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ABSTRACT The ubiquity of data in the twenty-first century provides unprecedented oppor-
tunities for social science research, but it also creates troubling possibilities for privacy
violations. The emerging field of statistical disclosure control (SDC) studies how data col-
lectors and analysts can find an optimal solution to balancing privacy protection and data
utility. This article introduces SDC to readers in the applied political science research com-
munity and outlines its implications for analyzing individual-level data. The vocabulary of
SDC is introduced and is followed with a discussion emphasizing just how easy it is to
break almost any release of supposedly “anonymized” data. The article then describes how
SDC measures almost always destroy the ability of researchers to accurately analyze com-
plex survey data. These results are in conflict with increasing trends toward greater trans-
parency in the social sciences. A discussion of the future of SDC concludes the article.

“You have zero privacy anyway. Get over it.”

—Scott McNealy, CEO, Sun Microsystems
January 25, 1999

In the fall of 2006, the popular online DVD rental service
Netflix announced a competition to help improve its abil-
ity to make movie recommendations to subscribers. Most
Netflix users record their movie preferences using a five-
star rating system, and the company decided to leverage

its extensive ratings database to develop better predictive models
of subscriber tastes. Toward this end, a subset of the data was
released to the public along with an announcement of a $1 mil-
lion prize to be awarded to the person or team who developed the
most accurate recommendation algorithm. Recognizing that many
subscribers would not want their preferences publicly known, Net-
flix promised that the data file had been stripped of all potentially
identifying information before release. In early 2008, however,
two researchers from the University of Texas announced that they
had breached the anonymization of the Netflix Prize dataset and,

using external information collected from member profiles on the
Internet Movie Database website, were able to learn about sub-
scribers’ political and religious preferences (Narayanan and Shma-
tikov 2008).

The story of the Netflix Prize is a prominent example of the
paradox of twenty-first century research. Scholars are awash in
vast amounts of data, which—along with the enormous storage
capacity and processing power of modern computers—make it pos-
sible to study social phenomena in unprecedented ways. At the
same time, the amount of information that researchers, govern-
ments, and private companies collect about individuals raises trou-
bling questions about privacy (National Research Council 2007).
Indeed, as the Netflix Prize database demonstrates, it may be pos-
sible to recover subject identities even when overt identifiers have
been altered or removed entirely. Variables that, on their own,
seem benign may be used in combination to identify a respon-
dent, while one dataset may be merged with another to gain suf-
ficient auxiliary information to locate unique subjects (Bethlehem,
Keller, and Pannekoek 1990; Jaro 1989). The result is that guaran-
teeing the protection of privacy in any data collection project is
far more ambiguous than many people realize.

In the face of increasing concerns with privacy protection, the
field of statistical disclosure control (SDC) developed to quantify
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both the risk of subject reidentification and the effects of privacy
protection measures on data utility (Willenborg and de Waal
2001). There are two reasons why political scientists ought to
pay attention to this literature. First, the findings have direct
implications for how social science researchers share their results,
as evolving norms of transparency and replication lead more and
more researchers to post their data and syntax files online (Freese
2007; King 1995; McDermott 2010). SDC provides guidelines for
determining levels of disclosure risk present in a data file, but
unfortunately most publications related to SDC appear in jour-
nals from the fields of statistics and computer science. This arti-
cle describes the SDC literature and its application in the context
of political science research. Second, privacy promises to be a
fundamental political issue in the twenty-first century. The clas-
sic tension between regulation and innovation will play out over
issues of data access. Recent controversies about Facebook pri-
vacy settings and Google’s inadvertent collection of private data
represent potential harbingers of future controversies. Debates
about the political ramifications of privacy issues require an under-
standing of the technical issues involved with SDC. It is hoped
that this article contributes to such an understanding.

The article develops as follows. The first section introduces
the field of SDC by defining key terms, describing how research-
ers quantify risk, identifying options to minimize risk, and out-
lining how these decisions affect the usefulness of a data file. A
subsequent section describes the implications of SDC for politi-
cal science research, viz. the problems it introduces for variance
estimation in complex surveys. A final section outlines where the
field of SDC is headed.

