
Bridging GPS Outages for Fixed-wing
Unmanned Aerial Vehicles

Wenjie Zhao1, Zhou Fang2 and Ping Li2

1 (Department of Control Science and Engineering, Zhejiang University, Hangzhou,
Zhejiang Province, China)

2 (School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang
Province, China)

(E-mail: zfang@zju.edu.cn)

This paper reports on a new navigation algorithm for fixed-wing Unmanned Aerial Vehicles
(UAVs) to bridge Global Position System (GPS) outages, based on a common navigation
system configuration. The ground velocity is obtained from wind-compensated airspeed, and
a centripetal force model is introduced to estimate the motion acceleration. Compensated by
this acceleration, the gravity vector can be extracted from the accelerometer measurement.
Finally, fusing the information of the ground velocity, magnetic heading, barometric height,
and gravity vector, the Integrated Navigation System (INS) is reconstructed, and an
Extended Kalman Filter (EKF) is used to estimate INS errors. Hardware-in-loop simulation
results show that compared with INS-only solutions, the proposed method effectively resists
long-term drift of INS errors and significantly improves the accuracy for dynamic navigation
during GPS outages.
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1. INTRODUCTION. The integrated navigation system of an Inertial
Navigation System (INS) and the Global Positioning System (GPS) has been
extensively used in Unmanned Aerial Vehicles (UAVs). The consistent stability of
GPS can be used to prevent long-term drift of INS. On the other hand, the INS has
excellent high-frequency properties, which naturally compensate for the low refresh
rate of GPS. The INS solution and GPS data can be fused by an Extended
Kalman Filter (EKF). However, GPS is a line-of-sight system that can be blocked
in a challenging environment. When GPS signal outages occur, the EKF works
in prediction mode, and the navigation accuracy decreases gradually due to the
inaccurate system error model. To improve the prediction mode of EKF, many
bridging methods have been proposed.
Considering the strong nonlinear relationship between the INS solution and its

errors, which can be approached by multi-layer perceptron Neural Networks (NN),
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Artificial Intelligence (AI) has been applied extensively to bridge GPS outages.
Using INS data as input and the difference between GPS and INS as output, the feed-
forward NN can be trained offline and INS errors can be provided and compensated
during GPS outages (Chiang et al., 2003). Subsequently, the introduction of the
wavelet multi-resolution analysis into NN improved its performance (Noureldin
et al., 2004). Hopfield NN is used to estimate INS errors (Shi et al., 2005), and
Radial Basis Function (RBF) NN is applied later to improve the INS-only solution
(Semeniuk and Noureldin, 2006). Related works were subsequently researched
(Chiang et al., 2006; Chiang et al., 2008; Pang and Liu, 2009; Lee et al., 2012).
However, all these recurrent NN require very large memory capacity and much

processing time for retrieving the stored learning parameters. To improve the real-
time performance, an auxiliary model based on the Adaptive Neuro-Fuzzy Inference
System (ANFIS) was applied, with an improvement in the positioning accuracy
(Abd Elhamid et al., 2007). Further related works have been carried out for
optimisation (Hasan et al., 2011). Nevertheless, the immature AI algorithm is still at
an early stage of development, so that difficulties of online training and optimisation
of parameters limit its implementation in real time control systems.
Considering that the behaviour of dynamic systems is usually frequency dependent

in a specific frequency band, a frequency-domain method was proposed (El-Diasty
and Pagiatakis, 2010). The Least Squares Frequency Transform (LSFT) was used to
transform data series from time domain to frequency domain, and then inverse
LSFT were used to transform inversely to obtain the impulse response. Their
experiment results showed that the frequency-dependent INS/GPS response model
is superior to the NN model for 2D velocities and positions during GPS outages.
However, the impulse response model needed to be accurately developed using
GPS information, and the convergence property was not strictly proved.
Contrasting with algorithm innovation ideas, approaches utilising sensor redun-

dancy and reconfiguration have been proposed in recent years. Lasers, infrared
sensors, and radio equipment are introduced in navigation systems during
GPS outages (Achtelik et al., 2009; Soloveieva and Rutkowski, 2009; Kukshya
et al., 2005), which detect the range and bearing relative to specified points. These
kinds of integration schemes increase the complexity of navigation systems, and some
of them also rely on external signals. For fixed-wing UAVs with common navigation
systems, it is necessary to apply more practical and effective methods to bridge
GPS outages.
In this paper, we propose a new navigation algorithm for bridging GPS outages

