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One of the debates in infant nutrition concerns whether dietary 18 : 3n-3 (linolenic acid) can provide for the accretion of 22 : 6n-3 (docosahexaenoic acid,

DHA) in neonatal tissues. The objective of the present study was to determine whether low or high 18 : 3n-3 v. preformed 22 : 6n-3 in the maternal diet

enabled a similar 22 : 6n-3 content in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine

(PS) of glial cells from whole brain (cerebrum and cerebellum) of 2-week-old rat pups. At parturition, the dams were fed semi-purified diets containing

either increasing amounts of 18 : 3n-3 (18 : 2n-6 to 18 : 3n-3 fatty acid ratio of 7·8 : 1, 4·4 : 1 or 1 : 1), preformed DHA, or preformed 20 : 4n-6 (arachidonic

acid) þ DHA. During the first 2 weeks of life, the rat pups from the respective dams received only their dam’s milk. The fatty acid composition of the pups’

stomach contents (dam’s milk) and phospholipids from glial cells were quantified. The 20 : 4n-6 and 22 : 6n-3 content in the stomach from rat pups at 2

weeks of age reflected the fatty acid composition of the dam’s diet. The 20 : 4n-6 content of PE and PS in the glial cells was unaffected by maternal

diet treatments. Preformed 22 : 6n-3 in the maternal diet increased the 22 : 6n-3 content of glial cell PE and PS compared with maternal diets providing

an 18 : 2n-6 to 18 : 3 n-3 fatty acid ratio of 7·8 : 1, 4·4 : 1 or 1 : 1 (P,0·0001). There was no significant difference in the 20 : 4n-6 and 22 : 6n-3 content

of glial cell PC and PI among maternal diet treatments. It was concluded that maternal dietary 22 : 6n-3 is more effective than low or high levels of maternal

dietary 18 : 3n-3 at increasing the 22 : 6n-3 content in PE and PS of glial cells from the whole brain of rat pups at 2 weeks of age. The findings from the

present study have important implications for human infants fed infant formulas that are devoid of 22 : 6n-3.

Linolenic acid: Docosahexaenoic acid: Glial cells: Rats

Arachidonic acid (AA; 20 : 4n-6) and 22 : 6n-3 are the most abun-

dant PUFA in the phospholipids of the central nervous system

(O’Brien & Sampson, 1965; Sun & Horrocks, 1970) and can

be synthesised in animal tissues by the desaturation and

elongation of their dietary precursors, 18 : 2n-6 and 18 : 3n-3

(Dhopeshwarkar & Subramanian, 1976; Bourre et al. 1990).

AA and 22 : 6n-3 are found in high concentrations in synaptic

plasma membranes (Cotman et al. 1969; Breckenridge et al.

1972; Sun & Sun, 1974; Foot et al. 1982) and in photoreceptor

cells (Anderson et al. 1974). AA plays an important role as a

precursor of biologically active molecules such as prostanoids,

leukotrienes and other lipoxygenase products (reviewed by Kin-

sella et al. 1990). AA and 22 : 6n-3 are involved in providing an

optimum microenvironment within the phospholipid bilayer that

influences important membrane functions such as ion or solute

transport, receptor activity and adenylate cyclase activity

(reviewed by Stubbs & Smith, 1984 and Sastry, 1985; Litman

& Mitchell, 1996; Huster et al. 1998; Mitchell & Litman,

1998; Jump, 2002).

20 : 4n-6 and 22 : 6n-3 accumulate rapidly in the brain during

the fetal and early postnatal periods, depending on the species

concerned. In rats, 22 : 6n-3 accumulates during the embryonic

period and first 3 postnatal weeks of life (Kishimoto et al.

1965; Sinclair & Crawford, 1972; Green & Yavin, 1998).

In man, the accretion of 20 : 4n-6 and 22 : 6n-3 takes place

during the last trimester and first 6–10 months after birth

(Clandinin et al. 1980a,b). The rapid accumulation of 20 : 4n-6

and 22 : 6n-3 in rat and human brain suggests that these fatty

acids may be essential for neural and visual development

(Okuyama et al. 1997; Carlson & Neuringer, 1999; Moriguchi

et al. 2000). This issue is of particular importance to preterm

infants, who miss the period of peak accumulation of 20 : 4n-6

and 22 : 6n-3 in the brain during the last trimester of pregnancy

(Clandinin et al. 1980a,b; Innis, 1991).

The manipulation of brain 22 : 6n-3 content by 22 : 6n-3 depri-

vation has been attempted to determine some functions of

22 : 6n-3 in the central nervous system. In this regard, rats fed

diets deficient in 18 : 3n-3 but with adequate 18 : 2n-6 had lower

levels of 22 : 6n-3 in brain and retina compared with rats fed

18 : 3n-3 (Bourre et al. 1989) and had delayed electrophysiological

responses in the retina (Wheeler et al. 1975; Bourre et al. 1989)

together with poorer performance in behavioural tests of
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learning, memory and habituation (Lamptey & Walker, 1976;

Tinoco, 1982; Yamamoto et al. 1987; Bourre et al. 1989; Enslen

et al. 1991; Frances et al. 1996; Wainwright et al. 1998; Carrie

et al. 1999, 2000; Moriguchi et al. 2000). The poorer performance

in behaviour tests with rats fed n-3-deficient compared with

adequate diets may be due to alterations in the dopaminergic

(Delion et al. 1994; Chalon et al. 1998; Innis & LaPresa Owens,

2001; Zimmer et al. 2002), serotoninergic (Delion et al. 1994;

Kodas et al. 2004) or cholinergic (Aid et al. 2003) systems.

The activity of Naþ,Kþ-ATPase has also been shown to be lower

in rats fed diets deficient compared with adequate in 18 : 3n-3

(Bourre et al. 1989; Gerbi et al. 1994; Tsutsumi et al. 1995;

Bowen & Clandinin, 2002).

