges should be calibrated if mortality differentials follow
long memory processes. It is found that delta hedges are more robust than variance-
minimizing hedges, in the sense that the former remains effective even if the true
processes for mortality differentials are long memory ones.
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1. Introduction

To mitigate longevity risk exposures, pension plans and annuity providers may
deploy index-based longevity hedges. An index-based longevity hedge is constructed
using one or more instruments whose payoffs are linked to a mortality index which
tracks the mortality experience of a certain reference population, typically a national
population. Researchers have studied index-based longevity hedges from different
angles, ranging from the development of effective hedging strategies to the
quantification of residual risks that still remains when a properly calibrated index-
based longevity hedge is in place [Dahl et al. (2008); Cairns (2011); Coughlan et al.
(2011); Li and Hardy (2011); Cairns et al. (2014); Zhou and Li (2017); Li et al. (2021)].
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One of the residual risks is population basis risk, which arises due to the difference
in mortality experience between the hedger’s population of individuals and the
population to which the hedging instrument is linked. The quantification of
population basis risk requires a multi-population mortality model, which models the
mortality dynamics of the populations involved jointly. Examples of such models
include those proposed by Cairns et al. (2011), Dowd et al. (2011), Zhou et al.
(2014), Kleinow (2015) and Enchev et al. (2017). Reviews of such models are
provided by Li et al. (2015), and Villegas et al. (2017).

In multi-population mortality models, the evolution of mortality differentials
between populations is often captured by autoregressive moving average (ARMA)
process. As ARMA processes are stationary, the long-term expected mortality
differential between any two populations being modeled is finite. In effect, the
divergence between the expected mortality trajectories of two related populations is
bounded. This property is commonly referred to as “coherence,” and is regarded as
desirable. However, since ARMA processes are short memory processes, they do not
capture any long-term serial dependence in mortality differentials. This limitation
may potentially affect the assessment of population basis risk and hedge effectiveness.

Recent studies have shown that long-term serial dependence exists in mortality
dynamics. Yan et al. (2021) showed empirically the existence of long memory in
age-specific mortality rates from 16 countries, and proposed a long memory
mortality model that is based on the generalized linear modeling approach. Yan
et al. (2020) extended the work of Yan et al. (2021) to multivariate mortality
modeling with cohort effects. Using a continuous-time setting, Wang et al. (2021)
proposed the Volterra mortality model with long-range dependence. Based on the
Volterra model, Wang and Wong (2021) developed a time-consistent mean-variance
longevity hedge. Other studies related to long memory in mortality dynamics include
those of Gil-Alana et al. (2017), Delgado-Vences and Ornelas (2019) and Yaya et al.
(2019).

The aforementioned studies studied long-term serial dependence in mortality
dynamics but not mortality differentials that determine population basis risk. To fill
this gap, in this paper we attempt to verify the existence of long memory in
mortality differentials, and investigate the impact of this property on index-based
longevity hedges. To this end, we consider modeling mortality differentials between
related populations with autoregressive fractionally integrated moving average
(ARFIMA) processes [Granger and Joyeux (1980)], which may be seen as
autoregressive integrated moving average (ARIMA) processes with a fractional
differentiation. The long-term mean implied by an ARFIMA process is finite, so that
the coherence property can be preserved when ARMA is replaced with ARFIMA in
the modeling of mortality differentials. More importantly, an ARFIMA process can
simultaneously capture both long- and short-term serial dependence in mortality
differentials via its fractional differentiation and ARMA components, respectively.
Although Hyndman et al. (2013) previously used ARFIMA processes for mortality
modeling, their work was based on a rather different modeling approach (the
product ratio method) and took no consideration of any actuarial application.

The contributions of this paper are twofold. First, using mortality data from eight
national populations, we demonstrate that mortality differentials between populations
often exhibit statistically significant long-term serial dependence. To capture this
feature and replicate it in mortality forecasts, we use an ARFIMA process to model
the evolution of each population-specific period effect in the Li–Lee (LL) model
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[Li and Lee (2005)]. Our empirical analysis reveals that compared to an ARMA process
that takes no account of long-term serial dependence, an ARFIMA process implies a
slower rate of mean reversion in mortality differentials and a higher level of forecast
uncertainty over the long run. We also show that the proposed modeling approach
preserves the coherence property.

Second, we study how long memory in mortality differentials may affect index-based
longevity hedges. Specifically, we first adapt existing delta-neutral and variance-
minimizing hedging strategies to fit our modeling framework, and then present two
case studies that focus on hedge effectiveness and robustness of hedging strategies,
respectively. The first case study reveals that overlooking long memory would lead to
an underestimation of population basis risk and consequently an overestimation of
hedge effectiveness. The second case study points to the conclusion that the hedge
ratio (and hedge effectiveness) of a variance-minimizing hedge depends heavily on
whether long memory processes are utilized to model mortality differentials in the
course of calibration, but the opposite is true for a delta-neutral hedge.