based on the common INS/GPS integrated navigation system that is equipped with
barometer and air speedometer. The approximate wind model is developed, including
the constant component plus additional wind turbulences. Wind states can be
estimated so long as the GPS satellite signal remains unobstructed. During GPS
outages, we update the angle of attack using its dynamic model, and then use the result
to generate the airspeed vector. Corrected by the wind speed estimate, the ground
speed is obtained. To compensate the accelerometer measurement, a centripetal force
model is built, motion acceleration is derived, and then the gravity vector is estimated.
This inertial direction is then used as the attitude observer. The compensated ground
speed and gravity vector together with barometric height measurements provide
velocity, attitude and altitude observations during GPS outages, which enable the
reconstruction of a new integrated navigation system. Finally an EKF is applied
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to estimate the INS errors. The main contribution of this paper is that we develop
a new navigation algorithm for bridging GPS outages based on the reconstruction
of the low-cost integrated navigation system that is conventionally used for fixed-wing
UAVs.
Following this introduction, we develop the wind model to estimate the wind

velocity in Section 2. Section 3 describes observers for attitude, heading, velocity, and
altitude during GPS outages. The navigation system is reconstructed and INS errors
are estimated in Section 4. Finally, the real-time hardware-in-loop simulations for
our fixed-wing UAV are implemented, and with comparison to INS/GPS integrated
navigation system, assessment of the algorithm is given in Section 5. Conclusions are
provided in Section 6.

2. THE WIND MODEL. During GPS outages, no velocity and position
observations are provided. Common fixed-wing UAVs are usually equipped with a
barometer and air speedometer. The airspeed that is obtained from the air speedo-
meter can be considered as the approximation of ground speed in gentle wind, and
cause negligible navigation errors. However, in strong wind, errors due to this
approximation are too large to be ignored. To limit velocity errors, airspeed should be
transformed into ground speed. Thus, wind speed should be estimated and
compensated.
The typical wind consists of constant wind, gust and turbulent flow. In a certain

period of time, the constant wind within a certain area can be considered invariant.
Gust, which is time-variant and is affected by its previous status, is approximately
regarded as an auto-correlated process. Considering its randomness, the turbulent
flow is thus modelled as noise in the sensor measurement. Thus, we divide the wind
velocity into three parts in the navigation frame (n): the constant part vnc, a simplified
one-order interrelated stochastic process vnr , and the wind turbulence is considered
as white noise Δg. We assume that vnr varies one-order interrelated with its current
state and a time constant Ta. Then, the dynamic characteristic is described as:

vnwind = vnc + vnr + Δg (1)
v̇nc = 0 (2)

v̇nr = −vnr/Ta + Δr (3)
Where Δr is the white noise that drives the one-order interrelated stochastic process.
Six-dimensional states are required to build the wind speed propagation equations,

including three for vnc and three for vnr :

vw = vncT vnrT
� �T (4)

Considering Equations (2)–(4), the approximate dynamic model of wind velocity vw
is deduced:

v̇w =
03×3 03×3

03×3 diag − 1
Ta

,− 1
Ta

,− 1
Ta

� �2
4

3
5vw + 03×3

I3×3

� �
Δr[3×1] (5)

When the on board GPS receiver works normally, position and velocity can be
obtained. The EKF can effectively fuse INS solutions and GPS data, and then high
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quality estimations for attitude, velocity, and position are provided (Fu et al., 2003).
Thus, the wind speed is expressed by the equation:

v̂nwind = v̂n − Cn
bv̂

b
airspeed (6)

where v̂n is the ground velocity of the UAV that is expressed in the navigation
frame, v̂bairspeed is the airspeed of the UAV expressed in the body-fixed frame, and Cb

n is
the direction cosine matrix from the body-fixed frame to the navigation-frame.
The observation model can be deduced from Equations (1) and (4)

v̂nwind = I 3×3 I3×3
� �

vw + I 3×3Δg[3×1] (7)
If only GPS data is available, the system model for wind velocity is established,

as shown in Equations (5) and (7). Then, the constant wind and its covariance can be
estimated through an EKF. Moreover, the barometric height is calibrated by the GPS
altitude solution. Once GPS outages occur, if the constant component of wind speed
does not vary to a large degree, the wind estimation can be used to compensate the
raw measurement of the air speedometer, and the calibrated barometric height is a
substitute for GPS altitude. All of the compensated observations will be applied to
reconstruct the measurement equation in Section 4. Even if the assumption about
the constant wind is challenged, or the turbulence temporarily deteriorates to some
extent, which actually frequently occurs, the closed-loop navigation is not as greatly
influenced as the wind speed estimation itself. There are two reasons. First, although
the instantaneous wind speed changes frequently, its covariance rarely changes rapidly
so there are no marked deviations from the well-estimated value. Second, depending
on the state and noise covariance matrices, the filter itself has natural low-pass
properties, and near-optimal estimations are obtained. Thus, the naturally low-pass
EKF is somewhat robust to resist disturbances even though wind velocity is not ideally
maintained.