Evidence from human infant nutrition studies suggests that

feeding formulas with low n-3 PUFA leads to suboptimal cogni-

tive and visual functions (Willatts & Forsyth, 1998, 2000; Carl-

son & Neuringer, 1999; Jacobson, 1999; Birch et al. 2000);

however, the exact mechanisms by which alterations in the

membrane content of n-3 PUFA affect human brain functions

remains to be fully elucidated. Nevertheless, these studies

reinforce the essential nature of 22 : 6n-3 in rat and human

brain. The importance of 22 : 6n-3 in brain has given rise to

the question of whether 18 : 3n-3 is sufficient to enable the syn-

thesis of adequate amounts of 22 : 6n-3 for optimal brain growth

and development.

Astrocytes (glial cells) are essential for neurotransmission and

neuroprotection because they maintain the composition of the

extracellular milieu, respond to neuromediators and supply ener-

getic substrates to neurones (reviewed by Morgane et al. 1993).

Studies with isolated brain cells have provided evidence that

astrocytes and cerebroendothelial cells, but not neuronal cells,

can synthesise 20 : 4n-6 and 22 : 6n-3 from 18 : 2n-6 and 18 : 3n-

3, respectively (Moore et al. 1991; Moore 1993, 2001; Bernoud

et al. 1998; Willard et al. 2001, 2002). Further work has also

shown that neuronal cells take up 22 : 6n-3 released by astrocytes

and cerebroendothelial cells, and incorporate 22 : 6n-3 into neural

plasma membranes (Moore, 1993; Delton-Vandenbroucke et al.

1997). It is not, however, known whether the neuronal cell

requirement for 20 : 4n-6 and 22 : 6n-3 in vivo is derived from syn-

thesis from precursors by astrocytes and cerebroendothelial cells

or from the uptake of preformed 20 : 4n-6 and 22 : 6n-3 supplied

by the mother. Furthermore, these observations on the cellular

partitioning of 22 : 6n-3 synthesis in astrocytes and cerebroen-

dothelial cells are based primarily on the rat and are largely unde-

termined for the human brain.

In weanling rats, increasing maternal dietary 18 : 3n-3 by

decreasing the 18 : 2n-6 to 18 : 3n-3 fatty acid ratio from 7·3 : 1

to 4 : 1 increased the 22 : 6n-3 content only in neuronal cell phos-

phatidylethanolamine (PE) from the cerebellum during the first 2

weeks of life (Jumpsen et al. 1997a,b). Other phospholipids from

the frontal or hippocampal regions were not significantly affected

(Jumpsen et al. 1997a,b). Similarly, it has been shown that

increasing maternal dietary 18 : 3n-3 by lowering the 18 : 2n-6

to 18 : 3n-3 fatty acid ratio does not significantly increase the

22 : 6n-3 content in the phosphatidylcholine (PC), PE and phos-

phatidylserine (PS) of neuronal cells from whole brain of

2-week-old rat pups (Bowen et al. 1999). Taken together, these

studies suggest that astrocytes and cerebroendothelial cells may

not synthesise enough 22 : 6n-3 from 18 : 3n-3 to provide for

maximal levels of 22 : 6n-3 in the plasma membrane phospho-

lipids of neuronal cells in the brain.

It is not known whether maternal dietary 18 : 3n-3 compared

with 22 : 6n-3 can significantly increase the 22 : 6n-3 content of

glial cell phospholipids from whole brain (cerebrum and cere-

bellum) of rats. Previous studies have not examined high levels

of maternal dietary 18 : 3n-3 intake or the 22 : 6n-3 content of

isolated glial cells from whole brain. Therefore, the present

study used neonatal rat brains at 2 weeks of age, before the

consumption of solid food, to test the hypothesis that maternal

dietary 22 : 6n-3 but not 18 : 3n-3 will significantly increase the

22 : 6n-3 content of glial cell phospholipids of whole brain.

Materials and methods

Animals and diets

All animal procedures were approved by the University of Alberta

Animal Ethics Committee. Sprague-Dawley rats were obtained

from the University of Alberta vivarium. During breeding, three

females and one male were housed together for a 2 week

mating period. Females were then moved to individual cages in

a room maintained at 218C with a 12 h light and 12 h dark

cycle. Water and food were supplied ad libitum. Laboratory

rodent diet 5001 (PMI Feeds, Inc., St. Louis, MO, USA) was

fed to the rats when not receiving experimental diets. Dams

were switched to the experimental diet on the day of parturition.

All the litters were culled to twelve rat pups following parturition.

Rat pups received only maternal milk. Pups were killed at 2

weeks of age. One entire litter of rat pups fed the same diet

was sexed and weighed prior to decapitation. Excised brains

(cerebrum and cerebellum) were placed in ice-cold 0·32 mol/l

sucrose. Six brains from the same sex were pooled per sample.

The stomach contents of three rats from each litter were also

removed and analysed for fatty acid composition to reflect the

composition of maternal milk. Three litters per diet treatment

were used.

The basal diet fed to the dams contained 200 g total fat/kg diet

(Table 1). The fat level used in this study reflects a typical North

American diet in which approximately 40 % of total energy

derives from fat, and is closer to the high content of energy

from fat in human or rat milk. The different fat blends in the

basal diet were made by mixing vegetable and/or single-cell oils,

and each diet was designed to provide approximately 17 g/100 g

total fatty acids as 18 : 2n-6 (7·6 % energy 18 : 2n-6) so that

only the effects of n-3, and not those of n-6 fatty acids, on the

glial cell phospholipids of 2-week-old rat pups were studied.

Diet fats were formulated to approximate the fatty acid compo-

sition of an existing infant formula providing an 18 : 2n-6 to

18 : 3n-3 fatty acid ratio of 7·8 : 1 (control; 1·0 % energy

18 : 3n-3) (Jumpsen et al. 1997a,b). This fat blend served as the

control fat treatment. The diet with an 18 : 2n-6 to 18 : 3n-3

fatty acid ratio of 4·4 : 1 (medium linolenic acid (LNA); 1·7 %

energy 18 : 3n-3) and 1 : 1 (high LNA; 7·8 % energy 18 : 3n-3)

was obtained by the addition of flaxseed oil to the control diet.

