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Abstract

We prove that two quiver operator algebras can be isometrically isomorphic only if the quivers (= directed
graphs) are isomorphic. We also show how the graph can be recovered from certain representations of
the algebra.
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1. Introduction

A quiver is a directed graph with n vertices {1, 2 , . . . , n) and Q arrows from j to /.
Here Q is a non negative integer (or possibly oo if the graph is infinite). Let A be
the C*-direct sum of n copies of C indexed by the vertices. For a finite graph we shall
view A as the algebra Dn of all diagonal n x n matrices.

As we explain in the next section, one can associate with the quiver a correspon-
dence E(C) over A and this correspondence gives rise to a (non selfadjoint) operator
algebra, denoted Sf+(C), that is referred to as the quiver algebra. Another algebra
associated with the quiver is //°°(C), the ui*-closure of &+(C). (Here C is the n x n
matrix {Q} associated with the quiver). In fact, ^+(C) is the tensor algebra asso-
ciated with the correspondence E{C). (See [12] for more about tensor algebras and
their relation to Cuntz-Pimsner algebras).

If C is the 1 x 1 matrix whose entry is n, we have E(C) = C and the quiver
algebra ^+(C) is the non commutative disc algebra srfn introduced and studied by
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Popescu ([14] and [15]). The algebra H°°(C) in this case was studied by Popescu
([14]) who denoted it Fn°° and by Davidson and Pitts ([6]) who wrote -£fn for it and
referred to it as a free semigroup algebra. We shall use the notation $/n and &n for
these special quiver algebras. For more general (countable) graphs the algebra that
we write as H°°(C) was recently studied by Kribs and Power ([8]). They denoted it
-£fG where G is the graph (= quiver) and called it a free semigroupoid algebra.

In [15] Popescu proved that, if n ^ m then the algebras &/„ and &/m are not
isomorphic. One can also show that, in this case, there is no isomorphism from _Sfn
onto Jfm preserving the weak topologies (that can be deduced from [6, Theorem 2.3]).
For the algebras &+(C) and H°°{C) it is shown in [8, Corollary 10.5 and Theorem 10.1]
that, if the graphs are not isomorphic then the algebras cannot be unitarily equivalent.
(With respect to 'regular representations' of the algebras).

The purpose of this note is to relax the condition of unitarily equivalent and replace
it with isometrically isomorphic (for <^(C)) and isometrically isomorphic via a
w*-w*-homeomorphism (for H°°(C)). This is proved in Theorem 3.7 which is the
main result. Moreover, we show how to 'read' the quiver (that is, the numbers Q )
from the characters and certain representations of the algebra (justifying the title of
this paper).

All the graphs in this paper will be assumed to be countable. To simplify the
arguments we prove the main result for graphs with finitely many vertices (that is,
n < oo) but one can extend the arguments (with some care) to general countable
graphs.

The C*-analogue of quiver algebras is referred to as graph C*-algebras and these
have been studied extensively starting with the work of Cuntz and Krieger [5]. (See
also [4,7,13,9] and others). It is not true that, if two graph C*-algebras are isomorphic,
then the graphs are isomorphic. Somehow the non selfadjoint algebra preserves all
the data while the C*-algebra 'forgets' some. A similar phenomenon was observed
by Arveson for algebras associated with dynamical systems ([2]).

2. Preliminaries

We begin by recalling the notion of a ^'-correspondence. For the general theory
of Hilbert C-modules which we use, we will follow [10]. In particular, a Hilbert
C*-module will be a right Hilbert C*-module.

DEFINITION 2.1. Let A be a von Neumann algebra and let £ be a (right) Hilbert
C*-module over A. Then E is called a Hilbert W*-module over A in case it is self dual
(that is, every continuous A -module map from E to A is implemented by an element
of E). It is called a W*-correspondence over A if it is also endowed with the structure
of a left A -module via a normal *-homomorphism <p : A -*• _£?(£). (Here JiC(E) is
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the algebra of all bounded, adjointable, module maps on E).

Given a W*-correspondence over A, we denote the A-valued inner product on E
by (•, •). The full Fock space over E will be denoted by &{E), so

= A © E 0 £®2 0 • • • .