3. OBSERVATION OF ATTITUDE, HEADING, AND VELOCITY. In this
section, a newmethod to observe attitude, heading, and velocity during GPS outages is
presented. Airspeed is corrected by the estimation of angle of attack, compensated by
the wind speed, and then used to derive the motion acceleration. Thus, gravitational
direction is extracted, and attitude is observed after the motion acceleration is
subtracted from the raw measurement of the accelerometer. Heading is then derived
from magnetic field strength that is measured by the Inertial Measurement Unit
(IMU). Once Eulerian angles are obtained, the corrected ground speed can be
transformed into the navigational frame and provide the velocity observer.

3.1. Attitude observer. The gravity vector is decomposed into the body-fixed
frame according to the attitude of the carrier

gb =
gbx
gby
gbz

2
64

3
75 = Cb

ng
n =

−g sin θ
g cos θ sin ϕ
g cos θ cos ϕ

2
4

3
5 (8)

where x, y and z represent the three axes of the body-fixed frame, which point forward,
rightward and downward respectively. Cn

b is the direction cosine matrix from the
navigation-frame to the body-fixed frame, ϕ and θ are roll and pitch angles, gb and gn
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are gravity vectors expressed in body-fixed frame and navigation frame respectively,
and g is the magnitude of gravity vector. Considering the formulas above, roll and
pitch is obtained:

ϕ̂g =

π + tan−1(gby/gbz ), (gby . 0, gbz , 0)
π/2, (gby . 0, gbz = 0)
tan−1(gby/gbz ), (gbz . 0)
−π/2, (gby , 0, gbz = 0)
−π + tan−1(gby/gbz ), (gby , 0, gbz , 0)

8>>>>>>><
>>>>>>>:

(9)

θ̂g = − sin−1 gbx/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gbx)2 + (gby)2 + (gbz )2

q� �
(10)

Typical accelerometers measure the sum of the motion acceleration ab and the
gravity acceleration gb, which are both expressed in the body-fixed frame b. Normally,
these two hybrid components are completely mixed, and it is impossible to separate
one part from another directly. Thus, the motion acceleration has to be obtained using
other special methods, and then compensated from the raw output of accelerometers
( f b). Gravity acceleration then can be extracted by:

gb = ab − f b (11)
Once the gravity vector is obtained, attitude can be calculated according to

Equations (9) and (10). As the extracted gravity acceleration has no long-term drift,
the calculated attitude has excellent low-frequency characteristics. However, the
output of the accelerometer is always highly corrupted by carrier vibration, which
reduces the measurement accuracy and makes the high-frequency component useless.
In contrast, angular data from the gyro has good high-frequency characteristics and
is compensative to the accelerometer. Thus, attitude calculated from the gravity vector
is regarded as the attitude observation, which is highly valuable for navigation
reconstruction.

3.2. Motion acceleration. For a steady, straight flying fixed-wing UAV, motion
acceleration can be ignored. However, in manoeuvring flights, the motion acceleration
has to be compensated so as to ensure the estimation accuracy of the gravity vector. To
build the dynamic model for acceleration, the aircraft is assumed to keep its velocity
and height constant. In a flat flight at a constant velocity, the non-zero component of
the acceleration experienced by the vehicle is the centripetal acceleration:

âb = ω̂b × v̂b (12)
v̂b = vbairspeed + Cb

nv
n
wind (13)

where ω̂b is the angular rate measurement from the IMU. v̂b is the velocity of the
vehicle with respect to the earth expressed in the body-fixed frame, which is not
measurable during GPS outages. However, the airspeed can be obtained from the air
speedometer, which can be transformed into ground speed if corrected by the angle
of attack and compensated for the wind speed that is estimated in Section 2. It should
be noted that if the assumption about the constant velocity and height is not
stringently met, we can use the derivative of airspeed and barometric height to revise
Equation (12), and noises can be filtered out through a low-pass filter.
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3.3. Angle-of-attack compensation. The output of an air speedometer is related
to the angle of attack and angle of sideslip. For a fixed-wing aircraft, the angle of
sideslip is usually very little, which can be ignored with very little cost to the quality
of the motion acceleration estimation (Mahony et al., 2011). In contrast, when an
aircraft is hovering, angle of attack increases to provide the additional centripetal
acceleration and maintain the altitude in the meanwhile. In aerobatic manoeuvring,
the angle reaches too extreme a value (Stevens and Lewis, 2003), which should be
estimated and compensated to ensure the airspeed precision. Modulus of airspeed can
be obtained from calibrated dynamic pressure, but airspeed needs to be expressed
in the body-fixed frame as follows, so as to model the centrifugal acceleration:

vbairspeed = vbairspeed
			 			 cos α 0 sin α

� �T (14)

where α is the angle of attack. The dynamic model for α can be described as

α̇ = −c1 vbairspeed
			 			− c2α+ c3θ̇ − c4δe (15)

where c1, c2, c3, and c4 are determined by the aerodynamic characteristic of the
aircraft, θ is the pitch angle, and δe is the elevator deflection that can be obtained
from the servo. Angles in the equation are expressed in radians, and velocities in m/s.
All these parameters are obtained through wind tunnel experiment. Since our fixed-
wing UAV is a strongly nonlinear system, we linearize the aerodynamic model on the
basis of the wind tunnel experiment result at several Mach points (for example,
0·2, 0·3, 0·4, 0·5, 0·6, 0·7, 0·8) and use quadratic interpolation method between
Mach numbers. If the Mach points are selected properly, the error caused by the
linearization can be ignored with very little cost to the precision. Parameters at
0·5 Mach are given in Table 1.
Angle of attack is derived from the dynamic model, which is expressed in

Equation (15), and then the airspeed vector can be calculated via Equation (14). As
discussed above, ground speed is obtained from Equation (13), motion acceleration is
estimated according to Equation (12), and then gravity acceleration is obtained
from Equation (11). Finally, by solving Equations (9) and (10), roll and pitch can be
deduced from the gravity vector.

3.4. Performance of attitude observer. Although mixed with high frequency
noises, the gravity vector has excellent static performance and long-term accuracy. In
contrast, an IMU provides better high-frequency information but drifts gradually.
Thus, the attitude observation based on gravity vector can efficiently estimate
the long-term drift of the INS. Note that the attitude estimation is passed directly
into the EKF, which will be discussed in Section 4, and is not low-pass pre-filtered.
Actually, the natural low-pass property of the well-tuned EKF effectively filters

Table 1. Aerodynamic parameter for α.

Parameter Value

c1 0·0006
c2 3·5175
c3 0·9873
c4 0·2494
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out the high-frequency noise of the attitude observation and the low-frequency
INS drift.
Ideally, if an aircraft keeps flying at a specified height or at a constant vertical speed,

the true gravity vector and the motion acceleration should be orthogonal. However,
noises are always mixed, which cause the undesirable deviation. Fortunately,
this deviation represents the gravity estimate error to some extent. Thus, the error
covariance of the attitude observation can be represented by the offset of the
orthogonality. Consequently, we introduce a simple assessment of the error covariance
as follows:

Rϕ =
Rc (ϕ 4 ϕc)

γ · cos−1 kg, âl
g
		 		 · â| |

 !2

·I 2×2 (ϕ . ϕc)

8><
>: (16)

where Rc is a two-order constant covariance square matrix on the premise that the
roll angle is smaller than a certain value Φc, kg,al is the inner product of vectors g
and a, γ is the empirical coefficient related to the characteristic of the IMU and the
aircraft. The two-order squarematrixRΦ is used in the following filtering process. If the
accelerometer is disturbed or angle of attack not accurately estimated, the matrix
trace will increase, and the attitude observation will be less referenced correspondingly.
The introduction of this adaptive element improves the anti-interference performance
of the reconstructed navigation system.