The 22 : 6n-3 (docosahexaenoic acid (DHA); 0·3 % energy

22 : 6n-3) diet was achieved by the addition of 0·6 g/100 g total

fatty acids of 22 : 6n-3 to the control diet. The 20 : 4n-6 (AA;

0·5 % energy 20 : 4n-6) þ22 : 6n-3 diet was achieved by the

addition of 1 g/100 g total fatty acids of 20 : 4n-6 and 0·6 g/100 g

total fatty acids of 22 : 6n-3 to the control diet. The AA

(ARASCO) and DHA (DHASCO) were provided as single-cell

triacylglycerols, with 20 : 4n-6 from the fungus Mortierella
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alpina and 22 : 6n-3 from the algae Crypthecodinium cohnii

(Martek Biosciences, Columbia, MD, USA).

The amount of 20 : 4n-6 (1 g/100 g total fatty acids) and 22 : 6n-

3 (0·6 g/100 g total fatty acids) used in the present study has been

shown by Clandinin et al. (1989) to reflect the 20 : 4n-6 and

22 : 6n-3 content of human milk, and studies with preterm infants

have shown that supplementation with 22 : 6n-3 without the

addition of 20 : 4n-6 can reduce blood lipid 20 : 4n-6 and growth

(Carlson et al. 1992, 1996). All maternal diets, with the exception

of the high-LNA diet, contained similar total saturated, monoun-

saturated, n-6 and n-3 fatty acids. The increase in the level of

18 : 3n-3 in the high-LNA maternal diet was concurrent with a

decrease in the amount of saturated and MUFA, particularly,

16 : 0 and 18 : 1n-9 þ n-7, respectively.

These diets were nutritionally adequate, providing for all known

essential nutrient requirements (ingredients and concentration

(g/kg diet), respectively): fat 200; starch, 200; casein, 270; glucose,

207·65; non-nutritive fibre, 50; vitamin mix, 10; mineral mix, 50·85;

L-methionine, 2·5; choline 2·75; inositol, 6·25. The AOAC vitamin

mix (Teklad Test Diets, Madison, WI, USA) provided the following

per kilogram of complete diet: 6 mg vitamin A; 50mg vitamin D;

100 mg vitamin E; 5 mg menadione; 5 mg thiamine HCl; 8 mg ribo-

flavin; 40 mg pyridoxine HCl; 40 mg niacin; 40 mg pantothenic

acid; 2000 mg choline, 100 mg myoinositol; 100 mg p-aminoben-

zoic acid; 0·4 mg biotin; 2 mg folic acid; 30 mg vitamin B12. Bern-

hart Tomarelli mineral mix (General Biochemicals, Chargin Falls,

OH, USA) was modified to provide 77·5 mg Mn2þ and 0·06 mg

Se2þ per kilogram of complete diet.

To minimise any changes in sample composition due to fatty

acid oxidation, diets were sealed under N2 and stored in a freezer

at 230 8C in darkness. Each day, the required amount of diet was

mixed thoroughly and placed in individual feed cups.

Isolation of glial cells from whole brain

Glial cells were isolated from whole brain (cerebrum and cerebel-

lum) according to the method described by Sellinger & Azcurra

(1974). Briefly, pooled brains were placed in beakers containing

7·5 % (w/v) polyvinylpyrrolidone and 10 mmol/l CaCl2 at pH

4·7 and 25 8C. Brain tissue was minced and poured into a 20 ml

plastic syringe, fitted with a reusable filter unit (Swinnex disc

holder, 25 mm; Billerica, MA, USA). The samples were pressed,

three times each, through a series of combined nylon mesh filters.

The final filtrate volume was adjusted and then layered on a two-

step sucrose gradient of 1·0 mol/l and 1·75 mol/l. Gradients were

centrifuged in a Beckman SW-28 rotor (Beckman Instruments,

Palo Alto, CA, USA) at 41 000 g for 30 min at 4 8C.

Glial cells were obtained at the interface of 1·0 mol/l and

1·75 mol/l sucrose. Aliquots of glial cell samples were stained

with methylene blue and examined for purity under a light micro-

scope (1600 £ ; Carl Zeiss, oberkochen, Germany). Gel electro-

phoresis and immunoblotting were performed to ensure the

purity of the glial cell fraction prepared by these procedures

(Jumpsen et al., 1997a,b). Proteins isolated from glial cells

were compared by gel electrophoresis and immunoblotting with

glial fibrillary acid protein standard, an astrocyte-specific

marker, and neurofilament standard, a neuronal cell specific

marker (Jumpsen et al. 1997a,b; Ubl & Reiser, 1997).

Lipid extraction and fatty acid analysis

The glial cell lipid was extracted by a modified Folch method

(Folch et al. 1957). Individual phospholipids were separated by

TLC (Touchstone et al. 1980) and identified by comparison

with authentic phospholipid standards after visualisation with

0·1 g/100 ml aniline naphthalene sulphonic acid in water. Fatty

acid methyl esters from the individual phospholipids of glial

cells were prepared following the method of Morrison and

Smith (1964). Fatty acid methyl esters were separated by auto-

mated GLC (Varian model 6000 GLC equipped with a Vista

654 data system and a Vista 8000 autosampler; Varian Instru-

ments, Georgetown, ON, USA) using a bonded fused silica

BP20 capillary column (25 mm £ 0·25 mm inside diameter) and

quantified using a flame ionisation detector (Bowen et al. 1999;

Bowen & Clandinin, 2000). These conditions are capable of sep-

arating methyl esters of saturated, cis-monounsaturated and cis-

PUFA from 14 to 24 carbons in chain length. The quantitation

and identification of peaks was based on relative retention times

compared with known standards (PUFA 1 and 2, bacterial

methyl ester mix-14; Supelco Canada, Mississauga, ON,

Canada; Bowen & Clandinin, 2000).