(The tensor products here are internal tensor products, see [10]). The space ()
is evidently a Hilbert ^-correspondence over A with left action (p^ given by the
formula <Poc(a) — diag(a, <p(a), <p<2)(a),...), where

For £ e E, we write T$ for the creation operator on

Then 7̂  is a continuous, adjointable operator in S£{^(E)). The norm closed subal-
gebra of J£{&{E)) generated by all the T$'s and <Poo(A) is called the tensor algebra
over E and is denoted &+(E) ([12]). Since &(E) is a Hilbert W*-module, it is
known that -Sf(^"(£)) is a von Neumann algebra. We can now close &+{E) in the
u;*-topology. This u>*-closed algebra will be denoted H°°(E) and will be referred to
as the weak tensor algebra of E.

We will be interested in a certain class of W-correspondences. First, let the algebra
A be the algebra Dn of all diagonal n x n (complex) matrices (if n = oo let A — 1^).
For a fixed n let C be a fixed n x n matrix with entries in Z+ U {oo}. For each
1 < i,j < n, let E(C)jj be a (complex) Cy-dimensional Hilbert space. (We will
usually write it as Cc«, where C00 is, of course, l2 and C° will be understood as {0}.)
The space E = E(C) is the vector space of all n x n matrices £ with the property
that its i',7 entry, £,,, is a vector in £(C)y. (If n = oo, we shall also require that
suPy 5Z"i II£« II2 < °° holds.) This space can be viewed as an A-A bimodule via the
formulae:

where D = diag(c?i, d2, •..) lies in A. Also, E(C) has an A-valued inner product
defined by the formula ((£, r]))j = $2L i^v ' ^i/)- (Note that, since the A-valued inner
product on E(C) is linear in the second term, we shall use this convention also for the
inner products of the Hilbert spaces £(C)y.)

This makes E(C) a W*-correspondence over A. Given E(C) as above, we shall
write 5V(C) for &+(E(Q) and H°°(C) for H°°(E(C)). Note that, when C is the
1 x 1 matrix whose entry is «, we can write E{C) = C". In this case the algebra
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is the algebra s/n studied by Popescu in [14] and in [15], and the algebra H°°{C) is
the algebra S£n studied by Davidson and Pitts ([6]) and by Popescu in [14]. (Popescu
denoted it by F%°.) For a general matrix C, the algebra H°°(C) was studied recently
by Kribs and Power ([8]). They called it a free semigroupoid algebra and denoted it
by _£fG where G is the (countable) graph associated with C. They also studied norm
closed algebras srfG ([8, Corollary 10.5]). These are tensor algebras ^+{E{C)) but, if
n = oo, one has to define the correspondence E(C) as a C*-correspondence over the
C*-algebra c (or c0), not over /,*,.

The representation theory for the tensor algebras was worked out in [12]. We now
describe some of the basic results.

DEFINITION 2.2. Let £ be a W*-correspondence over A and let H be a Hilbert
space.

(1) A covariant representation of E on H is a pair (7\ a), where

(i) a is a representation of A in B(H);

(ii) T : E —*• B(H) is a linear contraction;
(iii) 7 is a bimodule map in the sense that T(<p(a)^b) = o{a)T{%)o{b) for£ e E,

a,b e A.

(2) We say that the covariant representation is completely contractive if T is.
(3) We say that the covariant representation is normal if a is a normal representation

and if T is continuous with respect to the cr-topology of [3] on E and the cr-weak
topology on B{H).
(4) We say that the covariant representation is isometric if, for all £, r] in E,

Given a covariant representation (T, a) of E on H, we can define a linear map f
from the algebraic tensor product E Qa H to H defined by 7"(£ ® h) = T(%)h.

We have the following (see [12, Lemma 3.5 and Theorem 3.10] for the proof):

PROPOSITION 2.3. (1) If p is a contractive representation of &+(E) on H then,
setting a(a) = p((p<x,(a)) far a e A and T(%) = p(T$) for % e E, the pair (T, a) is
a covariant representation of E.
(2) The map T defined above is bounded if and only if T is completely bounded.