3.5. Heading and velocity observers. In addition to the triaxial angular rate and
acceleration, a typical IMU such as ADIS16405 (Analog Devices Inc., 2009) also
provides magnetic field strength that is expressed in the body-fixed frame, including
m̂b

x , m̂
b
y , and m̂b

z . The horizontal component of magnetic field, XH and YH, can be
derived according to the current attitude:

XH = m̂b
x cos θ + m̂b

y sin θ sin ϕ+ m̂b
z sin θ cos ϕ (17)

YH = m̂b
y cos ϕ− m̂b

z sin ϕ (18)

Considering Equations (17) and (18), the magnetic heading ψm0 can be deduced:

ψm0 =

arctan(−YH/XH), (XH . 0,YH ≤ 0)
π/2, (XH = 0,YH , 0)
π + arctan(−YH/XH), (XH , 0)
3π/2, (XH = 0,YH . 0)
2π + arctan(−YH/XH), (XH . 0,YH . 0)

8>>>>><
>>>>>:

(19)

With local magnetic deflection corrected, heading observation is obtained (Barczyk
et al., 2010; Barczyk and Lynch, 2011). The heading error is caused by the attitude
observation and the magnetic measurement. The former is provided by Equation (16),
and the latter is obtained from experimental studies, which is relative to the IMU
quality.
Once the wind velocity and Eulerian angles are obtained using the method discussed

above, the ground speed can be extracted, and the velocity observer is given as:

v̂n = v̂nwind + Cn
bv̂

b
airspeed (20)
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The observation error consists of the wind speed error and airspeed error. The wind
error covariance is obtained using the method discussed in Section 2 when the GPS
satellite signal is normal, assuming that the constant component of wind and its
error covariance does not vary quickly in a certain period of time during GPS outages.
To reduce the computational burden, the airspeed error is simplified to an empirical
constant squire matrix with very little cost to filtering quality.
Obtained from barometer and calibrated by the GPS altitude, the barometric height

is regarded as the altitude observation during GPS outages. The measurement error is
chosen initially in experimental studies and revised online when the GPS receiver
works effectively. To reconstruct the measurement equation, all observers discussed
in this section will be used in Section 4.

4. RECONSTRUCTION OF THE INTEGRATED NAVIGATION
SYSTEM. In this section, the integrated system model is reconstructed during
GPS outages, using observations and error covariance matrices that are introduced
in Section 3. EKF is applied to estimate INS errors, which are then used to correct
the INS solution. The nine-dimensional state variable is chosen, including three
dimensions for the platform misalignment angles, velocity errors, and position errors
respectively. Dynamic equations for attitude, velocity, and position are written
respectively as follows:

q̇ = 0 · 5q⊗ [0,ωT ]T ,
V̇

n = Cn
b f b − (2ωn

ie + ωn
en) × vn + gn,

L̇ = vn
R+ h

,

λ̇ = ve secL
R+ h

,

ḣ = −vd ,

8>>>>>>>>>><
>>>>>>>>>>:

(21)

where q is the quaternion that expresses the attitude, and ω is the angular rate. Vn is
the ground velocity expressed in the navigation frame, which can be decomposed into
vn, ve, and vd. L, λ, and h are the latitude, longitude, and altitude respectively,

ωn
ie = ωie cosL 0 −ωie sinL

� �T (22)

ωn
en =

ve
R+ h

− vn
R+ h

− ve tanL
R+ h

� �T
(23)

ωie represents the angular rate of the earth, and R is the radius of the earth. Error
propagation equations are obtained from the linearization of Equation (21):

Φ̇ = Φ× ωn
in + δωn

in − Cn
b∇b

g,

δv̇n = −Φn × f n + δvn × (2ωn
ie + ωn

en) + vn × (2δωn
ie + δωn

en) + Cn
b∇b

a,

δL̇ = δvn
R+ h

,

δλ̇ = δve
R+ h

secL+ ve
R+ h

secLtgLδL,

δḣ = −δvd,

8>>>>>>>>>><
>>>>>>>>>>:

(24)
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where Φ is the vector of misalignment angle. ωin
n is the angular rate of the navigation

frame with respect to the inertial frame, which is expressed in the navigation frame.
ωen
n is the angular rate of the navigation frame with respect to the Earth-Centred

Earth-Fixed (ECEF) frame, which is expressed in the navigation frame.∇g
b and ∇a

b are
white noise vectors of the gyro and accelerometer respectively. dωie

n and dωen
n are the

differentiations of ωie
n and ωen

n

δωn
ie = −δLωie sinL 0−δLωie cosL

� �T (25)

δωn
en =

δve
R+ h

− δh
ve

(R+ h)2

− δvn
R+ h

+ δh
vn

(R+ h)2

− δve tanL
R+ h

− δL
ve sec2 L
R+ h

+ δh
ve tanL

(R+ h)2

2
66666664

3
77777775

(26)

Thus, the system function can be expressed as:

Ẋ(t) = F(t)X(t) + G(t)W(t) (27)

X(t) = [ΦT , δvT , δPT ]T = [Φn,Φe,Φd , δvn, δve, δvd , δL, δλ, δh]T (28)

W(t) = ∇bT
g ∇bT

a

h iT
(29)

which is the same as the system function of the normal INS/GPS integrated navigation
system (Titterton and Weston, 2004).
In Section 3, attitude, heading, velocity, and barometric height have been observed,

which can be used to reconstruct the observation equations during GPS outages.
The observation vector is redefined as the difference between the INS solutions (I ) and
their observations (O):

Y(t) = YT
Φ YT

v YT
h

� �T (30)

Yϕ = ϕI − ϕO θI − θO ψI − ψO

� �T (31)

Yv = vnI − vnO veI − veO vdI − vdO
� �T (32)

Yh = hI − hO (33)
Where YΦ is the attitude observation vector, Yv is the velocity observation vector,
and Yh is the altitude observation. The observation equations can be written
respectively as

Yϕ = CΦΦ+ Vϕ (34)
Yv = I3×3δv+ Vv (35)
Yh = δh+ Vh (36)

Where VΦ, Vv, Vh are noises of the observations, with the covariance matrix RΦ, Rv,
Rh respectively. CΦ is the transformation matrix from the platform misalignment
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angles to the attitude errors (Jian, 2007):

CΦ =

C13C31 − C11C33

C2
31 + C2

33

C21C33 − C23C31

C2
31 + C2

33

0

− C12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− C2

32

q − C22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− C2

32

q 0

C22C32

C2
12 + C2

22

C12C32

C2
12 + C2

22

1

2
6666666664

3
7777777775

(37)

Thus, the observation equation is united as

Y(t) = H(t)X(t) + V(t) (38)

H(t) =
CΦ 03×3 03×3

03×3 I 3×3 03×3

01×3 01×3 00, 1[ ]

2
4

3
5 (39)

Once the system function and the reconstructed observation equation are established
as Equations (27) and (38), the discrete model can be obtained:

Xk = Φk,k−1Xk−1 + Γk−1Wk−1

Yk = HkXk + Vk



(40)

Φk,k-1 and Γk-1 are discrete forms of F(t) and G(t) respectively (Yuan et al., 1993):

Φk,k−1 = eFT =
X1
n=0

[F(tk)T]n/n! (41)

Γk−1 =
X1
n=1

1
n!
(F(tk)T)n−1

� �( )
G(tk)T (42)

where T is the discrete time, which is determined by the update frequency of observers.
Once GPS outages occur, the system model will be reconstructed correspondingly.
Estimated through an EKF, the state vector is then used to correct the INS solution.
Rather than keeping the navigation system working in prediction mode, the new
closed-loop model is reconstructed to resist INS errors.

5. EXPERIMENTAL RESULTS
5.1. Real-time hardware-in-loop simulation platform. In this section, the exper-

imental results of the wind estimate, attitude, and velocity observations are described,
and the reconstructed navigation system is assessed, comparing to the INS/GPS
integrated system. All the experiments are implemented on our real-time hardware-
in-loop simulation platform, as shown in Figure 1. Our simulation platform consists
of an embedded master control computer, actuators that are actually used on our
vehicle, a dSPACE real-time simulation computer, a three-axis rotator, a ground
control station, and a black box.
The master control computer, embedded with an IMU (ADIS16405), is fixed on the

rotator, and acts as the core of the whole system, which plans the flight path, estimates
navigation information using methods proposed above, implements controls of each
loop with actuators, stores information to a black box, and communicates with the
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user through the ground control station. The gyro in the ADIS16405 has 0·007°/s bias,
2·0°/

√
hr random walk and 0·9°/s RMS output noise. The actuators, including servo

and engine, execute orders from the master computer and return responses. The
dSPACE real-time simulation platform acts as the controlled object (our fixed-wing
UAV), which receives information from actuators and computes the object state
(GPS data, accelerometer output, and air speedometer measurement) based on the
aerodynamic model. The rotator, equipping our master control computer, rotates
according to the attitude of the vehicle and engenders the synchronous reaction of
the IMU.
We involved as much hardware and software as possible, which are all really used

on our UAV. Although the math models built sometimes cannot exactly match the
real aircraft, which will influence the fidelity of experiment results, the simulation
system has proved quite credible due to the remarkable consistency of the experiment
information with actual flight results, considering our actual flight tests over the past
four years.
In our experiment, angular rate and magnetic on board are real outputs of the

IMU that are fixed on the rotator. However, it is impossible to use other real
measurements in simulation, such as GPS frame, accelerometer output, airspeed and
barometric height. All this information is generated from the aerodynamic model.
Accelerometer output is transmitted into the on board computer periodically in
0·001 s, and other measurements in 0·1 s. INS solution updates periodically in 0·004 s.
Observations and EKF estimations are carried out every 0·1 s.