Statistical analysis

The effect of maternal diet treatment on the fatty acid compo-

sition of glial cell PE, PS, PC and phosphatidylinositol (PI) was

assessed by a one-way ANOVA procedure using the SAS pack-

age, version 6.11 (SAS Institute Inc., 1988). Significant differ-

ences between maternal diet treatments were determined by a

post hoc Fisher’s least significant difference test at a significance

level of P,0·05 after a significant ANOVA (Steel & Torrie,

1960). Values are expressed as means and standard deviation

for n 6.

Table 1. Fatty acid composition of experimental diets fed to lactating dams

(g/100 g total fatty acids)

Dietary fat Control*

Medium

LNA†

High

LNA† DHA‡

AA þ

DHA§

12 : 0 8·4 9·4 6·0 7·5 7·7

14 : 0 5·2 5·5 3·6 5·3 5·3

16 : 0 14·0 13·9 11·4 14·6 14·5

18 : 0 7·4 6·9 6·4 7·3 7·4

18 : 1n-9 þ n-7 39·9 37·4 33·8 38·6 39·4

18 : 2n-6 17·2 16·6 17·6 16·2 16·5

18 : 3n-3 2·2 3·8 17·5 1·8 1·9

20 : 4n-6 ND ND ND ND 1·0

20 : 5n-3 ND ND ND ND ND

22 : 6n-3 ND ND ND 0·6 0·6

S Satk 35·0 35·7 27·4 34·7 34·9

S Mono{ 39·9 37·4 33·8 38·6 39·4

S n-6** 17·2 16·6 17·6 16·2 17·5

S n-3†† 2·2 3·8 17·5 2·4 2·5

18 : 2n-6 : 18 : 3n-3 7·8 4·4 1·0 9·0 8·7

AA, arachidonic acid; DHA, docosahexaenoic acid; LNA, linolenic acid; ND, not detected.

* Control diet approximates the fatty acid composition used in SMAw infant formula.

† Medium- and high-LNA diets were obtained by the addition of flaxseed oil to the control

diet.

‡ DHA was obtained by the addition of 0·6 g/100 g total fatty acids as 22 : 6n-3

triacylglycerols to the control diet.

§ AA þ DHA diet was obtained by addition of 1 g/100 g total fatty acids as 20 : 4n-6 and

0·6 g/100 g total fatty acids as 22 : 6n-3 triacylglycerols to the control diet.

kSum of saturated fatty acids.

{Sum of monounsaturated fatty acids.

** Sum of n-6 fatty acids.

†† Sum of n-3 fatty acids.
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Results

Whole-body and brain weights

Whole-body and brain weights were not significantly different

for male and female rat pups (data not shown); hence, statistical ana-

lyses to test the subsequent effects of diet treatments were combined

for both sexes. The whole-body and brain weights, and brain to body

weight ratio (data not shown), were not significantly different

among the five maternal diet treatments, indicating that whole

body and tissue growth in the 2-week-old rat pups was no different

between maternal diets with or without 22 : 6n-3. Mean final body

weights were 35·8 (SD 2·4) g, 35·9 (SD 2·4) g, 35·6 (SD 3·1) g, 36·1

(SD 1·2) g and 36·1 (SD 1·2) g for control, medium-LNA, high-

LNA, DHA and AA þ DHA maternal diet treatments, respectively.

Mean final brain weights were 1·21 (SD 0·2) g, 1·22 (SD 0·2) g, 1·21

(SD 0·2) g, 1·22 (SD 0·2) g and 1·23 (SD 0·2) g for control, medium-

LNA, high-LNA, DHA and AA þ DHA maternal diet treatments,

respectively. Differences in fertility were not observed between

the maternal dietary treatments.

Purity of glial cell preparations from whole brain

Glial cell preparations contained only minor cross contamination

(,5 %) from cell membrane fragments and microvessels, as

determined by microscopic examination. The glial cell samples

were all positive for glial fibrillary acid protein and negative for

neurofilament protein (data not shown). The presence of glial

fibrillary acid protein in glial cell samples from rat brain was pre-

viously verified by gel electrophoresis and immunoblotting

(Jumpsen et al. 1997a,b). These results indicate that the cell

preparations were primarily glial cells.

Fatty acid composition of stomach contents

The rat pup stomach contents at day 14 of life contained no par-

ticulates indicative of diet consumption and therefore reflected the

composition of their dams’ milk. The fatty acid composition of

the stomach contents of the rat pups was analysed. These analyses

have been shown to be similar to dams’ milk composition

(Nouvelot et al. 1983; Yonekubo et al. 1993; Lien et al. 1994;

Jumpsen et al. 1997a,b; Bowen et al. 1999; Moriguchi et al.

2000). The major fatty acids in the stomach contents of rat

pups fed maternal diets providing an 18 : 2n-6 to 18 : 3n-3 fatty

acid ratio of 7·8 : 1, 4·4 : 1 or 1 : 1, DHA or AA þ DHA at 2

weeks of age were 12 : 0, 14 : 0, 16 : 0, 18 : 1n-9 þ n-7 and

18 : 2n-6 (Table 2). The 22 : 6n-3 content was significantly

increased in the stomach of rat pups fed the DHA and

AA þ DHA maternal diets compared with the maternal diets pro-

viding an 18 : 2n-6 to 18 : 3n-3 fatty acid ratio of 7·8 : 1, 4·4 : 1 and

1 : 1 at 2 weeks of age (Table 2), indicating that the maternal diet-

ary fat fed in the present experiment produced similar changes in

the fat composition of the dams’ milk.

Glial cells phospholipid fatty acid composition

Consideration of the maternal diet-related changes in the present

study will be given to the 20 : 4n-6 and 22 : 6n-3 content of glial

cell phospholipids of rat pups at 2 weeks of age.

