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ABSTRACT. Peatlands occupy a significant portion of the land surface of the Earth and form a large carbon store. Most peat- 
forming systems have two layers. The upper layer, the acrotelm, fixes carbon by photosynthesis, loses some of it by decay and 
passes the remainder on to the lower layer, the catotelm. In the catotelm, decay continues at a slower rate. Mathematical models 
of the growth of the catotelm have been proposed which relate the cumulative mass of peat above a particular depth to calendar 
age of the peat at that depth. We demonstrate how 14C dating and the Bayesian approach to data analysis can be used to make 
inferences about the relation between calendar age and cumulative mass, and to estimate the accumulation and decay rates. 

INTRODUCTION 

Peatlands cover ca. 3% of the land surface of the Earth. They may be as much as 10-15 m deep, 
averaging 2 m, and they form a large store of carbon. Peat accumulates and decays through time and 
therefore a complex relation between depth and age can be expected. From chemical and biological 
analyses of peat at successive depths, one can learn about environmental and climatic change 
through time (see Warner, Tolonen and Tolonen 1991). 

Most peat-forming systems consist of two layers (Ingrain 1978). The upper layer, the acrotelm, fixes 
carbon by photosynthesis, loses much of it by decay and passes the remainder on to the lower layer, 
the catotelm, which is below the summer water table. The depth of the acrotelm is usually 5-50 cm, 
whereas the depth of the catotelm can be as much as 1000-1500 cm, although 200 cm is usual. Until 
recently, scientists believed that there was little or no decay in the catotelm but recent research is 
beginning to overturn this notion (Clymo 1984, 1991). 

Several mathematical models of the growth of the catotelm, based upon differing interpretations of 
physical and chemical processes, have been proposed (see Clymo 1992). These models do not relate 
age directly to depth but instead relate the age of peat at a particular depth to the cumulative dry 
mass of material above that depth (but still within the catotelm). However, as Clymo (1984: 619) 
remarks, it is not necessary to know where the present surface of the catotelm is; an arbitrary datum 
may be taken at any depth within the catotelm, and values of the age and mass expressed relative to 
that datum. 

Consider an arbitrary fixed datum at depth do below the surface of the catotelm and let 00 denote the 
unknown calendar age, measured in years BP, of the peat at that depth. Consider peat at depth d 
(>d0). Let its calendar age, measured in years BP, be 8 (>9o) and let M be the cumulative dry mass 
(in g cm-2) of material between depths do and d. Let p be the rate at which dry mass is added (on an 
areal basis) to the catotelm, a be the proportional rate of decay in the catotelm and a be a constant. 
Clymo (1992) gives the following three possible models based upon differing assumptions for the 
form of a 

M 
P (1- a-a 

(e - eo) 

) a 
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M = Plog(1 +a(O-O0)) a e 

and 

M=(Jf+2a(O-O0)-1) 

(Z) 

(3) 

For model (1) a = a; for model (2) a = av(O); and for model (3) a = av2(O) where v(O) is the propor- 

tion of the initial mass remaining after time O - O. In practice, a is small, and if we consider a short 

time period then all three models reduce to M = p ( O - Oo ). That is, if we are considering a relatively 

short time span of, say, a few hundred years, the amount of decay in the catotelm is negligible, and 

the cumulative mass is therefore directly proportional to the relative age. It is only for periods of time 

greater than several millennia that these more complex models are necessary. 

We demonstrate here the use of 14C dating and the Bayesian approach to data analysis to estimate the 

age O, corresponding to a given cumulative dry mass M. To illustrate our approach we use model (1), 

but we can also apply our methods to the other models. To estimate the age O, corresponding to the 

cumulative mass M, we take a peat core and 14C date samples from various depths and also measure 

the cumulative mass corresponding to those depths. The primary objective is to use model (1) and 

the 14C dates to predict the age (on the calendar scale) of the peat at different depths. A secondary 

objective is to obtain reliable estimates of the parameters p and a. 