THE FIELD OF STATISTICAL DISCLOSURE CONTROL

The Netflix Prize deanonymization is not the only recent case illus-
trating threats to individual privacy in the modern, data-rich era.
In the late 1990s, a privacy researcher was able to merge informa-
tion from voter registration files with a database she purchased from
the Group Insurance Commission of Massachusetts to uniquely
identify health records for Massachusetts state governor William
Weld (Sweeney 1997, 2002). In 2006, AOL released web search data
from 658,000 (supposedly deidentified) users for the benefit of
any interested researcher. It was quickly determined, however,
that many search histories could easily lead to reidentification and
reveal sensitive or embarrassing information (Hansell 2006). That
same year, geographers used minimally detailed maps published
in newspapers to reengineer the exact locations of houses in which
bodies were recovered following Hurricane Katrina (Curtis, Mills,
and Leitner 2006). The findings, the authors noted, have implica-
tions for any epidemiological map displaying disease outbreaks.
In 2009, two researchers from Carnegie Mellon University used data
from the Social Security Administration’s Death Master File to
develop a statistical model that predicts with great accuracy—on
the basis of knowing only date and place of birth—the social secu-
rity number of anyone born in the United States (Acquisti and Gross
2009). Those results demonstrate that privacy risks are pervasive
in a data-rich environment, including risks to individuals who
have not contributed any information to a particular statistical
database. Indeed, the social security study exemplifies an impos-
sibility result from the SDC literature—discussed later—showing
that absolute privacy protection can never be guaranteed.

Sweeney (2000) has suggested that it is possible to uniquely
identify about 87% of the US population on the basis of gender,

birth date, and zip code alone. This information is easily merged
with publicly available data sources, such as voter registration
files, to determine the proper names of subjects. Given that an
abundance of data raises concerns for privacy, data providers take
careful steps to minimize the risk of disclosure through masking
potentially sensitive variables before public release. Yet, it is well
known that many of the most commonly used masking tech-
niques diminish the analytic usefulness of the information (Bia-
lik, 2010). Therefore, finding the optimal trade-off has led to the
emerging field of statistical disclosure control (SDC).

The Vocabulary of SDC
In 1977, statistician Tore Dalenius suggested that privacy protec-
tion in databases should be defined according to the amount of
new information one can learn about an individual after seeing a
data file. It was not for another decade, however, before the field
of SDC developed an identity of its own. In the mid-1980s, a hand-
ful of researchers began proposing early frameworks for thinking
about risks to the privacy of study subjects (Duncan and Lambert
1986). Before then, statisticians and computer scientists acknowl-
edged the presence of disclosure risk in microdata files (data files
with information collected on individuals), but little accumula-
tion of knowledge existed in the field. For example, computer sci-
entists had been working for decades to find ways to merge cases
from different databases in which the matching variables were
imperfectly recorded (Fellegi and Sunter 1969; Jaro 1989). How-
ever, these linkage algorithms were presented as helpful tools for
improving information systems rather than as a potential means
for breaching privacy. At the same time, data collection agencies
such as the US Census Bureau recognized the potential for inad-
vertent disclosure through the release of both microdata files and
data summary tables. Nonetheless, there was little guidance on
how to alter data files in a manner that would retain the useful-
ness of the information (Willenborg and de Waal 2001).

The work of Duncan and Lambert provided both a vocabulary
and framework for thinking about disclosure risk (Duncan and
Lambert 1986, 1989; Lambert 1993). They defined an intruder
(sometimes also called an adversary) as a person or organization
seeking to identify a record or multiple records in a data file. The
intruder has a certain amount of prior information about the
records that, on viewing the released data, is updated to form a
posterior assessment of the probability that a case in the file can
be matched to a real person. A wide range of possible scenarios
describe both intruders’ prior knowledge and their motivation for
attempting an identification. An intruder may know for certain
that a case is in the released file, may suspect with some probabil-
ity that the person is present, or may not know of any cases in the
file but simply wants to identify anyone to discredit the data col-
lecting agency (Paaß, 1988). The amount of risk in the Duncan
and Lambert framework therefore depends on assumptions about
an intruder’s knowledge combined with the amount of informa-
tion in the released data.

The variables that an intruder will attempt to use to identify a
subject are known as keys, which are sometimes also called quasi-
identifiers because they do not explicitly reveal an individual’s name
but can be used to deduce or infer subject identities. It is never
sufficient to consider each key variable on its own, as key values
are most revelatory when they are combined to produce sparsely
populated cells in an m-dimensional table (for m keys). For exam-
ple, variables measuring gender, occupation, income, and state of
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residence may seem benign in isolation. However, if a case in a
data file happened to correspond to, say, a wealthy female public
servant from Alaska, the number of possible matches would
decrease dramatically. Thus, every variable that can be used as a
key must be identified and all of the possible value combinations
must be examined.