Phosphatidylethanolamine. The analysis of the fatty acid com-

position of glial cells from whole brain of 2-week-old rat pups fed

the different maternal diets is shown in Table 3. The predominant

fatty acids in PE were 16 : 0, 18 : 0, 20 : 4n-6 and 22 : 6n-3 (Table

3). There was no significant difference in the 20 : 4n-6 content of

glial cell PE among maternal diet treatments (Table 3). The

22 : 6n-3 content of glial cell PE was significantly increased with

rats fed the DHA and AA þ DHA maternal diet but not the diets pro-

viding a 18 : 2n-6 to 18 : 3n-3 fatty acid ratio of 7·8 : 1, 4·4 : 1 and

1 : 1 (P,0·0001; Table 3).

Phosphatidylserine. The fatty acid composition of glial cell

PS from whole brain of 2-week-old rat pups fed the different

maternal diets is shown in Table 4. The major fatty acids of

glial cell PS were 16 : 0, 18 : 0, 18 : 1n-9 þ n-7, 20 : 4n-6,

22 : 4n-6 and 22 : 6n-3 (Table 4). The 20 : 4n-6 content of PS

from glial cells was not significantly different among the maternal

diet treatments (Table 4). Feeding rat pups the DHA and

AA þ DHA maternal diet significantly increased the 22 : 6n-3

content of glial cell PS compared with the maternal diets provid-

ing an 18 : 2n-6 to 18 : 3 n-3 fatty acid ratio of 7·8 : 1, 4·4 : 1 and

1 : 1 (P,0·0001; Table 4).

Phosphatidylcholine. The predominant fatty acids observed

in PC were 16 : 0, 18 : 0 and 18 : 1n-9 þ n-7 (43–49 %, 9–16 %

and 20–22 % of the total fatty acids, respectively; Table 5).

Table 2. The content of fatty acids in the stomach of rat pups at 2 weeks of age (g/100 g total fatty acids)*

(Values are mean and SD with n 9 for each maternal diet)

Control Medium LNA High LNA DHA AA þ DHA

Diet fat Mean SD Mean SD Mean SD Mean SD Mean SD

10 : 0 7·2a 0·8 8·9a 1·9 6·9a 2·2 6·7a 0·7 6·2a 0·8

12 : 0 15·1a 0·4 16·0a 2·3 10·8c 0·6 13·8b 0·2 12·2b 0·1

14 : 0 15·3a 0·5 9·8b 0·5 7·2c 0·3 9·3 b 0·1 9·2b 0·1

16 : 0 17·7a 0·7 13·9bc 1·4 12·9c 0·4 14·9b 0·2 15·9b 0·2

18 : 0 3·4c 0·1 4·0b 0·2 4·8a 0·2 4·6a 0·1 4·8a 0·1

18 : 1n-9 þ n-7 24·7b 0·7 28·0b 1·5 26·7b 1·0 31·5a 0·8 29·2a 0·6

18 : 2n-6 12·5b 0·1 10·4c 0·1 13·7a 0·1 13·8a 0·2 13·1b 0·1

20 : 4n-6 0·5b 0·0 0·5b 0·1 0·5b 0·1 0·5b 0·0 1·1a 0·1

18 : 3n-3 1·6c 0·0 2·1b 0·1 8·8a 0·1 1·5c 0·0 1·6c 0·0

22 : 6n-3 0·1b 0·0 0·1b 0·0 0·2b 0·0 0·6a 0·0 0·7a 0·0

18 : 2n-6 to 18 : 3n-3 7·8 5·0 1·6 9·2 8·2

AA, arachidonic acid; DHA, docosahexaenoic acid; LNA, linolenic acid.
a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05; Fisher’s least significant difference test).

* For details of fatty acid composition of experimental diets, see Table 1 and p. 602.
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The 20 : 4n-6 and 22 : 6n-3 content of PC from glial cells was not

significantly different among the maternal diet treatments of

2-week-old rat pups (Table 5).

Phosphatidylinositol. PI represents approximately 4 % of the

total brain phospholipids (Green & Yavin, 1996a). The PI from

glial cells contained a large amount of saturated fatty acids, par-

ticularly 16 : 0 and 18 : 0 (9–15 % and 27–33 %, respectively;

Table 6). 20 : 4n-6 (28–34 %) and 22 : 6n-3 (7·5–8·3 %) present

in PI were the predominant n-6 and n-3 fatty acids, respectively

(Table 6). Similarly to PC, the 20 : 4n-6 and 22 : 6n-3 content of

glial cell PI was not significantly different among maternal diet

treatments of 2-week-old rat pups (Table 6).

Discussion

Two-week-old rat pups were used in the present study because, at

this age, very active brain growth occurs with a rapid accretion of

PUFA, especially 22 : 6n-3, for brain membrane synthesis (Sinclair

& Crawford, 1972; Dobbing & Sands, 1979). Therefore, the

demand for 22 : 6n-3 in 2-week-old rat pups for postnatal brain

growth and development is high and must be provided by the maternal

diet.

The present results establish the hypothesis that maternal dietary

22 : 6n-3 but not an increased intake of 18 : 3n-3 will significantly

increase the 22 : 6n-3 content of glial cell PS and PE from whole

brain (cerebrum and cerebellum) in 2-week-old rat pups. These

observations extend previous information (Jumpsen et al.