The relation between the cumulative mass and the calendar dates is complex, as is the relation 

between the 14C dates and the calendar time scale. The latter relation is non-monotonic because of 

the "wiggly-nature" of the high-precision calibration curve (Pearson and Stuiver 1986; Stuiver and 

Pearson 1986). Clymo et al. (1990) attempted to fit models of peat growth using Pearson's (1986) 

wiggle-matching techniques, but to do so, had to make some assumptions about the values of the 

unknown parameters. Clymo (1992) and Warner, Clymo and Tolonen (1993) used the function min- 

imization procedures of Nelder and Mead (1965) but were unable to include any uncertainty regard- 

ing the calendar dates corresponding to the 14C dates. In this paper, we include in the analysis all the 

relevant uncertainties. 

METHODS AND DISCUSSION 

Outline of the Bayesian Methodology 

We use the Bayesian statistical framework, which is fundamentally different from the traditional 

approach adopted by most researchers. Litton and Buck (1994) review its application to archaeolog- 

ical problems and Christen (1994) demonstrates its usefulness for the interpretation of 14C dates. We 

do not intend to give a full exposition of the Bayesian approach; for more details, see Buck, 

Cavanagh and Litton (1996), who describe the Bayesian methodology and its application to the 

analysis and interpretation of archaeological data. For readers who may be unfamiliar with the 

approach, we give a brief review here. 

Researchers develop statistical models that represent, in a mathematical manner, the problem at 

hand. Within these models, a relation is posited between the data, denoted by x = (x1, ..., xn), and 

the unknown parameters, denoted by ip = ( 1, ...,1k), is posited. Researchers following the Baye- 

sian approach use probabilities to express the uncertainty about the parameters 4', before and after 

seeing the data x. The Bayesian framework offers a simple way of computing the posterior uncer- 

tainty from the prior uncertainty and the data via the model. 
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In broad terms, the Bayesian method has the following three components: 

1. The prior probability densityfunction denoted by g(i4,). This may be read as "how much belief 
do I attach to possible values of the unknown parameters before (prior to) observing the data?". 
A relatively large value of g(i,) for a particular value of i indicates that this value is thought 
to be relatively likely; a relatively small value, that it is relatively unlikely. 

2. The likelihood denoted by 1(ii, ; x). This may be read as "how much are particular values of 
the parameters supported by the data?". If the value of the likelihood at a particular value of the 
parameters, say P1, is relatively large then this indicates that the data strongly support iP1. If at 
another value of i4,, say 112, the likelihood is relatively small, then this suggests that the support 
from data for 12 is relatively small. In practice, the likelihood function is determined from the 
probability distribution of x conditional on '1, which we denote by f (x I). 

3. The posterior density function, denoted by h (q, I 
x). This may be read as "how much belief do 

I attach to possible values of the unknown parameters after (posterior to) observing the data?". 
A relatively large value of h (i1 I 

x) indicates that the corresponding value of i, is, a posteriori, 
relatively likely; a relatively small value, that it is relatively unlikely. 

The prior, the likelihood and the posterior are connected by Bayes' theorem, which may be expressed 
in the form 

h(p I 
x) « l (LI, ; x) g (1,) . (4) 

Here, g(p) represents the prior information about i1. We then observe the data x and Bayes' theorem 
tells us that the posterior information, represented by h(i., 

I x), is proportional to the prior g(i.1) times 
the likelihood l (p ; x). By the result of this operation, we have combined two sources of informa- 
tion, that provided by the prior and that provided by the data. Note that before using h(p x) to make 
inferences, the constant of proportionality in (4) must be determined so that h (I x) integrates to 1. 