In fact, || T\\ — || T\\,.b. So that T is a contraction if and only if(T, o) is completely
contractive. In this case we view T as a map on the completion E <8>w H.
(3) If(T, a) is completely contractive then the converse to part (1) also holds, that

is, there is a completely contractive representation p = T x a of ^+(E) on H such
that a {a) = p{(poo{a)) for a e A and T(£) = p{T^)for^ 6 E.

In addition to the map f we also define the maps fk : E®k ® H -*• H by

(£i <g> • • • <8> &•) = 7*(£i) • • • T{$k)h and then we have fk+x = f(IE ® f k ) .
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Given a representation jr0 of A on a Hilbert space Ho we can form the Hilbert space
&(E) ®^0//0 (where the inner product is given by (X <g> h, Y®g) = {h,no({X, Y))g)
for X, Y in J?(E) and ft, g € Ho) and define an isometric covariant representation
(V, n) of E on this Hilbert space by V(£) = T^ <g> /Ho and n(a) = <Poo(a) ® /Wo. Such
a representation is said to be induced.

The resulting representation V x n of S?+(E) is, in fact, the restriction to S+(E)
of the representation induced by 7r0 of ££(^(E)) on this Hilbert space given by the
formula

nf (E\T) = T®IHo, Te &{&{E)).

This shows that, when (V, n) is a normal induced representation of E, the repre-
sentation V x n can be extended to a u>*-continuous representation of f/°°(E). In
[11, Proposition 2.8] it is shown that, if (T, a) is a normal completely contractive
representation of E satisfying fk fj* -> 0 in the strong operator topology, then the
minimal isometric dilation (V, n) of (T, a) is an induced representation (and, thus,
the associated representation V x n of ^+(E) can be extended to a io*-continuous
representation of H°° (£)). Since T x a is then a compression of V x n, if follows that
we can also extend this representation to a w*-continuous representation of H°°(E).
We summarize this discussion as follows.

LEMMA 2.4. If(T,cr) is a normal completely contractive covariant representation
of E such that % T£ —> 0 in the strong operator topology, then the representation
T x a can be extended to a w*-continuous representation of H°°(E).

Restricting to the case E = C (and H°°(E) = Jz?fl), we have the following.

LEMMA 2.5. Suppose V = (VI, V2, . . . , Vn) is an n-tuple of isometries in B(H)
(where we allow n = oo) whose ranges are orthogonal and the sum of the ranges is
not all of H. Let p be the representation o / ^ . ( C ) (= &/„) defined by V. Then the
following hold:

(1) There is a Hilbert space K and a unitary operator v : H -> J^"(C") ® K such
that v VjV* = Tei <g> lK (•= nfiC \Te.)), where {et} is the standard orthonormal basis
ofC" and n0 is the obvious representation of A = C on K.

(2) vp{-)v* is the restriction ofnf^ to &+{Cn) (= &/„).
(3) p can be extended to a completely isometric isomorphism of S£n into B(H) that

is a w*-w*-homeomorphism onto its image.

PROOF. In [14], n-tuples as above were called orthogonal shifts and part (1) follows
from Theorem 1.2 there. One can also deduce it from the above discussion since
(V, n) is an induced representation of E = C (where n is the obvious representation
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of C on H). Part (2) follows immediately from (1) and for part (3) note that the
representation nf(C ' is the representation that maps 5 € B(^(<C")) to 5 <8> IK in
B(^(C) ® K). Since this representation is completely isometric and a w*-w*-
homeomorphism of the von Neumann algebra B(J?(C)) onto its image, the same
holds for the restriction to JCn. •

3. Isomorphic quiver algebras

In this section we prove the main results. We now fix n < oo and a n n x n matrix
C with entries in Z+ U {oo}. Let A be the C*-algebra Dn of all diagonal n x n matrices
and let E(C) be the A-A-correspondence defined by C.

We start by identifying the characters of J+(C) and of //°°(C). In order to do it
we shall first embed stfCii in ^ . ( C ) and J5fc.. in H°°(C).