The rest of this paper is organized as follows. Section 2 examines the statistical
significance of long memory in mortality differentials, and presents the ARFIMA
modeling work for the dynamics of mortality differentials (population-specific period
effects in the LL model) over time. Section 3 studies how existing hedging strategies
should be modified when the proposed modeling approach is used. Section 4
features two case studies that highlight the implications of long memory in mortality
differentials on index-based longevity hedges. Lastly, section 5 concludes the paper.

2. Modeling long memory in mortality differentials

2.1. Data

We consider mortality data from eight female populations in Europe (see Table 1),
provided by the Human Mortality Database. For consistency reasons, the same
sample period (1900–2018) and age range (40–89) are used for all populations under
consideration. The age range includes typical ages of pension plan members (active
and retired), but excludes extreme ages for which data are often extrapolated and
smoothed. We set the beginning point of the sample period to 1900, as a longer
time-series facilitates the study of long memory.

Table 1. A summary of the mortality data used in this paper

Population Abbreviation Sample period Age range Gender

England and Wales EW 1900–2018 40–89 Female

France FR 1900–2018 40–89 Female

Switzerland CH 1900–2018 40–89 Female

Denmark DK 1900–2018 40–89 Female

Finland FI 1900–2018 40–89 Female

Italy IT 1900–2018 40–89 Female

Netherlands NL 1900–2018 40–89 Female

Sweden SE 1900-2018 40–89 Female
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2.2. Mortality model

Our modeling work is based on the well-known Li–Lee (LL) model [Li and Lee (2005)].
Let m(i)

x,t be the central rate of death at age x in year t for population i, where i [ P with
P being the set of populations under consideration. The LL model is specified as

lnm(i)
x,t = a(i)x + BxKt + b(i)x k(i)t + e(i)x,t , (1)

where

• a(i)x is an age-specific parameter indicating the i-th population’s average level of
mortality at age x,

• Kt is a time-varying index that is shared by all populations in P,
• Bx is an age-specific parameter indicating the sensitivity of ln (m(i)

x,t) to Kt,

• k(i)t is a time-varying index that is specific to the i-th population,

• b(i)x is an age-specific parameter indicating the sensitivity of ln (m(i)
x,t) to k(i)t , and

• e(i)x,t is the error term that captures all remaining variations.

It is well-known that the LL model is subject to an identifiability problem. To stipulate
parameter uniqueness, the following constraints are used:

∑
x

Bx = 1,
∑
t

Kt = 0,

∑
x

b(i)x = 1, i [ P and
∑
t

k(i)t = 0, i [ P,

where the summations are taken over the whole sample period or age range. Following
Li and Lee (2005), we estimate the parameters in Equation (1) using a singular value
decomposition.

In applications of the LL model, {Kt} is typically assumed to follow a random walk
with drift:

Kt = m+ Kt−1 + et , (2)
where μ is the drift term, and et is the time-t random innovation that is normally
distributed with a zero mean and a constant standard deviation σ.

On the other hand, {k(i)t } is often assumed to follow an ARMA(P,Q) process:

F(i)
P (B)k(i)t = Q(i)

Q (B)e(i)t , (3)

where e(i)t is the time-t random innovation that is normally distributed with a zero mean
and a constant standard deviation σ(i), F(i)

P (B) = 1− f(i)
1 B− f(i)

2 B2 − . . .− f(i)
P BP, and

Q(i)
Q (B) = 1− u(i)1 B− u(i)2 B2 − . . .− u(i)Q BQ, with B being the backshift operator (i.e.,

Bk(i)t = k(i)t−1) and the roots of both F(i)
P (B) and Q(i)

Q (B) lying outside the unit circle.
Given how the ARMA model is specified, the long-term mean of k(i)t is finite and
equals zero.1 As a result, the long-term expected mortality differential (in log scale)

1As the identifiability constraint
∑

t k
(i)
t = 0 is imposed, the mean of k(i)t over the sample period is zero;

hence, it is appropriate to model {k(i)t } using a process with a zero unconditional mean. The long-term
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between populations i and j is

lnm(i)
x,t − lnm(j)

x,t = a(i)x − a(j)x , (4)

a constant that is free of t, so that the coherence property is achieved.
In the rest of this subsection, we investigate whether long memory exists in {Kt} and

{k(i)t }, and suggests suitable processes for modeling {Kt} and {k(i)t } accordingly.

2.2.1. Dynamics of Kt
Figure 1 shows the estimates of Kt, the time-varying index shared by the eight
populations under consideration. Given the steady trend in the estimates, we apply
first differencing and examine whether long memory exists in {Kt− Kt−1} using the
modified R/S test [Lo (1991)], of which the null hypothesis is that the underlying
process is a short memory one.