Before looking at how researchers have attempted to formalize
disclosure risk, however, the next section describes steps that stat-
isticians have developed to make privacy breaches more difficult.
These steps will be introduced first because, as the subsequent sec-
tion will show, they still fail to provide absolute security and may
entail unacceptably high levels of degradation to data quality.

Masking Sensitive Data
One of the earliest approaches to masking sensitive data, and
one which is still used today by organizations such as the United
States Census Bureau, is known as data swapping (Reiss 1984;
Zayatz 2006). Data swapping consists of interchanging values
on key variables between similar units, thereby introducing greater
uncertainty into an intruder’s attempts to claim a definitive iden-
tification. One common approach to swapping is to switch cases
across different geographic units, although swapping can take
place with reference to nonspatial data as well.

The formulas used to carry out data swaps are designed to
ensure that relationships between the swapped variables are
retained. That is, the covariances among all the swapped vari-
ables will be approximately the same both before and after
exchanging values. This makes it possible to test multivariate
hypotheses when only swapped variables are included in the
model or when only nonswapped variables are included. Estima-
tion becomes problematic, however, when relationships between
the swapped and nonswapped variables are explored, as the orig-
inal relationships are not necessarily retained.

A second technology comes from the development of algo-
rithms for microaggregation, a process in which continuous or cat-
egorical variables are optimally collapsed into broader categories
and then assigned the average score from those assigned group-
ings. The goal of microaggregation is to coarsen the data so that
the cells in m-dimensional tables constructed from the key vari-
ables are more highly populated. This should be done, however,
in a manner that minimizes the loss of variance in the masked
variables (Defays and Anwar 1998; Domingo-Ferrer and Mateo-
Sanz 2002). The microaggregation algorithm determines the opti-
mal cut-points for the different groupings, and innovations in
microaggregation allow the process to be extended to account for
multivariate relationships. Despite the optimization of threshold
decisions, however, the resulting masked data always contain less
information than the original, which in turn attenuates the
researcher’s ability to make firm statements about relationships
between variables.

Another classic approach to data masking is to supplement
observations with random noise (Doyle et al. 2001; Duncan and
Mukherjee 2000). Adding a stochastic component to observa-
tions using any commercial statistical package is easy, and the
resulting error in the masked variables again obfuscates a record’s
true identity. Nonetheless, there are two major limitations to the
random perturbation approach. First, the amount of noise required
to ensure protection may be substantial, which in turn can dra-
matically alter relationships between perturbed and nonper-
turbed variables. Second, and more important, the security gains

may be illusory for basic applications of additive noise, making
even more sophisticated perturbation methods necessary, which
in turn increases the burden on the data provider (Kargupta and
Datta 2003).

Another approach to data protection is simply suppressing (that
is, recode as missing) observations and variables. The m-Argus
SDC software system contains algorithms for optimally suppress-
ing only certain high-risk cells in a data file (Hundepool et al.
1998; Willenborg and de Waal 2001). Cell suppression, as opposed
to deleting variables or cases in their entirety, allows retention of
a maximal amount of information in a data file while guarantee-
ing that unique key combinations are removed. The cost, of course,
is that some information is still lost, even if the amount of miss-
ing data has been minimized. Similar methods and trade-offs exist
for top- and bottom-coding variables (e.g., recoding all incomes
above $100,000 to be $100,000).

Finally, a recent innovative alternative has been the release of
entirely synthetic data files simulated to look like the original.
Because this approach is still in early development, it is examined
in the final section of this article.

Defining and Measuring Risk
Attempts to measure risk have gone hand-in-hand with attempts
to provide an acceptable definition of privacy. Thus, different types
of privacy have been proposed along with algorithms to provide a
data file whose contents are consistent with the authors’ particu-
lar privacy definition. Only recently has a relatively robust form
of privacy protection been proposed, but it requires a different
way of thinking about doing research.

An early and intuitive privacy definition was k-anonymity
(Sweeney 2002). A microdata file achieves k-anonymity when com-
binations of the key variables occur at least k times in the records.
The higher the value for k, the more difficult it is for an intruder
to claim with certainty to have made a correct linkage. A data
agency can set a threshold for an acceptable level of k-anonymity
and, if a file does not yet meet the threshold, the data curating
agency can mask or suppress observations until k-anonymity has
been reached. Although k-anonymity captures the problem of
uniqueness among observations, k-anonymity is an incomplete
guarantee of privacy protection.