5.2. Observation performance test. To evaluate the performance of observers
discussed in Sections 2 and 3, the proposed algorithm was implemented on the
embedded computer. In our first simulation, the constant component of wind velocity
was estimated and assessed. Produced by a wind-generator, the wind changed
the aerodynamic force, and finally resulted in disturbance of the vehicle. Then, the
correspondingly influenced airspeed and GPS information were transmitted to the
embedded control computer that was strapped on the rotator. INS and GPS were
integrated by the on board computer using an EKF, and the result was regarded as the
reference value. The initial value of the wind state was cleared to zero and its initial

Figure 1. Real-time hardware-in-loop simulation system.
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predicted variances were assumed to be 502, 502, 502, 202, 202, and 202, respectively,
in units of m2/s2. The process noise variances of the wind model were assigned 52, 52,
and 52. The measurement noise variances were assigned 202, 202, and 202. Once
the simulation started, the on board computer began to estimate wind speed using
method illustrated in Section 2. Estimate results and their true values were both stored
in the black box, and contrasts are shown in Figure 2. Estimate errors are shown in
Figure 3.
The wind observer can estimate wind speed effectively so long as the GPS receiver

works well. At the time simulation started, the observer began to track the real wind
state, and then observation errors quickly converged. Once GPS outages occur, the
constant part of the newest estimation will be used in the airspeed compensation
as discussed in Section 3.
The error of the wind-compensated velocity is shown in Figure 4, and the

uncompensated airspeed is compared. Subtraction of wind velocity from airspeed
as expressed in Equation (13) markedly decreases the velocity observation error.
The error of the attitude obtained from the compensated gravity vector is shown in
Figure 5, contrasted with the error of attitude calculated from the raw measurement

Figure 2. Wind speed estimates using GPS/INS integrated system.

Figure 3. Errors of wind speed estimates.
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of the accelerometer. When the UAV pitches or rolls, the error of uncompensated
attitude quickly deteriorates. It is shown in Figure 5 that the error of uncompensated
estimate of the aircraft roll almost completely equals the inverse of the true value
(the GPS/INS solution). Compensation of the motion acceleration as expressed in
Equation (11) effectively improves the accuracy of the attitude observer.

5.3. The reconstructed integrated system. To assess the performance of the
reconstructed integrated system, we planned a trajectory shown in Figure 6, and
the UAV was commanded to fly at a speed of 160 m/s. As assumed in Section 3,
the fixed-wing aircraft tried to maintain altitude and velocity during flight.

Figure 4. Errors of velocity obtained from the wind-compensated airspeed and the uncompensated
solution.

Figure 5. Errors of attitude obtained from the motion-compensated gravity vector and the
uncompensated solution.
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However, in order to evaluate the algorithm robustness, vertical motions were added
to straight flight. The initial value of the system state (INS errors) were assigned
to zero, which had the initial predicted variances: (1·0°)2, (1·0°) 2, (2·0°) 2, (0·4 m/s)2,
(0·4 m/s)2, (0·4 m/s)2, (5 m)2, (5 m) 2, and (10 m) 2, respectively. The process noise
variances of INS were assigned (0·2°/s)2, (0·2°/s)2, (0·4°/s)2, (0·2 m/s2)2, (0·2 m/s2)2 ,
and (0·2 m/s2)2. The attitude, velocity and altitude measurement noise variances were
assumed (2·0°)2, (2·0°)2, (4·0°)2, (0·1 m/s)2, (0·1 m/s)2, (0·1 m/s)2 , and (5 m)2.
During the first 90 seconds, the GPS satellite signal was unobstructed, and

wind speed was estimated. At 90 seconds, the GPS signal was assumed to be blocked,
and the traditional EKF had to work in prediction mode. Meanwhile, the integrated
system was reconstructed, and the special observers along with the reconstructed

Figure 6. Flight path for the experiment.