Reported in Table 2, the values of the R/S test statistic indicate that the null
hypothesis cannot be rejected for lags 0–5, suggesting that long memory is not
significant in {Kt− Kt−1}.

2

Given the results of the modified R/S test, we use a random walk with drift to model
{Kt} throughout the rest of this paper. While more sophisticated processes, such as those
that feature conditional heteroskedasticity [Zhou and Li (2020)], may provide a better fit
to {Kt}, we choose to use a simple random walk with drift so that our discussions can focus
on the issue of short and long memory. Furthermore, as Kt is shared by all populations
under consideration, the process for Kt has no direct relevance to population basis risk.

Figure 1. Estimates of Kt within the sample period of 1900–2018.

mortality differential between populations i and j, where i≠ j, is captured by the difference between
parameters a(i)x and a(j)x , as indicated in Equation (4).

2According to Lo (1991), when the sample size is small (100–250 observations), the power of the
modified R/S test will be low if the number of lags included in calculating the modified R/S statistics is
large. Given that our sample size is 118, lags higher than 5 are excluded.
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2.2.2. Dynamics of k(i)t
Figure 2 shows the estimates of k(i)t for the eight populations under consideration.
Compared to {Kt}, the trends in {k(i)t } are not as apparent. To better understand the
dynamics of {k(i)t }, we consider the sample autocorrelation functions (ACF) of {k(i)t }.
The lag-k sample ACF of {k(i)t } is defined as the sample correlation between k(i)t and
k(i)t−k over the sample period.

The nature of a time-series can be told from its sample ACF plot (the plot of sample
ACF against lag). In particular, the ACF of a long memory time series converges more
slowly than that of a short memory one (which decays exponentially), but is not as
extreme as that of an integrated (difference stationary) process which does not
converge. To illustrate, in Figure 3 we display the sample ACF plots of time-series
generated from three processes: (a) an AR(1) process with an autoregressive
parameter of 0.7 and a volatility parameter of 1, (b) an ARFIMA(1,d,0) with d = 0.4
and the same autoregressive and volatility parameters as those of (a), and (c) an
ARIMA(0,1,0) process with the same volatility parameter as the other two processes.
It can be observed that the ACF of the ARFIMA-generated series clearly has a lower
convergence rate than that of the AR-generated series, while the ACF of the ARIMA
(0,1,0) process does not converge.

Figure 4 shows the sample ACF plots of the estimated series of k(i)t for the eight
populations under consideration. All of the eight sample ACF plots behave like that
of a typical ARFIMA process that features long memory.

We further use the modified R/S test to confirm the existence of long memory in the
eight estimated series of k(i)t . As shown in Table 3, for all lags up to 5, the values of
modified R/S test statistic are strictly greater than the critical value at 5% significance

Table 2. Values of the modified R/S test statistic for {Kt− Kt−1} at lags 0, 1, …, 5

Number of lags 0 1 2 3 4 5

R/S statistic 0.7719 0.9475 1.0783 1.2117 1.1653 1.2335

At 2.5%, 5%, and 10% significance levels, the critical values of the modified R/S test are 1.862, 1.747, and 1.620,
respectively, according to Lo (1991).

Figure 2. Estimates k(i)t for all i [ P within the sample period of 1900–2018.
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level, indicating that long memory in the eight estimated series of k(i)t is statistically
significant.

2.3. The ARFIMA process

To capture the long memory in k(i)t , we consider an ARFIMA process for k(i)t :

F(i)
P (B)(1− B)2dk(i)t = Q(i)

Q (B)e(i)t , (5)

where d is the fractional difference parameter, e(i)t is the time-t innovation which follows
a normal distribution with a zero mean and a standard deviation of σ(i), and F(i)

P (B) and
Q(i)

Q (B) are the autoregressive and moving average operators as defined in the previous
subsection, respectively. As the identifiability constraint

∑
t k

(i)
t = 0 for all i [ P is

used, we consider an ARFIMA specification that has a zero unconditional mean.
The ARFIMA process captures the long-term serial dependence in {k(i)t } through the

fractional difference parameter d, and the short-term serial dependence in {k(i)t } via the
autoregressive and moving-average operators. The fractional difference parameter d can

Figure 4. Sample ACF plots of the estimated series of k(i)t for the eight populations under consideration.

Figure 3. Sample ACF plots of time-series generated from an AR(1) process (left panel), an ARFIMA(1, 0.4, 0)
(middle panel), and an ARIMA(0, 1, 0) process (right panel); the autoregressive parameter for the first two
processes is 0.7, and the volatility parameter for all three processes is 1.
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take any real value between −0.5 and 0.5 inclusive. If d = 0, then the ARFIMA process
reduces to an ARMA process with short-term memory only. If d = 0.5, then Equation
(5) becomes an ARIMA process with first-order differencing. For d∈ (0,0.5), the
ARFIMA process is said to have long memory or persistence, which implies that a
high value of k(i)t is likely to be followed by high values k(i)s for s > t over a prolonged
period of time. Finally, if d∈ (−0.5,0), then the process is said to have
anti-persistence, which means that the series will likely to switch between high and
low values in adjacent time points for a prolonged period of time.