Suffice it to say that within the Bayesian framework, the fitting of complex models is relatively 
straightforward, although we may need to use sophisticated numerical techniques to make infer- 
ences about the parameters of interest. An important feature of the Bayesian approach is that one can 
incorporate into the analysis, coherently and logically, relevant prior knowledge about the parame- 
ters. Of course, one must clearly state the use of such prior information so that the assumptions are 
clear to the reader. 

Applying the Bayesian Methodology 

To apply the Bayesian methodology, we must develop a model, expressed in terms of parameters, 
that relates the 14C dates to the cumulative dry mass data. Then we need to determine the likelihood, 
establish the prior information about the parameters and convert this into a prior density. Next, we 
apply Bayes' theorem to calculate the posterior density of the parameters, which we then use to 
make inferences. 

There are two components to our peat model: the first relates the cumulative mass to the calendar 
age and the second relates the calendar age to the 14C age. 

Modeling the Cumulative Mass - Calendar Age Relation 

Suppose we have a series of n 14C dates x1 t Ql, x2 t 02, ... , xa t o from peat samples taken at suc- 
cessive depths d1 < d2 < ... <d o corresponding to calendar years 61, e2 , ... , O. Recall that d0 and e0 
represent the reference (datum) depth and the corresponding calendar age of the peat at that depth. 
Because peat age increases with depth, the associated calendar years for the 14C dates (the calendar 
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years marking the death of the organic materials contained in the peat samples) must be ordered so 

that 80 < 81 < 82 < ... < 0. 
Let m; be the cumulative dry mass at depth d;, then according to model (1), m; and 8; are related by 

the equation 

p -a (81- 80) ). 
1 a 

(s) 

Rearranging, 6; can be expressed as 

e; = 80 - a-1 loge (1- pa m). (6) 

Thus the calendar age 6; can be expressed in terms of the unknown parameters 4 = (8o, p, a). 

Modeling the Calendar Date -14C Date Relation 

Suppose we have a 14C date, denoted by x t a, where x is the estimated 14C age and a is the corre- 

sponding standard deviation reported by the laboratory. Let 9 represent the unknown calendar date 

of the corresponding event. Here we view x as a realization of the random variable 

X ~ N (i.t (e), Q2 + a2 (e)) (7) 

where µ (6) denotes the calibration curve and a2(0) represents the uncertainty in the calibration 

curve itself as µ(9) is not known exactly. 

We use a high-precision calibration curve in piecewise linear form to approximate µ(8), taking 

co + boe (0s co) 

ck + bk6 (tk_1<Os tk, k = 1, 2, ..., K ) (8) 

cK + bKe (tK < e) 

where the tk are the knots of the calibration curve, K + 1 is the number of knots used, and the b; and 

c; are known constants. Then we have 

X - N(co + bog, w2(9)) (A s t0) (9) 

X - N(ck + bkA, wz(A)) (tk_1< 8 s tk, k =1, 2, ..., K) (10) 

X - N(cK + bx e, W2(e)) (tK < e) (11) 

where 

= a2 + a2 (0). (12) 

Thus, the probability density function of the random variable X;, representing the ith 14C date, con- 

ditional on is 

f1(x. ip)a w;1(e;)exp{-(x1 -µ(e,))2,2w2(9;)} (13) 

where A; is given by (6) and 

w2 (es) = a12 + Q2 (0k). (14) 
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The Likelihood 

Noting that, conditional on i, the 14C dates are independent, the likelihood can be expressed as 

n 

A01 
1(,;x) = {Jf(x1 ) (6f) exp {- (x- (9k)) 2,2(o;) } . (15) 

where 8; is given by (6) and w12(91) by (14). 

The Prior for , p and a 

In general, 6o will be independent of p and a, so that the joint prior density of i4i can be expressed as 
g(q) = g1(60) g2 (p, a) where g1(8o) is the prior density for 8o and g2(p ,a) is the joint prior density 
for p and a. It is much more difficult to make a statement about whether or not p and a are indepen- 
dent. Both are affected by numerous common factors such as temperature, availability of water and 
plant species, but little is known about the exact botanical, physical and chemical mechanisms 
involved. These two parameters are probably correlated but we do not know whether the correlation 
is positive or negative. In addition, when incorporated into particular models, the actual values may 
result in numerical correlations with no biological basis. 