Figure 7. Errors of the INS-only solution.
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integrated filter began to work. Also, the typical INS/GPS integrated navigation
system kept working to provide reference values. Figure 7 shows errors of the
INS-only solution (prediction mode of the INS/GPS filter), which diverged quickly
during GPS outages.
Attitude from the reconstructed integrated system was compared with the true

value in Figure 8. Errors of roll and pitch were effectively limited after system
reconstruction, which was much better than the INS-only solution in Figure 7.
However, attitude errors always existed, due to the attitude observation that was
disturbed by the angle of attack and the varying wind speed.
As shown in Figure 8, the roll error increases correspondingly as the UAV banks.

Fortunately, the disturbed errors are estimated and corrected gradually, owing to
the good low-frequency property of the gravity vector observer. As the UAV climbs
or descends suddenly, the level-flight assumption is not well satisfied, so the pitch
error increases simultaneously. However, the limited pitch error proves that the
new algorithm is somewhat robust for the level-flight and constant-velocity
assumption.
In order to illustrate the effectiveness of the attitude estimation further, attitude

errors for different flight manoeuvres are shown in Figure 9. Attitude curves on
the left side of the figure represent the corresponding flight manoeuvres,
including accelerating, turning, climbing, and nosing down, while attitude errors
relative to the true value are shown on the right. Although attitude precision decreases
slightly in manoeuvring, errors are still limited in an acceptable region and remain
convergent.
Figure 10 shows the comparison between velocity estimate from the reconstructed

integrated system and the true value. Well restricted by the velocity observer, errors in
three directions were all limited, while the INS-only solution diverged quickly as
shown in Figure 7. It is shown that the northward velocity vn and the eastward velocity
ve converge much better than the downward velocity vd. The analysis of this difference
is given as follows.

Figure 8. Attitude errors of INS/pressure integrated system.
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The velocity observer, expressed in the navigation frame, is transformed from
velocity in the body-fixed frame:

v̂n = Cn
bv̂

b (43)
Downward velocity vd can be expressed as

v̂d = − sin θ · v̂x + sin ϕ cos θ · v̂y + cos ϕ cos θ · v̂z (44)

For a fixed-wing UAV, vy and vz are much smaller than vx, which is about 160 m/s.
Thus, vd is mainly determined by the first component –sin θvx. When the aircraft
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Figure 9. Attitude errors for different flight manoeuvres.

Figure10. Errors of estimated velocity.
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pitches promptly, pitch error increases for the reason that the level-flight assumption is
not strictly satisfied, which produces an inverse vd error (the vd estimate subtract the
true value). Comparing Figure 10 with Figure 8, it is clear that the phase of vd error
is approximately the inverse of the pitch error phase. In contrast, horizontal velocity
vn and ve are less sensitive to attitude errors.
Since no positioning measurement is involved in our algorithm during GPS outages,

observability of position error is too weak to keep it convergent. Consequently,
horizontal error diverges gradually as shown in Figure 11. However, the divergence
speed of the horizontal error is much slower than those of INS-only system as shown
in Figure 7. Since the barometric height is corrected and involved in the reconstructed
system, the altitude error remains convergent.
It should be noted that the reconstructed integrated navigation system is sensitive

to “wild” wind in some way. If the wind changes quickly or the velocity and altitude
are not exactly maintained during GPS outages, the navigation accuracy will decrease
correspondingly. For example, if the original “wild” wind suddenly vanishes during
GPS outages, the velocity estimation will deteriorate gradually and finally reach the
case that is shown in Figure 4, which will affect attitude. In these scenarios, our new
method might be ineffective.
However, our method is somewhat robust to resist disturbances. Relatively

speaking, attitude and velocity are much more important than positioning for aircraft
to maintain safe flight. Even if the position estimate diverges gradually, the convergent
attitude and velocity save much more time for UAVs to recapture GPS or fulfil an
emergency landing.

6. CONCLUSIONS. In this paper, a new navigation algorithm was proposed
to bridge GPS outages for fixed-wing UAVs based on the typical INS/GPS integrated
navigation system. A dynamic model for wind, angle of attack, and motion
acceleration was introduced to estimate ground velocity and gravity vector, so that
the integrated navigation system could be reconstructed during GPS outages.
Furthermore, a comparison was carried out between the traditional method and
the proposed algorithm based on hardware-in-loop real-time simulations for our

Figure 11. Errors of estimated position.
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fixed-wing UAV. Results show that the reconstructed integrated navigation system has
its potential as a simple and robust substitution for the INS/GPS integrated navigation
system for fixed-wing UAVs during GPS outages.
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