2.4. Estimation

We estimate AR(1), ARMA(P,Q), and ARFIMA(P,d,Q) processes to the eight estimated
series of k(i)t , using R package “forecast.” We consider AR(1), as it is frequently used to
model {k(i)t } in the LL model including the original work of Li and Lee (2005). When
fitting an ARMA(P,Q) process, the optimal values of P and Q are identified by the
“auto.arima” function; and when fitting an ARFIMA( p,d,q) process, the optimal
values of P, d, and Q are found using the “arfima” function.

In what follows, we report the estimation results for English and Welsh female
population (EW). The estimation results for the other seven populations under
consideration have similar properties, and are therefore not shown for the sake of
space. Table 4 reports the estimates of the parameters in the processes for {k(EW)

t }.
For both ARMA and ARFIMA processes, the optimal values of P and Q are 1. The
estimate of d in the ARFIMA(1,d,1) process is 0.3787, indicating that there is strong
long-term serial dependence in {k(EW)

t }. All of the parameters are significant, as
indicated by their p-values.

Figure 5 displays the sample ACF plots of the residuals from the three fitted
processes for {k(EW)

t }. For the AR process, the sample ACF plot of the residuals has
significant spikes at lag 1 and 10, indicating that some short-term serial dependence
is not adequately captured by the process. Both the ARMA and ARFIMA processes

Table 3. Values of the modified R/S test statistic for {k(i)t } at lags 0, 1, …, 5

Number of lags

Population 0 1 2 3 4 5

EW 4.738 3.413 2.816 2.458 2.213 2.033

FR 4.236 3.058 2.514 2.190 1.969 1.807

CH 4.637 3.337 2.758 2.411 2.176 2.003

DK 4.583 3.277 2.694 2.344 2.105 1.929

FI 4.775 3.424 2.811 2.446 2.198 2.016

IT 4.184 3.057 2.536 2.220 2.004 1.844

NL 4.293 3.078 2.534 2.209 1.988 1.826

SE 4.462 3.202 2.639 2.304 2.076 1.908

At 2.5%, 5%, and 10% significance levels, the critical values of the modified R/S test are 1.862, 1.747, and 1.620,
respectively, according to Lo (1991).
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seem to have provided adequate provision for short-term serial dependence, but the
former takes no account of long memory which is found to be statistically significant
in section 2.2.2.

2.5. Forecasting

We now turn to forecasting. Figure 6 shows the mean forecasts and predictive intervals
of k(EW)

t produced by the three estimated processes. The trajectories of the mean
forecasts underscore an important property of ARFIMA processes: the rate of
convergence implied by an ARFIMA process is smaller than the corresponding AR
and ARMA processes. Another important property of ARFIMA processes can be
inferred from the width of the predictive intervals: an ARFIMA process implies a
higher level of forecast uncertainty compared to the corresponding AR and ARMA
processes.

To obtain deeper insights about the rate of convergence, we consider additionally the
female population of Italy (IT). For the reader’s information, the estimated AR, ARMA,
and ARFIMA processes for {k(IT)t } are summarized in Table 5.

Figure 7 shows the mean forecasts of lnm(EW)
x,t and lnm(IT)

x,t for x = 40, 50, 60 when
AR, ARMA, and ARFIMA processes are used to model {k(EW)

t } and {k(IT)t }. It can be

Table 4. Estimates of the parameters in the AR, ARMA, and ARIMA processes for {k(EW)
t }

Process Parameter Estimate Standard error p-value

AR(1) f(EW)
1 0.9287 0.0321 <2.2 × 10−16

σ(EW) 1.7564 N/A N/A

ARMA(1,1) f(EW)
1 0.9719 0.0205 <2.2 × 10−16

u(EW)
1 −0.3617 0.1029 4.399 × 10−4

σ(EW) 1.6822 N/A N/A

ARFIMA(1,d,1) d 0.3787 0.0056 <2.2 × 10−16

f(EW)
1 0.9682 0.0736 <2.2 × 10−16

u(EW)
1 0.7916 0.0305 <2.2 × 10−16

σ(EW) 1.6716 N/A N/A

Figure 5. Sample ACF plots of the residuals from the fitted processes for {k(EW)
t }: AR(1) (left panel), ARMA(1,1)

(middle panel), and ARFIMA(1,d,1) process (right panel).
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observed that all three types of processes (including ARFIMA) produce coherent
mortality forecasts; that is, for a given age x, the mean forecasts of lnm(EW)

x,t and
lnm(IT)

x,t do not diverge over the long run.
Noting that all of the three processes specified for k(i)t have a zero unconditional

mean, it can be easily deduced that in the long-run equilibrium the difference
between the log central death rates for EW and IT populations at any given age x is
always a(EW)

x − a(IT)x regardless of which of the three processes are used. Figure 7
therefore reveals that three types of processes lead to very different rates of
convergence to the long-term equilibrium. In particular, the rate of convergence to
the long-term equilibrium is the fastest (slowest) when AR (ARFIMA) processes are
used to model {k(EW)

t } and {k(IT)t }.