The Posterior 

Let g(i4,) be the joint prior density function of ip; then by Bayes' theorem, the joint posterior density 
of 1p is given by 

h(px)ocl(i.p;x)g(ip). (16) 

From this joint posterior density function, by using numerical integration techniques, one can calcu- 
late the marginal posterior densities of 90, a and p. Also, for a given value of the cumulative mass, 
m1, at depth, d1, by using (6) one can calculate the posterior density of the corresponding calendar 
date, 8. Further, from the joint and marginal posterior densities, one can calculate appropriate sum- 
mary statistics, such as posterior means, posterior standard deviations and 95% intervals. 

Example 1 

Warner, Tolonen and Tolonen (1991) report the results of a study of peatland formation and devel- 
opment at Point Escuminac, New Brunswick, Canada. From a 532-cm peat core, the authors col- 
lected for 14C analysis 22 samples from different depths in the catotelm. They used the 14C dates to 
estimate the ages, on the 14C time scale, of pollen and macrofossils found in the core and to under- 
stand the development of the bog and the surrounding environment. Warner, Clymo and Tolonen 
(1993) used the 16 dates that (in 1992) were within the time period of the calibration curve to fit 
model (1) using Nelder and Mead's (1965) function minimization procedure. They estimated the 
dates on the calendar scale as well as the peat accumulation and decay parameters, p and a. We will 
re-analyze the data, given in Table 1, using the Bayesian framework. 

Specification of the Prior Density 

As mentioned above, we know very little a priori about p and a or how they relate. First, we have 
no prior information as to whether p and a correlate, and if they do, whether positively or negatively. 
Therefore, we assume their independence and express the joint prior density of p and a as the prod- 
uct of their marginal densities, i. e., 

Sz(P, a) _ $p(P) 88 (a). (17) 
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TABLE 1. Data from the Point Escuminac Peat Core 

Depth Cumulative 14C age 

i d; (cm) mass m; (g cm-2) no. * BP) 

1 29.0-30.0 7.3 110 

2 49.5-50.5 12.2 90 

3 69.0-70.0 17.4 120 

4 94.5-95.5 24.4 ±90 
5 119.0-120.0 31.9 
6 144.5-145.5 39.8 ±80 
7 169.0-170.0 45.8 130 

8 183.0-184.0 49.1 130 

9 197.0-198.0 52.7 ±80 
10 215.0-220.0 58.2 120 

11 245.0-255.5 65.9 ±90 
12 269.0-270.0 70.3 110 

13 321.0-322.0 82.3 140 

14 331.0-332.0 84.6 110 

15 376.0-378.0 96.3 110 

16 395.0-397.0 101.9 130 

*Hel = Helsinki Radiocarbon Laboratory 

Second, Clymo (1984) suggests that the most likely (modal) values for the northern hemisphere are 

0.005 g cm'2 yr-1 and 0.0002 yr 4, respectively. To reflect the large uncertainty about these values, 

wide margins are stated in terms of multiplicative factors of 10'1 and 10. That is, it is believed that 

p lies between 0.0005 and 0.05, and the range of a is 0.00002 to 0.002. Because small values of both 

parameters are thought to be more likely than large ones, we model log10p and log 10a as being nor- 

mally distributed. That is, we assume that 

log10 p - N (log10 0.005, 0.25) (18) 

log10 a - N (log10 0.0002, 0.25). (19) 

Therefore, the prior probability density functions of p and a are given by 

gP (P) = 
2 

exp {-2 (log10 P - log10 0.005) 2} (24) 
p (log10) 

and 

Sa (a) = 
a (log 10) AJ 

exp {-2 (log10 a + log10 (-0.0002)) 2} (21) 

respectively. 