1997a,b) by establishing that maternal dietary 22 : 6n-3 is more

effective at increasing the 22 : 6n-3 content of whole brain glial

cell membrane phospholipid in 2-week-old rat pups than is feeding

low or high levels of maternal 18 : 3n-3. The results from the present

study are in accordance with other studies showing that rat brain

uses 22 : 6n-3 instead of 18 : 3n-3 to maintain the 22 : 6n-3 content

of membrane phospholipids (Sinclair, 1975; Anderson & Connor,

1988; Woods et al. 1996; Edmond et al. 1998). The present findings

also confirm in vitro studies using radiolabelled 18 : 3n-3 and

Table 3. Effect of low to high maternal dietary 18 : 3n-3 compared with feeding 22 : 6n-3 on the fatty acid compo-

sition of glial cell phosphatidylethanolamine (g/100 g total fatty acids)*

(Values are mean and SD with n 6 for each maternal diet)

Control Medium LNA High LNA DHA AA þ DHA

Diet fat Mean SD Mean SD Mean SD Mean SD Mean SD

14 : 0 1·5a 0·2 1·5a 0·2 1·6a 0·3 0·9a 0·1 1·0a 0·2

16 : 0 12·6b 0·2 13·7a 0·7 11·9b 0·3 8·8c 0·2 9·9c 0·5

18 : 0 21·8a 0·5 22·6a 0·6 21·4a 0·6 21·5a 0·1 21·4a 0·3

18 : 1n-9 þ n-7 7·8b 0·3 9·5a 0·3 8·2b 0·2 7·1c 0·1 7·3b 0·1

18 : 2n-6 0·4b 0·1 1·0a 0·1 0·8a 0·0 0·5b 0·0 0·4b 0·0

20 : 4n-6 18·7a 0·7 18·8a 0·4 19·3a 0·3 18·7a 0·2 19·1a 0·6

22 : 4n-6 6·8a 0·4 5·2b 0·4 6·6b 0·1 7·4a 0·4 6·5b 0·1

22 : 5n-6 1·9a 0·2 1·4a 0·1 1·8a 0·0 1·5a 0·0 1·8a 0·1

18 : 3n-3 0·1a 0·0 0·0a 0·0 0·0a 0·0 0·1a 0·0 0·0a 0·0

20 : 5n-3 0·0b 0·0 0·0b 0·0 0·3a 0·0 0·0b 0·0 0·3a 0·2

22 : 5n-3 0·2b 0·1 0·5a 0·1 0·7a 0·1 0·2b 0·1 0·4a 0·2

22 : 6n-3 24·1b 0·3 23·2b 0·6 24·3b 0·4 30·8a 0·4 28·6a 0·4

AA, arachidonic acid; DHA, docosahexaenoic acid; LNA, linolenic acid.
a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05; Fisher’s least significant difference test).

* For details of fatty acid composition of experimental diets, see Table 1 and p. 602.

Table 4. Effect of low to high maternal dietary 18 : 3n-3 compared to feeding 22 : 6n-3 on the fatty acid composition

of glial cell phosphatidylserine (g/100 g total fatty acids)*

(Values are mean and SD with n 6 for each maternal diet)

Control Medium LNA High LNA DHA AA þDHA

Diet fat Mean SD Mean SD Mean SD Mean SD Mean SD

14 : 0 0·5a 0·2 0·4a 0·1 0·3a 0·1 0·4a 0·1 0·3a 0·1

16 : 0 14·8a 0·1 13·1a 0·4 11·0a 0·8 9·2b 0·8 6·0c 0·2

18 : 0 36·2a 0·2 37·4a 0·9 35·9a 1·1 39·0a 2·6 35·8a 0·3

18 : 1n-9 þ n-7 8·3b 0·2 11·1a 0·1 10·6a 0·4 6·2c 1·4 7·4b 0·2

18 : 2n-6 0·4b 0·0 1·1a 0·2 0·9a 0·1 0·4b 0·0 0·3b 0·0

20 : 4n-6 6·3a 0·2 5·8a 0·2 5·8a 0·1 5·6a 0·1 6·3a 0·1

22 : 4n-6 4·8b 0·4 3·7c 0·2 4·3b 0·2 5·2b 0·1 6·6a 0·1

22 : 5n-6 2·3b 0·3 1·8b 0·1 1·9b 0·1 1·9b 0·1 2·9a 0·1

18 : 3n-3 0·0a 0·0 0·2a 0·1 0·1a 0·1 0·0a 0·0 0·0a 0·0

20 : 5n-3 0·1a 0·1 0·5a 0·2 0·9a 0·4 0·0a 0·0 0·4a 0·1

22 : 5n-3 0·4b 0·1 0·4b 0·0 0·6a 0·0 0·4b 0·0 0·4b 0·0

22 : 6n-3 23·1b 0·6 21·4b 0·8 22·6b 0·7 29·1a 1·7 31·0a 0·3

AA, arachidonic acid; DHA, docosahexaenoic acid; LNA, linolenic acid.
a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05; Fisher’s least significant difference test).

* For details of fatty acid composition of experimental diets, see Table 1 and p. 602.
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22 : 6n-3 that astrocytes’ incorporation of preformed 22 : 6n-3 far

exceeds the efficiency with which 18 : 3n-3 can be converted to

22 : 6n-3 for membrane lipids (De la Presa Owens & Innis, 1999;

Willard et al. 2001; Innis & Dyer, 2002; Champeil-Potokar et al.

2004). In fact, the limiting step in the metabolism of 18 : 3n-3 to

22 : 6n-3 in astrocytes has been shown to be at the level of elongation

to the 24-carbon chain metabolites (Innis & Dyer, 2002). Other

animal and human studies have also shown that preformed

22 : 6n-3 is more efficient in supporting organ 22 : 6n-3 composition

than 18 : 3n-3 (Salem et al. 1996; Sauerwald et al. 1996; Abedin

et al. 1999; Uauy et al. 2000). The reason that preformed 22 : 6n-3

is more bioavailable than 18 : 3n-3 for membrane lipids is because

it is a poor substrate for peroxisomal and mitochondrial b-oxidation

pathways and it is preferentially acylated into membrane phospho-

lipids (Sinclair, 1975; Leyton et al. 1987; Anderson & Connor,

1988; Madsen et al. 1998).

Increasing the maternal dietary 18 : 3n-3 content eight-fold

(Table 1) did not significantly increase the 22 : 6n-3 content in

PE, PS, PC and PI from glial cells compared with feeding

maternal diets containing 22 : 6n-3. The lack of significant

increase in 22 : 6n-3 in rat pups fed the high-LNA maternal diet

may be explained by d-6 desaturase, the rate-limiting enzyme in

the synthesis of 22 : 6n-3, not being fully active at 2 weeks of

age (Bernhart & Sprecher, 1975). Rodent studies have demon-

strated that liver (Nouvelot et al. 1986), astrocytes (Moore et al.