3. Hedging strategies

Drawing on the previous works of Zhou and Li (2020) and Zhou and Li (2021), we now
derive hedging strategies that fit the modeling framework described in earlier sections.
We consider both delta-neutral and variance-minimizing index-based longevity hedges.

Table 5. Estimates of the parameters in the AR, ARMA, and ARIMA processes for {k(IT)t }

Process Parameter Estimate Standard error p-value

AR(1) f(IT)
1 0.8975 0.0409 <2.2 × 10−16

σ(IT) 1.6435 N/A N/A

ARMA(1,1) f(IT)
1 0.9850 0.0156 <2.2 × 10−16

u(IT)1 −0.5414 0.0867 4.196 × 10−10

σ(IT) 1.4950 N/A N/A

ARFIMA(1,d,1) d 0.2145 0.0041 <2.2 × 10−16

f(IT)
1 0.9813 0.0712 <2.2 × 10−16

θ(IT) 0.7440 0.0230 <2.2 × 10−16

σ(IT) 1.4848 N/A N/A

Figure 6. Mean forecasts and predictive intervals of k(EW)
t generated from the fitted AR process (left panel), ARMA

process (middle panel), and ARFIMA process (right panel). Each fan chart shows the 10% predictive interval with
the heaviest shading, surrounded by the 20%, 30%, …, 90% predictive intervals with progressively lighter
shadings.
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3.1. Set-up

Let S(i)x,t(T) be the ex post probability that an individual from population i who has
survived to age x at time t would have survived to time t + T for T = 1, 2, …. Under
the LL model, S(i)x,t(T) is given by

S(i)x,t(T) = exp −
∑T
s=1

exp a(i)x+s−1 + Bx+s−1Kt+s + b(i)x+s−1k
(i)
t+s

( )( )
. (6)

As a shorthand, we write

S(i)x,t(T) = e−W(i)
x,t(T), (7)

where

W(i)
x,t(T) =

∑T
s=1

exp (Y (i)
x,t(s)) (8)

Figure 7. Mean forecasts of lnm(EW)
x,t and lnm(IT)

x,t at x = 40 (top row), x = 50 (middle row), and x = 60 (bottom row)
when {k(EW)

t } and {k(IT)t } are modeled by AR processes (left column), ARMA processes (middle column), and
ARFIMA processes (right column).
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and

Y (i)
x,t(s) = a(i)x+s−1 + Bx+s−1Kt+s + b(i)x+s−1k

(i)
t+s. (9)

Let F t be the information about the evolution of mortality of all populations under
consideration up to and including time t. Then, the survival probability for an
individual from population i aged x at time t to survive to time t + T given F t can
be expressed as

E e−W(i)
x,t (T)

∣∣F t

[ ]
.

Under the LL model, dependence across populations is driven exclusively by {Kt}. To
stress the role of {Kt}, we define the following:

p(i)x,t(T , Kt) : = E e−W(i)
x,t (T)

∣∣F t

[ ]
.

Note that the expression above depends on Kt but not Kt−1, Kt−1, … due to the
Markovian property of the assumed process for {Kt}.

To construct a delta-neutral longevity hedge, we need the longevity delta for
p(i)x,t(T , Kt), which is defined as the first-order partial derivatives of p(i)x,t(T , Kt) with
respect to Kt:

D(i)
x,t(T) : =

∂

∂Kt
p(i)x,t(T , Kt)

= −
∑T
s=1

Bx+s−1E exp Y (i)
x,t(s)−W(i)

x,t(T)
( )∣∣F t

[ ]
.

We assume that the hedger is an annuity provider and the hedging instrument is an
S-forward. In the next two subsections, we derive the time-t values and longevity deltas
of a life annuity and S-forward.

3.1.1. Life annuities
Let us consider a τ-year deferred T-year temporary life annuity issued to an individual
from population i who is aged x at time t. Assuming a constant interest rate of r, the
sum of all discounted cash flows from this life annuity is given by

L(i) =
∑T
s=1

(1+ r)−(t+s)S(i)x,t(t+ s).