Finally, we have no information about the date, 60, of the material at the datum level except that it 

must lie within, say, the last 6000 yr. Other than this, we cannot say that one year is more likely than 

another. Thus, a priori, we assume that eo has a uniform distribution over the interval 0 to 6000, i.e., 

. 
1 

gl(8 o) = for 0<0<6000 6000 0 
(22) 

This completes our specification of the prior density. 
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Interpreting the Posterior Density 

Using Bayes' theorem (see Equation (4)), we calculated the joint posterior distribution of 80, a and 
p. The marginal posterior density of 80 is given by 

h0 (80Ix) 
oc 

0 0 h (e0, p, alx) dp da . (23) 

This integral cannot be evaluated analytically, nor can the constant of proportionality, so numerical 
methods are used (see Buck, Cavanagh and Litton: Chap. 8). Likewise for the marginal posterior 
densities of p and a. Figure 1 gives these densities and shows that some of the three distributions are 

80 

I I 

_..1fT1lluh11t1ll1llllhIllllmmt.,__ 

600 500 400 300 200 100 
Cal BP 

a 

5e-05 0.0001 0.00015 0.0002 0.00025 0.0003 
yr-i 

p 

0.015 0.02 0.025 0.03 
g cm-2 Yr-1 

Fig. 1. Marginal posterior densities of the calendar date at the datum level, 80, the pro- 
portional decay rate, a, and the rate of addition p, using peat growth model 8; = 80 + 
a-1 log (1- p-1 a m;) and the data from Point F,scuminac, New Brunswick, Canada. 
The dashed lines show the values, with one standard error bars, estimated by ad hoc 
function minimization techniques before the present work (Clymo 1992). 
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not symmetric. The modal (most likely) values of 60, p and a are ca. 220 cal BP, 0.022 g cm'2 yr'1 

and 0.00015 yr, respectively. The 95% highest posterior density (HPD) interval (the shortest inter- 

val with posterior probability of 0.95) for 80 is 130-300 cal BP and the 95% HPD intervals for p and 

a are 0.021-0.024 g cm'2 yr, and 0.00013-0.00017 yr, respectively. 

We observe how the age of peat varies with the cumulative mass. We can obtain the posterior density 

of the age of peat at any desired cumulative mass: Figure 2 gives examples of this. Figure 2 shows 

a wider range of possible values at both ends of the peat core. For example, at a cumulative mass of 

40 g cm'2, the range is ca. 60 yr, whereas at a cumulative mass of 100 g cm-2, the range is >300 yr. 

This was expected because we have more information from the middle section of the core than from 

either end. 

At 0 

g cm-2 

500 400 300 200 100 1400 1300 1200 1100 

Cal BP Cal BP 

At 20 

g cm-2 

At 40 

g cm-2 

At 80 

g cm-2 

2550 2450 2350 2250 3900 3840 3700 3600 

Cal BP Cal BP 

I i i 

5650 5550 5450 5350 5250 8100 7900 7700 7500 

Cal BP Cal BP 

At 60 

g cm-2 

At 100 

g cm-2 

Fig. 2. Posterior densities of the age of peat at various cumulative masses for the data from Point Fscuminac, New Brunswick, 

Canada 

Example 2 

Clymo et al. (1990) consider a peat core from Ellergower Moss, Galloway, southwest Scotland. 

From the ca. 50-cm-long core at 2-cm intervals below the summer water-table, that is, from the top 

of the catotelm,11 samples were 14C-dated. Table 2 contains details of the depths and corresponding 

dates. Presumably, this peat core represents only a short period of time, say a few hundred years, so 

the simplified model (not involving a) 

m, = p (0 - 90) (24) 

is applicable. We take the same priors for p and 80, as in the previous example. 