1990, 1991), choroid plexus (Bourre et al. 1997) and microvessel

endothelial cells (Delton-Vandenbroucke et al. 1997) have d-6

desaturase activity and that 18 : 3n-3 is converted to 22 : 6n-3 in

these cell types (Ravel et al. 1985; Sanders & Rana, 1987;

Bourre et al. 1990). Whether rat pups at 2 weeks of age are

able to convert sufficient amounts of 18 : 3n-3 into 22 : 6n-3 to

provide for the maximal incorporation of 22 : 6n-3 into glial cell

Table 5. Effect of low to high maternal dietary 18 : 3n-3 compared to feeding 22 : 6n-3 on the fatty acid composition

of glial cell phosphatidylcholine (g/100 g total fatty acids)*

(Values are mean and SD with n 6 for each maternal diet)

Control Medium LNA High LNA DHA AA þDHA

Diet fat Mean SD Mean SD Mean SD Mean SD Mean SD

14 : 0 1·7a 0·0 0·6b 0·7 0·8b 0·0 1·6a 0·0 1·5a 0·1

16 : 0 48·5a 0·3 43·4b 5·9 48·6a 0·3 45·2b 0·3 43·5b 0·5

18 : 0 8·9b 0·0 15·9a 5·2 13·9a 0·3 11·8b 1·1 10·1b 0·2

18 : 1n-9 þ n-7 20·4a 0·0 19·7a 1·0 20·7a 0·2 21·1a 0·2 20·8a 0·0

18 : 2n-6 1·2b 0·0 2·3a 1·2 1·4b 0·0 1·1b 0·1 1·0b 0·0

20 : 4n-6 7·7a 0·1 6·2a 1·9 6·8a 0·3 5·1a 0·7 7·4a 0·3

22 : 4n-6 0·6a 0·1 0·3a 0·4 0·6a 0·1 0·6a 0·1 0·8a 0·1

22 : 5n-6 0·1a 0·0 0·0a 0·0 0·1a 0·0 0·1a 0·0 0·2a 0·0

18 : 3n-3 0·0a 0·0 0·0a 0·0 0·0a 0·0 0·0a 0·0 0·0a 0·0

20 : 5n-3 0·0a 0·0 0·7a 1·4 0·0a 0·0 0·0a 0·0 0·1a 0·1

22 : 5n-3 0·1b 0·0 0·7a 0·4 0·1b 0·0 0·1b 0·0 0·1b 0·0

22 : 6n-3 3·3a 0·1 3·1a 0·9 3·1a 0·3 3·1a 0·3 3·3a 0·2

AA, arachidonic acid; DHA, docosahexaenoic acid; LNA, linolenic acid.
a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05; Fisher’s least significant difference

test).

* For details of fatty acid composition of experimental diets, see Table 1 and p. 602.

Table 6. Effect of low to high maternal dietary 18 : 3n-3 compared to feeding 22 : 6n-3 on the fatty acid composition

of glial cell phosphatidylinositol (g/100 g total fatty acids)*

(Values are mean and SD with n 6 for each maternal diet)

Control Medium LNA High LNA DHA AA þDHA

Diet fat Mean SD Mean SD Mean SD Mean SD Mean SD

14 : 0 0·6a 0·0 0·3a 0·0 0·7a 0·1 0·6a 0·1 0·7a 0·1

16 : 0 8·9b 1·2 11·3b 0·5 15·3a 0·4 9·0b 0·4 10·6b 0·5

18 : 0 33·1a 0·5 33·4a 0·5 29·6b 0·2 27·8c 0·4 26·6c 1·4

18 : 1n-9 þ n-7 7·6a 0·4 8·0a 1·8 8·8a 0·2 6·8a 0·2 8·7a 0·5

18 : 2n-6 0·6a 0·0 0·7a 0·1 0·7a 0·2 0·6a 0·1 0·4a 0·0

20 : 4n-6 33·6a 0·9 29·1a 2·2 28·3a 1·1 32·9a 0·9 31·7a 0·9

22 : 4n-6 1·3a 0·3 2·6a 0·7 2·0a 0·5 1·7a 0·1 2·2a 0·2

22 : 5n-6 0·5b 0·1 1·0a 0·1 1·0a 0·1 0·4b 0·1 0·6b 0·1

18 : 3n-3 0·1a 0·0 0·2a 0·0 0·1a 0·0 0·2a 0·1 0·0a 0·0

20 : 5n-3 0·2a 0·0 0·4a 0·1 0·3a 0·1 0·8a 0·4 0·2a 0·0

22 : 5n-3 0·2b 0·0 0·2b 0·0 0·4a 0·0 0·1b 0·0 0·1b 0·0

22 : 6n-3 7·5a 0·5 7·5a 0·2 7·8a 0·8 8·2a 0·8 8·3a 0·9

AA, arachidonic acid; DHA, docosahexaenoic acid; LNA, linolenic acid.
a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05; Fisher’s least significant difference

test).

* For details of fatty acid composition of experimental diets, see Table 1 and p. 602.
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membrane phospholipid synthesis is not known. The findings

from the present study with glial cells are in agreement with

those of our previous study showing that low to high maternal

18 : 3n-3 diets do not significantly increase the 22 : 6n-3 content

of neuronal cell membrane phospholipids (Bowen et al. 1999).

It is also conceivable that the lack of a significant increase in

22 : 6n-3 content of glial cell phospholipids in 2-week-old rat

pups when fed low to high maternal 18 : 3n-3 may be the result

of competitive d-6 desaturase inhibition. An excess of 18 : 3n-3

from flaxseed oil might provide for the synthesis of some

20 : 5n-3 in the initial phase of the synthetic pathway to 22 : 6n-

3, but the excess of 18 : 3n-3 might have suppressed the final d-

6 desaturase step needed to produce 24 : 6n-3 from 24 : 5n-3,

with subsequent retroconversion to 22 : 6n-3 in the peroxisomes

(Voss et al. 1991; Sprecher et al. 1999; Sprecher, 2000; Ferdinan-

dusse et al. 2001). However, whether the d-6 desaturase respon-

sible for the desaturation of 18 : 3n-3 and 24 : 5n-3 is the same

or a different enzyme is not completely understood (Sprecher

et al. 1999).