As a linear combination of S(i)x,t(t+ s) for s = 1, …, T, the time-t value of L(i) given F t

can be written as

L(i)(Kt) : = E L(i)
∣∣F t

[ ] = ∑T
s=1

(1+ r)−(t+s)p(i)x,t(t+ s, Kt).
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The longevity delta of this life annuity is defined as the first-order partial derivative of
L(i)(Kt) with respect to Kt; that is,

D(i)
L : = ∂L(i)(Kt)

∂Kt
=

∑T
s=1

(1+ r)−(t+s)D(i)
x,t(t+ s).

3.1.2. S-forwards
A S-forward is a zero-coupon swap with a fixed leg proportional to a fixed forward rate
Sf that is determined when the contract is written at time t, and a floating leg
proportional to a random survival rate. For a S-forward with a reference population
i, a time-to-maturity T and a reference age x, the floating leg is proportional to
S(i)x,t(T), as defined in Equation (6).

The value of S(i)x,t(T) is completely realized at time t + T when the S-forward matures.
If the realized value of S(i)x,t(T) turns out to be higher than expected (i.e., realized
mortality is lighter than expected), then the fixed-rate payer of the S-forward receives
a positive net payment from the floating-rate payer. To hedge their longevity
exposures, pension and annuity providers may participate in a S-forward as a
fixed-rate payer, so that in case mortality turns out to lighter than expected, the net
payment received from the floating-rate payer can be used to offset their
correspondingly larger liabilities.

Assuming a constant interest rate of r, the discounted payoff of the above-described
S-forward from the fixed-rate payer’s perspective is given by

H(i) = (1+ r)−T(S(i)x,t(T)− Sf )

per $1 notional. Given F t , the time-t value of this S-forward can be expressed as

H(i)(Kt) : = E H(i)
∣∣F t

[ ] = (1+ r)−T p(i)x,t(T , Kt)− Sf
( )

.

The longevity delta is defined as the first-order partial derivative of H(i)(Kt) with respect
to Kt; that is,

D(i)
H : = ∂H(i)(Kt)

∂Kt
= (1+ r)−TD(i)

x,t(T).

3.2. Calibration and evaluation

Suppose that the liability being hedged is the life annuity described in section 3.1.1 and
the hedging instrument is the S-forward described in section 3.1.2. Then, the unhedged
position is simply L(i), while the hedged position can be expressed as L(i) − uH(j),
where u is the hedge ratio (the notional amount of the S-forward purchased). When
i≠ j, the life annuity and S-forward are associated with different populations, and
thus population basis risk exists. We consider two methods to choose u.

For a delta-neutral hedge established at time t, the value of u is determined such that
the longevity delta of the hedged position is zero; that is,

D(i)
L − uD(j)

H = 0,
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the solution to which is given by

u(i,j)D = D(i)
L

D
(j)
H

. (10)

For a variance-minimizing hedge established at time t, the value of u is chosen such
that the following is minimized:

Var L(i) − uH(j)|F t
( )

.

It can be shown that the solution to the above minimization problem is

u(i,j)V = Cov L(i), H(j)|F t
( )

Var H(j)|F t
( ) . (11)

Finally, to quantify hedge effectiveness, we consider the reduction in variance
between the hedged and unhedged positions:

HE = 1− Var L(i) − uH(j)
∣∣F t0

( )
Var L(i)

∣∣F t0

( ) , (12)

where u represents the hedge ratio, which is calculated using Equation (10) when a
delta-neutral hedge is used and Equation (11) when a variance-minimizing hedge is
used.

4. Numerical illustrations

In this section, we present two case studies to demonstrate the impact of long memory
in mortality differentials on index-based longevity hedges. Both case studies are based
on the data and model discussed in section 2.

4.1. Case study I

The following assumptions are used for case study I:

• The current time is t0 = 2018 (i.e., the end of the last year of the sample period).
• The liability being hedged is a 25-year deferred 25-year temporary life annuity
issued to an individual from population i who is aged 40 at time t0 = 2018. The
annuity pays $1 at the end of each year, starting from age 65. Payment ceases
when the annuitant dies or reaches age 90, whichever is the earliest. The
annuitant’s mortality experience is identical to that of IT.

• The hedger’s annuity portfolio is large enough so that diversifiable risk can be
ignored.

• The hedger establishes a delta-neutral longevity hedge with a freshly launched
S-forward at time t0 = 2018. No adjustment is made to the hedge after time t0.

• When calibrating the hedge, the hedger assumes that {Kt} follows a random walk
with drift, and assumes {k(EW)

t } and {k(IT)t } follow either ARFIMA or ARMA
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processes. Using ARMA processes means that the hedger ignores or is not aware
of the empirical fact that there exists long memory in mortality differentials.

• At time t0 = 2018, freshly launched S-forwards with a reference age 40 and
times-to-maturity up to 50 years are available. The reference population of
these S-forwards is EW. Therefore, the hedge is subject to population basis risk.