Interpretation of the Posterior Density 

Using numerical integration, we obtained the posterior densities of 80 and p. The posterior distribu- 

tion of 0 0 is flat-values between 50 and 200 cal BP are approximately equally likely. In contrast, the 
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TABLE 2. Radiocarbon Dates from the Ellergower Moss Peat Core 
Depth Cumulative 14C age 

i di (cm) mass mi (g cm-2) Lab no.* (yr BP) 

1 27 0.17 
2 60 
3 31 0.72 50 
4 33 0.91 66 
5 35 1.11 60 
6 37 1.30 55 
7 39 1.51 
8 55 
9 43 1.87 
10 45 2.04 35 
11 47 2.21 31 

*UB = University of Belfast Radiocarbon Laboratory 

distribution of p has a mode at just over 0.005 g cm-2 yr-1 but has a long right-hand tail up to ca. 
0.018 g cm-2 yr-1. The 95% HPD intervals for these parameters are 20-210 cal BP and 0.0045- 
0.0171 g cm-2 yr-1, respectively. Figure 3 shows the gray-scale representation of the posterior den- 

0 100 200 300 400 500 

Cal BP 

Fig. 3. Gray-scale representation of the posterior density for the age of peat at different cumu- 
lative masses using the data from Ellergower Moss, southwest Scotland. For each cumulative 
mass from 0-2.2 g cm-2 yr1, we obtain a posterior density for the age of the peat, here repre- 
sented on a gray scale. 
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sities of the age of peat at every 0.01 g cm-2 of cumulative mass. The two dark regions correspond 

to two unconnected regions of high posterior probability. The results are not so clear-cut as for the 

data from Point Escuminac. For example, for a cumulative mass of 1.0 g cm-2 the distribution is uni- 

modal, with likely dates ranging from 200 to 290 cal BP, whereas at greater depths the distribution 

splits in two. For a cumulative mass of 1.5 g cm-2, the range is 270 to 380 cal BP, with modes at ca. 

290 and 350, but with dates ca. 310-320 being relatively unlikely. 

In this example, given any values for p and 00, we can calculate the value of 6i for specified m; using 

the equation 0i = 00 + mi p-1. Using these Ois, we can then "position" the corresponding dates xi ± Qi 

against the calibration curve, a procedure known as "wiggle-matching". In Figure 4 we plot the wig- 

gle-match obtained using the modal values (00 = 61 , p = 0.0054) of the joint posterior density of 00 

gle-matching techniques or because of the temporal variation of p, or a combination of both. 
almost equally good at many other positions. It is unclear whether this is an inherent defect of wig- 

and p. Apart from one date, the data appear to follow the calibration curve reasonably well, although 

the flat posterior distribution of 00 indicates that within the range 50 to 200 cal BP, the match is 

1 

500 400 300 200 100 00 
Cal BP 

cores using a simple peat growth model. Using the Bayesian approach, we included in a single analy- 

sis the 14C calibration curve, the available 14C dates, a specific peat growth model and prior informa- 

Fig. 4 14C dates from the peat core from Ellergower Moss with the relevant part 

of the calibration curve. =14C age xi; - = xi - ai to xi + ai. Here we used the 

modal values of the joint posterior distribution of 00 and p, taking 60 = 61 yr and 

p = 0.0054 g cm-2 yr-1. 

We have described the use of Bayesian statistical techniques to estimate the age of 14C-dated peat 

CONCLUSION 

tion about the parameters of the model. We combined all these factors within the Bayesian framework 

to estimate the age of peat corresponding to a particular cumulative mass. 
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We used two examples to obtain, in terms of the posterior, distributions of the age of peat at any 
cumulative mass desired, and calculated highest posterior density intervals. We also obtained reli- 
able estimates of the rates of accumulation and of decay, p and a, respectively. Apart from the imme- 
diate advantages of working within a coherent and consistent framework for statistical inference, we 
are able to include all the relevant uncertainties into the analysis and our techniques provide clear, 
visual and interpretable results. 
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