In 2-week-old rat pups, the metabolic fate of feeding a high

maternal 18 : 3n-3 diet is a deposition of 18 : 3n-3 in the skin,

including subcutaneous fat and adipose tissue (Bowen & Clandi-

nin, 2000; Fu & Sinclair, 2000; Bazinet et al. 2003a,b), b-oxi-

dation to acetyl-CoA, which is recycled into cholesterol and

non-essential fatty acids, or further metabolism to CO2 (Cunnane

et al. 1994, 1999; Sheaff-Greiner et al. 1996; Menard et al. 1998;

DeLany et al. 2000; Bazinet et al. 2003a,b).

The 20 : 4n-6 content of glial cell PE, PS, PC and PI was not

significantly different between rat pups fed the different maternal

diet treatments at 2 weeks of age, and these findings corroborate

those reported for guinea-pig brain (Kurvinen et al. 2000), rat

brain microsomes (Garcia et al. 1998) and rat pineal gland

(Zhang et al. 1998). The reason for the non-significant difference

in the 20 : 4n-6 content of individual phospholipids of rats fed the

different maternal diet treatments may be explained by the

20 : 4n-6 present in the stomach contents (see Table 2). It is poss-

ible that the level of the 20 : 4n-6 (.0·5 % of the total fatty acids)

present in the stomach contents of rat pups may be sufficient to

prevent a significant decrease in the 20 : 4n-6 content of PE, PS,

PC and PI of glial cells from whole brain of 2-week old rat pups.

In early postnatal rat brain, PE and PS constitute approximately

30 % and 6 % of the total phospholipids, respectively (Green &

Yavin, 1995, 1996a,b, 1998). Both PE and PS in brain are particu-

larly enriched in 22 : 6n-3 (Breckenridge et al. 1972; Salem et al.

1980; Sastry, 1985; Martinez, 1989; Salem et al. 2001) and con-

tain most of the 22 : 6n-3 (approximately 92 %) esterified into the

total brain phospholipids by the first week of postnatal life (Green

& Yavin, 1995, 1996a,b). Therefore, any changes in whole-brain

glial cell 22 : 6n-3 content caused by the maternal dietary fat treat-

ments used in this study should be detected in PE and PS.

The functional implications of an increase in the 22 : 6n-3 con-

tent of PE and PS of the glial cells of rat pups fed maternal diets

with 22 : 6n-3 on 2-week-old rat pups is not known. Investigations

of functional changes associated with an increase in the 22 : 6n-3

content of PE and PS from glial cells would be of great interest

since modification of the PUFA content of cell membranes has

a large impact on membrane properties and the functioning of a

variety of membrane-associated proteins such as transporters,

enzymes, and receptors (reviewed by Spector & Yorek, 1985

and Clandinin, 1997; Huster et al. 1998; Mitchell & Litman,

1998). Microarray analysis has recently shown that a diet

enriched in 22 : 6n-3 can induce changes in brain and hippocam-

pal expression of 100 and 23 genes, respectively (Barcelo-Coblijn

et al. 2003; Puskas et al. 2003; Kitajka et al. 2004).

PS is involved in variety of cell functions (Salem & Niebylski,

1995) such as signal transduction, via its activation of several pro-

tein kinase C isoforms (Bell & Burns, 1991) or Raf-1 kinase, to

cell membranes (Ghosh et al. 1996), the modulation of synaptoso-

mal benzodiazepine receptors (Levi deStein et al. 1989) and

increases in synaptic efficiency (Borghese et al. 1993). The

22 : 6n-3 content in PS has been shown to modulate signal transduc-

tion pathways by increasing the PS content in neuronal membranes,

which in turn promotes the activation of Raf-1 and PI-3 kinase path-

ways (Garcia et al. 1998; Hamilton et al. 2000; Kim et al. 2000;

Akbar & Kim, 2002; Murthy et al. 2002). The Raf-1 and PI-3

kinase pathways are involved in inducing neurite growth in PC12

and H19-7 hippocampal cell lines (Wood et al. 1993; Kuo et al.

1996; Kobayashi et al. 1997; Kita et al. 1998; Calderon & Kim,

2004). Both PE and PS synthesis have also been shown to be stimu-

lated by 22 : 6n-3 in differentiated PC12 cell lines (Ikemoto et al.

1999). Hence, as neurite growth requires newly synthesised mem-

brane components, this mechanism may play an important role in

promoting neurite growth (Ikemoto et al. 1999). These studies

therefore support the idea that the maternal diet-induced alterations

in glial cell 22 : 6n-3 content observed in both PE and PS in the pre-

sent study may have a physiological impact.

In conclusion, the findings from this study demonstrate that

maternal dietary 22 : 6n-3 is more effective in increasing the

22 : 6n-3 content of PE and PS in glial cells from whole brain

in 2-week-old rat pups than maternal dietary 18 : 3n-3. In both

2-week-old rat pups and 6-month-old human infants, early glio-

genesis and macroneurogenesis have been completed, whereas

microneurogenesis, late gliogenesis and myelination are continu-

ing in both species during this period (reviewed by Morgane et al.

1993). Rat pups and human infants have a similar metabolic path-

way for the synthesis of 20 : 4n-6 and 22 : 6n-3 via the desatura-

tion and elongation of precursors. Rodents have a markedly

higher desaturase activity than human infants (Cunnane et al.

1984; Horrobin et al. 1984). It is thus reasonable to speculate

that infants may produce relatively less 22 : 6n-3 in glial cell

phospholipids compared with 22 : 6n-3 production by rat pups

fed the same level of 18 : 3n-3.
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