• The hedge effectiveness is gauged using HE as defined in Equation (12), with i = IT,
and u = u(IT,EW)

D . The evaluation model (from which realizations of

L(IT) − u(IT,EW)
D H(EW) and L(IT) given F t0 are simulated) is assumed to be the

same as the one used for calibrating the hedge. In other words, if the hedger
overlooks long memory when calibrating the hedge, he/she also ignores long
memory when evaluating the hedge.

• When discounting future cash flows, a constant interest rate of r = 2% per annum
is used for all durations.

Figure 8 reports the resulting values of HE for S-forward times-to-maturity
ranging from 25 to 45 years. Regardless of whether long memory is taken into
account, the value of HE is the highest when the time-to-maturity of the S-forward
is around 40 years.

For any S-forward time-to-maturity, the value of HE when long memory is ignored
(ARMA processes are used) is higher than that when long memory is taken into
account (ARFIMA processes are used). When the time-to-maturity exceeds 40 years,
the difference is more than 10 percentage points. The results presented in Figure 8
clearly point to the conclusion that ignoring long memory in mortality differentials
would lead to an over-estimation of hedge effectiveness.

To understand the reason behind the phenomenon observed in Figure 8, let us
analyze the constituents of the longevity risk faced by the hedger. Under our
modeling framework, the hedger faces hedgeable risk that arises from the uncertainty

Figure 8. The values of HE for a delta-neutral hedge constructed using a S-forward with a time-to-maturity
ranging from 25 to 45 years, when {k(EW)

t } and {k(IT)t } are modeled by ARMA (solid line) and ARFIMA
(dot-dashed line) processes.
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surrounding Kt for t > t0 and unhedgeable risk (population basis risk) that arises from
the uncertainty surrounding both k(IT)t and k(EW)

t for t > t0. Figure 9 shows the variances
of k(IT)t0+s and k(EW)

t0+s given F t0 for s = 1, …, 50, implied by the ARMA and ARFIMA
processes. In line with the results presented in section 2, as the forecast horizon s
increases, the ARFIMA processes yield larger variances of k(IT)t0+s and k(EW)

t0+s given F t0

compared to the ARMA processes. More specifically, the variances of k(IT)t0+s and k(EW)
t0+s

given F t0 implied by the ARMA processes (which incorporate short-term memory
only) converge to their respective constant levels fairly quickly, while those implied
by the ARFIMA processes (which incorporate both short- and long-term memory)
grow at slowly decreasing rates. In effect, when {k(IT)t } and {k(EW)

t } are modeled by
ARFIMA processes (which incorporate the empirical fact that long memory exists in
{k(IT)t } and {k(EW)

t }) instead of ARMA processes, the proportion of hedgeable risk
relative to total risk becomes smaller and so does hedge effectiveness.

4.2. Case study II

Case study II is based on the same assumptions as those made in case study I, except the
following:

• The annuitant’s mortality experience is identical to that of NL. The hedge is still
subject to population basis risk, as the reference population of the S-forward
is EW.

• When calibrating the hedge, the hedger assumes that {Kt} follows a random walk
with drift, and {k(EW)

t } and {k(NL)t } may follow either ARFIMA or ARMA processes
depending on whether long memory is ignored. The hedge may use a
delta-neutral hedge or variance-minimizing hedge. These options produce four
hedging scenarios in total.

• We use HE defined in Equation (12) to evaluate the performance of each hedge.
For all four hedging scenarios, the evaluation model is based on ARFIMA

Figure 9. The variance of k(EW)
t0+s (left panel) and k(IT)t0+s (right panel) given F t0 for s = 1, …, 50 when

{k(EW)
t } and {k(IT)t } are respectively modeled by an ARMA process (solid line) and an ARFIMA process

(dot-dashed line).
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processes for {k(EW)
t } and {k(NL)t }. In other words, we are assuming that long

memory exists in reality, but the hedger may or may not incorporate this
property when calibrating the hedge.

Our goal is to investigate how delta-neutral and variance-minimizing
hedges may underperform if long memory exists in reality but is not accounted for
in the hedges.

Figure 10 shows the resulting values of HE for S-forward times-to-maturity
ranging from 25 to 45 years. For the variance-minimizing hedge, hedge
ratios calculated using the ARMA model assumption lead to materially smaller HE
values compared to those computed using the ARFIMA model
assumption. However, interestingly, for the delta-neutral hedge, the values of HE
produced by hedge ratios computed using the ARMA and ARFIMA model
assumptions are highly similar. These results suggest that in reality when long
memory in mortality differentials exists, calculating hedge ratios using short memory
processes like ARMA would lead to a significant underperformance if the calibration
method is variance minimization, but not if the calibration method is delta
neutralization.