Write n for the usual representation of A on C and write H for C . Let K(C)
denote the representation space of the representation jt^^E^\ induced by n, that is,

For every 1 < / < n with C,, ^ 0, write P, for the projection ^oo(e,) <g> IH in B{K{C))
and Kj(C) for its range. Hence

For every 1 < / < n, let [e^ : I <j < C,,} be an orthonormal basis for £(C),, and
view these vectors as elements of E(C). For 1 < j < C,,, let Vj be the operator on
Kt(O defined by

(Note that n^(E(O)(e<,Ji
)) vanishes on the orthogonal complement of Kt(C).) We get

C, isometries on K,(C) satisfying the conditions of Lemma 2.5. Letting * , be the
map p of that lemma (with H = Kt(C)) composed with the embedding of B(Kt{C))
into B(K(C)) (by defining the operator to be zero on the orthogonal complement of
Ki(Q), we get the following. (Note that H°°(C) can be identified with its image

PROPOSITION 3.1. For every 1 < i < n with Ci, ^ 0, there is a (non unital)
completely isometric isomorphism vl*, ofS£cti into H°°(C) that is a w*-homeomorphism
{onto its image) and that restricts to a completely isometric isomorphism ofsi/c,, into

(denoted also *,-).
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A character of !?+(E(C)) is a one dimensional (completely) contractive represen-
tation and, as such, it is given by a completely contractive covariant representation
(T, r) of the W*-correspondence E(C). Here r is a one dimensional representation
of A = Dn and, thus, is <5, for some 1 < i < n (where 5, of a diagonal matrix
D = diag(di, d2,... , dn) is dt). The map T is a contractive linear functional on E(C)
satisfying T(D^D2) = 8((Di)T(t-)8j(D2). Hence it is in fact a contractive linear
functional on the C,,-dimensional Hilbert space E(C)ii. If C,, = 0 then 7 = 0.
Otherwise, identifying £(C),, with Cc", we associate with every such character a pair
(i, k) where 1 < i < n and k is in the closed unit ball BCjj of Cc". If this character can
be extended to a w*-continuous character of //°°(C) then, using the map *I>, of Propo-
sition 3.1, it induces a uAcontinuous character on -£?c,,. It follows from Theorem 2.3
of [6] that k lies in the open unit ball. We summarize the discussion in the following
theorem. To simplify the statement, we shall assume that, whenever C,, = 0, the
notation Bc,, (or its closure) will be interpreted as {0}. When C,, = oo the balls BCii

and Bq. are the balls of I2 equipped with the weak topology.

THEOREM 3.2. Let M(^+(C)) be the set of all characters of the quiver algebra
^+(C) equipped with the w*-topology and let M(H°°(C)) be the set of all w*-
continuous characters of H°°(C) (also with the w*-topology).

Then we have the following homeomorphisms:

(1) M(^+(Q) = UKi, k):keBc~,,l<i<n}.

(2) M(H°°(Q) = UK». k):ke BCll, 1 < i < n).

(Each set on the right hand side is a disjoint union of n closed and open sets.) The
character, <p^>,), associated with (i, k) is equal 5, on A and on T%, for £ 6 E(C), it is
defined by <Pu,x)(T^) = (k, £,-,•).

PROOF. The identifications in both (1) and (2) were shown above. The fact that
these are homeomorphisms is easy to check. •

In the following we shall also interpret Cm and Bm as {0} if m = 0 . Now fix
1 < i,j < n , / ^ ;' and A = (ki,kj) e EQl x MCj, and define G(C,k,i,j)
(respectively, G0(C, k, i, j)) to be the set of all contractive representations p of ^+(C)
(respectively, all contractive ui*-continuous representations of H°°(C)) on the space
C2 satisfying:

(Gl) For DeA, p(D) = diag(fi,-(D), 5, (D)).
(G2) The image of p is contained in T2, the upper triangular 2 x 2 matrices.
(G3) For every 5 in the algebra, (p(S))n = (Pa^S) and (p(S))22 = <P(j,kt)(S).

We now present examples of representations in G(C,k, i,j). Write a for the
representation of A on C2 given by <?(D) = diag(<5,(D), <$, (D)). For y in Cc», define
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the map TY : E{C) —> T2 by

•» Ha) (Y^V

o <v*
Then the pair (Ty, a) satisfies Ty(D^D2) = a(D{)Ty(%)a(D2) for all Du D2 in A
and£ in E(C).