Machanavajjhala et al. show two ways to break k-anonymity
(Machanavajjhala et al. 2006). In the first, a group of individuals
within one subgroup sharing identical values on the key variables
may also be homogenous on a sensitive attribute. If k-anonymity
is set at eight, and all eight individuals in a group have the same
illness, then it is possible to deduce that an individual has an
illness even if his or her exact record is not known. In a second
attack, the intruder uses information about the distribution of
characteristics in the population to locate an individual’s record.
For example, more than one illness may be listed within a group-
ing of k individuals. However, additional information, such as
race or ethnicity, can rule out some of the values if an illness is
rare in the population for similar individuals.

Machanavajjhala et al. thus introduce an alternative model of
privacy termed �-diversity, which stipulates that each grouping of
variables (created, for example, with microaggregation) has � “well-
represented” values of the sensitive variables (Machanavajjhala
et al. 2006). The meaning of “well-represented” varies depending
on different instantiations of the �-diversity principle. The authors
show that meeting �-diversity provides protection against both
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types of attacks they described in the context of k-anonymity. Yet,
shortly after �-diversity was introduced, it too was breached by
multiple researchers. Li, Li, and Venkatasubramanian show that
�-diversity is problematic for skewed distributions on sensitive
variables, such as would obtain if an illness (the sensitive attribute)
were present in less than 5% of the population (Li, Li, and Ven-
katasubramanian 2007). Li, Li, and Venkatasubramanian suggest
t-closeness as an alternative criterion, which specifies that the dis-
tribution of sensitive values within a subgrouping should reflect
its distribution in the overall table. In a separate paper, Xiao and
Tao show that neither k-anonymity nor �-diversity provide much
protection to dynamic databases whose cases are added and deleted
at different times (Xiao and Tao 2007). They propose a concept
called m-invariance as another alternative.

Recognizing that a vexatious break-propose-break cycle was
developing in the field of SDC, several researchers at Microsoft
developed a more formalized definition of privacy. Their defini-
tion clarifies what it means to compromise anonymized data with-
out falling back on the kinds of ad hoc formulations offered with
each new SDC break (Dwork et al. 2006). Dwork (2006) illustrates
the difficulty of this task by proving an impossibility result. She
shows that absolute privacy—in the terms suggested by Dalenius
in 1977—could never be obtained due to the omnipresence of exter-
nal sources of information. Because complete disclosure control
is impossible, Dwork argues in favor of tying measures of privacy
protection to the amount of risk that exists to an individual for
participating in a database. Although such a definition gives up
on the hope for absolute privacy protection, it nonetheless
addresses data collectors’ concern that a privacy breach will dis-
courage potential subjects from participating in future studies.
Reticence vis-à-vis study participation can be ideally reduced if
subjects are convinced that taking part will not pose much of a
privacy threat beyond what exists without participating.

Dwork’s privacy principle is termed differential privacy, and its
key innovation is to define privacy not in terms of the database—
which essentially all prior work in the field had done—but to define
it in terms of the types of queries made against the database. Pri-
vacy definitions tied to the database itself will always be breach-
able given some additional knowledge, whereas defining privacy
in terms of the function queried against the dataset eliminates
the need to worry about auxiliary information. A query made
against the data can achieve a predetermined level of differential
privacy by introducing an element of random noise to the result
of the query (as opposed to adding noise to each observation, as
previously described). The amount of noise depends, in turn, on
the sensitivity of the function, which is defined as the maximal
amount of change possible in the function’s value after removing
any single case from the database.

Two major drawbacks to differential privacy have limited its
widespread use. First, except for very simple count queries, dif-
ferential privacy requires a large amount of noise addition, so
that inferences become highly unreliable (Muralidhar and Sara-
thy 2010). Second, differential privacy requires a different under-
standing of handling data. For example, social scientists are
accustomed to downloading a data file and having the raw data
available to manipulate and query. Differential privacy only works
if the microdata are not accessible and if software for differential
privacy protecting queries exists that is both widely accessible
and user friendly. Such software is a long way off, and its wide-
spread use requires a reorientation of how researchers interact

with data. Thus, most suppliers of social science data will con-
tinue to use masking techniques to meet the more rudimentary
privacy definitions.