To obtain further insights, let us examine the hedge ratios calculated in each of the
four hedging scenarios (Figure 11). For the variance-minimizing hedge, hedge ratios
computed using the ARMA model assumption are consistently smaller than those
calculated using the ARFIMA model assumption; as a smaller than optimal notional
amount of S-forward is used, the ARMA model assumption leads to
underperformance. For the delta-neutral hedge, the hedge ratios are almost
unaffected by the model assumption for {k(EW)

t } and {k(NL)t }; hence, the hedge does
not underperform even when the ARMA model assumption is used.

We now explain why the hedge ratio for the variance-minimizing hedge is sensitive
to the model assumption for {k(EW)

t } and {k(NL)t }, but that for the delta-neutral hedge is
not. For the variance-minimizing hedge, the hedge ratio is calculated using Equation

Figure 10. Values of HE produced by delta-neutral hedges (left panel) and variance-minimizing hedges (right
panel), for S-forward times-to-maturity ranging from 25 to 45 years, when {k(EW)

t } and {k(NL)t } are modeled by
ARMA processes (solid lines) and ARFIMA processes (dot-dashed lines).
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(11), of which both the numerator and denominator are highly sensitive to the model
assumption because, as argued earlier, it affects the mix of hedgeable risk (the
uncertainty surrounding Kt for t > t0) and unhedgeable risk (the uncertainty
surrounding k(EW)

t and k(NL)t for t > t0). For the delta-neutral hedge, the hedge ratio is
obtained from Equation (10), which can be expanded to the following:

u(NL,EW)
D = D(NL)

L

D(EW)
H

=
∂

∂Kt0
E L(NL)

∣∣F t0

[ ]
∂

∂Kt0
E H(EW)

∣∣F t0

[ ] .

Although the equation above involves k(EW)
t and k(NL)t for t > t0 through the two

expectations, it depends a lot more heavily on the rate of change of the two
expectations relative to changes in Kt0 . As a result, u(NL,EW)

D is quite insensitive to the

model assumption for {k(EW)
t } and {k(NL)t }.

5. Concluding remarks

In this paper, we found empirically that long memory exists in mortality differentials.
To capture this empirical fact, we propose modeling the population-specific period
effects (k(i)t for i [ P) in the LL model with ARFIMA processes instead of ARMA
processes, as ARFIMA processes are capable of taking both long- and short-term
memory into account.

Incorporation of long memory using ARFIMA processes results in mortality
forecasts with the following properties. First, the forecasts are coherent in the sense
that the expected mortality trajectories between any two populations being modeled
do not diverge indefinitely. Second, the rate of convergence to the long-run
equilibrium becomes slower. This property may be considered as desirable, because,
as Li et al. (2017) mentioned, given the patterns of the population-specific period

Figure 11. Hedge ratios for delta-neutral hedges (left panel) and variance-minimizing hedges (right panel), for
S-forward times-to-maturity ranging from 25 to 45 years, when {k(EW)

t } and {k(NL)t } are modeled by ARMA processes
(solid lines) and ARFIMA processes (dot-dashed lines).
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effects over the sample period, “it does not seem straightforward to justify immediate,
quick convergence to the long-term equilibrium.” Third, the forecast uncertainty for k(i)t
for i [ P over the long run is higher, a property that may guide practitioners to making
more adequate provision for population basis risk.

One limitation of our contribution is its data requirement. A sufficiently lengthy
data series is required for fitting an ARFIMA process. In our empirical work where a
sample period of 1900–2018 is used, the fractional difference parameter d in the
ARFIMA process is statistically significant. However, a shorter data series, say one
that begins in 1950, may not provide sufficient statistical evidence for
the significance of parameter d. This data requirement problem is also noted by
Hyndman et al. (2013), who apply ARFIMA processes to their product-ratio
mortality modeling method.

We presented two case studies to demonstrate the impact of long memory in
mortality differentials on index-based longevity hedges. The first case study reveals
that overlooking long memory when calibrating and evaluating an index-based
longevity hedge would lead to an overly optimistic estimate of the effectiveness of
the hedge. The second case study points to the conclusion that compared to a
variance-minimizing hedge, a delta-neutral hedge is more robust than a
variance-minimizing hedge relative to the inclusion/exclusion of long memory in
mortality differentials, because its hedge ratio has negligible dependence on the
volatility implied by the processes for the population-specific period effects.

We acknowledge that certain features of mortality dynamics are not considered in
this paper. For instance, {Kt} and/or {k(i)t } for some i [ P in the LL model may
exhibit conditional heteroskedasticity [Zhou and Li (2020)], a feature that can be
captured by generalized autoregressive conditional heteroskedasticity (GARCH)
processes. By utilizing a combination of GARCH and AFRIMA processes, we may
study in future research the interaction between long memory and conditional
heteroskedasticity, as well as its impact on index-based longevity hedges.
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