Before we proceed to show that this construction gives us a representation in
G{C, k, i, j) we observe that the converse holds.

LEMMA 3.3. Let p be a representation in G(C, k, i,j)andletT(^)bep(T^)(inT2).
Then there is some y in Cc« with \\y\\2 -f ||X,||2 < 1 such that T = Ty.

PROOF. Since p e G(C,k, ij), it follows that T($)u = ^(a,)(7?) = (A.,-, ?,-,•),
= frj,$jj) and, for D € A, piy^D)) = a{D). Hence T(D^D2) =

o{D\)T(%)o(D2) (for D, in A) and it follows that T(%)12 depends only on £,,. Since
this dependence is clearly linear and T is bounded, we find that r(£)1 2 is (y, ^ ) for
some y e Cc*. Thus T = 7;. To show that ||y||2 + ||A.,||2 < 1 let ? e E(Q be
defined by : £,, = A.,-/||X,-||, £y = y / | |y | | and | ; p = 0 otherwise. (The case where
either y or kt is zero can be handled easily.)

Then (£, £) is the diagonal matrix whose ith diagonal entry is ||£,,||2 = 1, they th
diagonal entry is ||£y ||2 = 1 and all other entries equal zero.

Hence ||r4| | = U\\ = 1 and, consequently, | | r y(?) | | = ||p(7^)|| < 1. But

T h u s l > | |7;(^)| |2 = ||A,||2 + ||y||2. D

Now recall that the pair (Ty, a) defines a map fy from the algebraic tensor product
E(C) O a C2 to C2 satisfying fy(% <g> h) = Ty(%)h which is bounded (respectively,
contractive) if and only if Ty is completely bounded (respectively, completely con-
tractive). If 7j, is contractive, then (using Proposition 2.3) the pair (Ty,a) defines a
completely contractive representation Ty x a of 3?+{C).

The proof of the following lemma is a straightforward computation and is omitted.

LEMMA 3.4. Let Ty be as above {for some y 6 Cc'') and fix £ in E(C). Then, for
k = (ku k2)' andh = (huh2)' in C2 we have

(2) t*k = r) <g> ( ] ) , where r) is the element of E(C) with r?,, = kik,, rjy = k\y,
r)jj = k2kj and all other entries are 0.
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, I I 2 + Ilyll2 o
o iix.-ii0) TYT; =

In part (2) of the following corollary we present the general form of the represen-
tations in G(C, k, i, j ) .

COROLLARY 3.5. (1) || fy || < 1 (that is, it defines a completely contractive repre-
sentation py = Ty x CT of the algebra &+(C)) if and only if\\y\\2 < 1 - ||^,||2.
(2) The representations in G(C, k, i,j) are all completely contractive and of the

form pY = Tyxa {for some y in Cc» with \\y\\2 < 1 - 1|A.,1|2).
(3) Wien||y| |2 < 1 —1| k,||2, we have \\fy,k\\ -*• 0- Hence tY defines a w* -continuous

representation ofH°°(C). Therefore, G(C, k, i,j) = G0(C, k, i,j).

PROOF. Parts (1) and (2) follow from Lemma 3.4 and Lemma 3.3. For part (3),
fix y with ||y||2 < 1 - ||A.,||2 and write T for Ty. Recall that fk is a map from
E®k ® C2 to C2 defined recursively by 7i = f and fk+l - f(IE <g> %). Hence
ft+i fk*+l = f (/ ® tt*)f*. Thus, if fkf* = (a

0 I) then, for g = (gu giY in C2,

where rj,, = gikh riy = g2y, T\JJ = gikj and r\lp — 0 otherwise. Hence

A.,112 +
g2b\\kj

0 b\\k

and

0 \
kj\\2)

0

Write qi = ||X, ||2 and t = \\y\\2- Then the computation above shows that

||T||2 = maxto, + t, q2], \\f2\\
2 = ma\{q2 + tqx + tq2, q2}

and, in general,

f f + t { q \ - x + q \ - 2 q 2 + ••• + qk
2~

x), qk
2).