Measures of Data Utility
If achieving k-anonymity or a similar measure of privacy were
possible and robust to privacy breaches, the amount of data alter-
ation required to reach the specified level of security may be sub-
stantial. Consequently, data users will be very interested in
knowing how much useful information remains in a masked data
file. Several measures of data utility thus have been proposed to
help inform end users.

Domingo-Ferrer and Torra (2001a,b) summarize the measures
for assessing the utility of both continuous and categorical vari-
ables as being based on the idea that a masked file should look
like the original as much as possible. As one option, they propose
estimating mean square or mean absolute errors between the orig-
inal and masked values. For non-continuous variables, Domingo-
Ferrer and Torra suggest categorical analogs to distance-based
measures, such as the maximum number of categories that fall
between a masked ordinal variable and its original value. They
also suggest a measure based on Shannon’s entropy (Gomatam
and Karr 2003; Willenborg and de Waal 2001), a concept devel-
oped in communication theory to measure the amount of distor-
tion in a signal that is sent over a noisy channel.

Willenborg and de Waal (2001) provide a thorough explana-
tion of the intuition behind adapting Shannon’s entropy to quan-
tify information loss. The intruder’s goal is to reconstruct an
original dataset, but the intruder only observes a noisy signal about
the content of the original file by examining the released (masked)
data. From the released data and some knowledge of the masking
procedure, the intruder considers the probabilities of different pos-
sible original datasets that could have been generalized to pro-
duce the one dataset that is publicly available. The entropy of the
distribution with the highest probability, H (Old|New), is then
taken to be the measure of information loss.

Gomatam and Karr also provide a comprehensive list of infor-
mation loss metrics for discrete variables in addition to entropy,
including an approach based on computing distances between
the joint distributions of the pre- and post-swapped data files
(Gomatam and Karr 2003). These options do not exhaust the avail-
able methods for quantifying information loss (Duncan, Keller-
McNulty and Stokes 2004; Karr et al. 2006). There are many
measures because no single one sufficiently captures the true level
of utility in the data. The problem is that the actual value of a data
file depends on the particular model to be estimated. Even a file
with high relative entropy (i.e., a lot of extra noise) may be ana-
lytically useful for some models, such as when none of the masked
variables is used as a predictor. In other cases, the interest may be
only in estimating univariate or bivariate statistics that have been
retained by the data masking procedure.

Variance Estimation for Complex Surveys
Geography provides some of the most revealing information about
a given subject, and hence public release files typically remove
indicators of geographic locations. Unfortunately, this deletion
creates particularly acute difficulties for properly analyzing com-
plex survey data. It is common for nationally representative sam-
ples to use some geographic unit—counties, blocks of counties, or
large metropolian areas—as the primary sampling unit (PSU), but
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the use of sampling designs other than simple random sampling
(srs) has important implications for estimating standard errors
(Wolter 2007). Formulas used to estimate a statistic’s variance given
srs will not be correct when some combination of stratification
and clustering has been used. Methods for correct variance esti-
mation are available in Stata’s .svy suite of commands and R’s
survey library among other software options. However, users must
be able to inform the software about which variables in the data
file represent PSU and strata information. If such indicators are
unavailable, because, for example they have been masked, then
the only option is to treat the sample as if all observations were
drawn in a single stage with equal probabilities. This, in turn, will
cause the software to use incorrect standard error formulas and
the analyst to potentially fall victim to Type I or Type II errors.

Worse, it is insufficient to replace explicit PSU and strata iden-
tifiers (i.e., names of counties or cities) with seemingly uninfor-
mative numeric indicators, as it still may be possible to reconstruct
the exact geographic locations by exploiting information implicit
in the sampling weights (de Waal and Willenborg 1997; Eltinge
1999). Given these concerns, data collection agencies often pur-
sue a conservative approach in which variables related to the sam-
pling design are suppressed in their entirety. For example, the
American National Election Study (ANES) does not release indi-
cators for the strata and sampling units used at each stage of sam-
pling. Lacking variables defining the sampling design, many ANES
data users (and similarly masked data files) apply incorrect for-
mulas to estimate the variance of reported statistics.

Thus, the effects of SDC measures are potentially pervasive.
Any confidence interval around any statistic estimated on the basis
of masked complex survey data may be incorrect. Accurate infer-
ence requires specifying the survey design, but there may be pro-
hibitively high hurdles to obtaining that information. The ANES,
for example, requires a formal application plus a $335 fee to access
its restricted variables. This requirement reflects the high levels
of concern that the ANES principal investigators have for protect-
ing the privacy of study participants, and, importantly, almost all
commonly analyzed public use surveys take similar steps to mask
design variables. Still, design masking places a burden on users to
be sensitive to the limitations of the analysis. At present, political
scientists usually do not explicitly report whether they use sam-
pling weights or correct formulas for standard errors, so the extent
to which users incorrectly assume srs sampling for complex sur-
vey data cannot be known.

THE FUTURE OF SDC

Ideally, researchers would have full access to informative data with-
out having to worry about the distortions caused by data mask-
ing. Rubin (1993) makes the provocative suggestion that no original
observations necessarily need to be released. Instead, researchers
could create entirely synthetic datasets that have been imputed
based on the relationships observed in the original file. As in the
case of multiple imputation for missing data, several different syn-
thetic files could be created to capture the uncertainty in the impu-
tations. Estimation would then be done on each imputed data file
separately and combined according to already well-accepted rules
for analyzing traditional multiply imputed data (Rubin 1987).

Raghunathan, Reiter, and Rubin (2003) note that there are addi-
tional benefits to releasing synthetic data. They argue that, because
most surveys are collected according to a complex sampling design,
sampling weights and proper variance estimation need to be care-

fully considered. In contrast, a synthetic file could be created in a
form that retains all of the relationships in the original file but
whose observations resemble those drawn from simple random
sampling. Thus, the end user would not have to be concerned
with the typical adjustments that complex survey analysis requires
because the sampling design features would be irrelevant for the
imputed versions of the datasets.

Despite obvious advantages, very few real-world construc-
tions of entirely synthesized data have been created, and chal-
lenges remain. The accuracy of estimation done on entirely
imputed data depends on how well the imputation model matches
the complicated multivariate process generating the observa-
tions. As computational power and statistical theory continue to
advance, this approach eventually may be more widely used. Now,
however, research is ongoing.

So-called institutional solutions currently provide one realis-
tic, but expensive and inconvenient, route to supply high-utility
sensitive data to researchers (National Research Council 2007).
Institutional solutions involve a data collecting agency or organi-
zation providing access to unmasked data on a highly restricted
basis, with options varying substantially in burdens placed on the
researcher. At the less restrictive end of the continuum, an agency
may require users to sign a restricted use contract before gaining
permission to analyze the data on their own computers. At the
other extreme, the agency may not allow the researcher to even
see the data at all. Instead, the researcher submits code to the
agency, and the agency returns the output.

The biggest concern with the institutional approach is that it
can be prohibitively expensive for both users and suppliers.
Restricted use contracts require administrative support to pro-
cess the requests and monitor compliance, while limiting data
access only to a particular facility requires sufficient hardware,
staffing, and building resources. In addition, the user does not
have immediate access to the data and, in some instances, must
pay an additional fee. These obstacles can limit the use of a data
file and, therefore, reduce its scientific impact. The National Opin-
ion Research Center (NORC) and Statistics Netherlands have
developed secure virtual enclaves that combine remote access with
connection restrictions and audit capabilities to minimize these
costs. Wider availability of secure virtual enclaves will provide a
welcome compromise to the data access/privacy protection trade-
off, and developments in this area continue. Felicia LeClere of
NORC is currently investigating the possibility of creating secure,
privacy protecting computing instances in the cloud. At the time
of this writing, ICPSR—the largest social science data repository
in the world—does not offer virtual enclave technology.

CONCLUSION

SDC remains a relatively young field of inquiry, but its impor-
tance is likely to grow as the amount of data available to research-
ers continues to explode. Thus, social scientists need to have a
working understanding of the issues involved in protecting the
privacy of study participants. This article introduced the field of
SDC by defining key terms and describing attempts to quantify
risk and utility. The two fundamental messages presented are (1)
that disclosure risk may be higher than researchers realize; and
(2) the proactive steps data collection organizations take to min-
imize disclosure risk can affect the ability of the end user to
accurately estimate statistical relationships. Research is ongoing
to determine solutions that maximize data utility while entirely
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eliminating the threat of privacy violations. At this time, how-
ever, the only commonly used solutions—short of restricted use
contracting—will inevitably affect the quality of inferences. The
impact of SDC measures on social science research therefore is
potentially pervasive. �
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