If q = max{gi, q2) then q < 1 and ||7i||2 < qk + ktqk~x -»• 0. Using Lemma 2.4
we see that this implies that the representation pY can be extended to a ui*-continuous
representation of H°°(C). •
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We now equip the set G(C, X, i,j) with the topology of pointwise convergence. It
is then homeomorphic to a closed subset of the product space

Y[[V(T2):Sef+(Q,\\S\\<l}

(equipped with the product topology), where B(T2) is the closed unit ball of T2.
This shows that, in this topology, G(C,k, i,j) is a compact set. For every rj in

where r\ = (° g). If pYu ->• py in G(C, i, i,j) then, for every r\ e £(C)y, {ya, JJ> ->•
(y, 17), that is, ya -»• y in the weak topology (of E(C)y). Since the map py h-> y is
a bijection and the spaces are compact, we conclude that it is a homeomorphism. We
summarize it in the following proposition.

PROPOSITION 3.6. The set G(C, X, i.j), equipped with the topology of pointwise
convergence, is homeomorphic to a closed ball (of positive radius) in CC(J (equipped
with the weak topology).

THEOREM 3.7. Let C be in Mn(l+ U {oo}) and C be in Mm(l+ U {oo}).

(1) If the algebras 5^.(C) and ^+(C) are isometrically isomorphic then n = m and

there is a permutation x e Sn such that Q = CT(i)T(j)forall i,j.

(2) If the algebras H°°(C) and H°°(C) are isometrically isomorphic via an iso-

morphism that is w*-bicontinuous then n = m and there is a permutation r e S , such

that C'tj = Crii)T(j)forall i,j.

PROOF. We start by proving (1). Write A : &+(C) -> S^+(C) for the isometric
isomorphism. The selfadjoint part of ^+ (C), ^+(C) D ^+(C)*, is equal to (Poc(A)
which is isomorphic to Dn. Since A is an isometry, it maps the selfadjoint part of
3T+ (C) onto the selfadjoint part of ^+(C) ([1]), thus inducing an isomorphism of Dn

onto Dm. This shows that n — m and there is some permutation x e Sn such that,
whenever D is in A,

A(<Poo(D)) = ^ ( r

where r< n )(diag(^i, . . . , dn)) = diag(r(d|), . . . , x(dn)). Fix a character, q> = <p(a) in
Then <p o A is in M(£T+(C)). Restricted to A, the character <p = <p(iM

vanishes on diagonal matrices whose /th entry is 0. Thus <p o A vanishes on these
diagonal matrices whose T""'(/)th entry is zero. We can write

<p«.x) o A = ¥>( I -!(o,A')-
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In fact, it is clear from Theorem 3.2 (part (1)) that A. i-»- A.' is a homeomorphism,
denoted 0,, from Bq. onto BCf , . Hence, for every 1 < i < n, CT(i)r0) = C,,.
Now fix i ^ j . For a representation p e G(C, 0, i,j) (where 0 = (0, 0)), p o A
is a contractive representation of 3?+ (C) whose image is contained in T2- For D =
diag(dud2, ...dn)inA,

p o A(D) = p(diag(T(d,), . . . r(dn))) = diag(ST(/)(D), ST(/)(D)).

Also, for 5 € ^+(C),

p o A(S)n = p(A(5))n = (^(1,o)(A(5)) = <P(r-<('),o,(O))(S)

and, similarly,

P O A(5)22 = ^(r-'y).9((0))(5)-

Since 0, and fy are homeomorphisms of the closed unit balls and 0 is an interior point,
0,(0) and Oj (0) are in the open unit balls. We write X = (0,(0), 0j (0)) and conclude
that p o A lies in G(C, i, fl(i), r " 1 ^ ) ) .

Since the map p *-*• p o A is a homeomorphism (with respect to the topology
of pointwise convergence) we get (using Proposition 3.6) a homeomorphism of the
closed unit ball in C0'"'"1"'"'") and the closed unit ball in C ^ . Thus

This proves part (1). The proof of part (2) is almost identical except that in the
argument showing C,, = C^(j)T(/) we use open balls (and part (2) of Theorem 3.2)
instead of closed balls. The proof for i jL j is the same due to the fact that every
representation in G(C, A, i,j) extends to a u;*-continuous representation of H°°(C)
(Corollary 3.5 (3)). •
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