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ABSTRACT 

In the frame of the gravitational restricted three-body problem, we 
study by numerical simulation the retrograde satellites -and their sta­
bility- at large distance. In the circular plane case, the stable sat­
ellites mostly surround (in the phase-space Xo-V„) the characteristic 
of a family of single-periodic orbits where this family is stable, and 
librates (in the physical space) around a curve which corresponds to 
the nearest (in the phase-space Xo-V0) periodic orbit. An analytical 
analysis of this libration is made for Hill's case. The beginning of 
the study of the three—dimensional orbits is presented. 

INTRODUCTION 

Within the frame of the gravitational restricted three-body problem 
with point masses, we study by numerical simulation the motion of a sa­
tellite S (of infinitesimal mass) particularly at large distance of 
its primary P (of normalised mass ^u,), while P and the other massive 
body B (of normalised mass 1- ji.) have keplerian orbits around each 
other. We use rotating-pulsating axes with origin in P, and B is fixed 
on the X axis with the abscissa -1 (fig. l). We note e the eccentricity 
of the relative orbit of P around B, and T the true anomaly of P on its 
orbit; as usual, we use T instead of the physical time as independent 
variable. Then, the equations of motion for S are: 
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and 

dU — = 2V+(X+1-J»-K (X+1)-K X)/(1+B cosT), 

dV 2ft = - g U + Y C l - K ^ y f l + e cosT), 

£j | = -ZfK^+K^+e cosT) / ( l+e cosT), 

K1 - (1-JU)((X+1)2+Y2+Z' 

K = ;u.(x2+Y2+z2r3/2 ; 

\ 

with K1 = (Vyu)((x+1)
2+Y2+Z2r3/2, 

(2) 

or, for Hill's case: 

dU 2H = 2V+x(3-K)/(l+e cosT), 

dV 
dT 

dW 

= -2U-KY/(l+e cosT), 

(3) 

^ = -Z(l+K+e cosT)/(l+e cosT), 

with K = (X2+Y2+Z2)"3,/2 . 

The term e cosT vanishes in the circular case (i.e. e=0') and terms in 
Z and W vanish in the plane case (i.e. when S must stay in the same 
plane as P and B). These equations are integrated with a fourth—order 
Runge-Kutta method, where the classical coefficients have been replaced 
by those given by Ralston. 

Figure 2 shows a satellite orbit which approaches near to B. This 
lead us to extend the usual definition of a satellite: we shall call 
satellite of P a body whose mean motion around P, averaged over a suffix 
-ciently long time, is zero in the rotating frame while its mean motion 
around B is different from zero. The stability of a periodic orbit can 
be defined in a more analytical way through the value of several indices 
easily computed by considerations on orbits close to the periodic one. 

For simplicity, S starts always from the right part of the X axis, 
and perpendicularly to it, so that X0> 0, Y0 = 0, Z0 - 0 and U0 = 0 
(see fig. 1). Moreover, it has been shown that only retrograde orbits 
can be found stable at large distance, and numerical results indicate 
that the three-dimensional orbits are symmetrical with respect to the 
X-Y plane; then we limit ourselves to Vo<,0 and W o>0. Therefore, for 
given e and u, , an orbit can be represented by a point in the phase-
space (XQ.J'VJ'OI I80)» where we can examine the subspace of initial con­
ditions for families of periodic orbits (called their characteristic) 
and for stable orbits in general. 
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Figure 1. Parameters and initial conditions. 

2. 
_l L_ 

Figure 2. An example of large satellite orbit. 

https://doi.org/10.1017/S0252921100062394 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100062394


288 D. BENEST 

1. STABILITY OF THE ORBITS: EVOLUTION WITH u. 

Note: this section is a synthesis of four papers (1974,1975,1976b,1976c). 

The fundamental role of the periodic orbits in the restricted pro­
blem is well-known since a long time. In the circular plane case, 
Dr Henon has shown that the knowledge of the monoparametric family of 
single-periodic orbits symmetrical with respect to the X axis (called 
family f, see fig. 3) is essential for the study of the satellite orbits 
in general. Moreover, in 1974, we have found that only one other family 
has some importance. For these symmetrical orbits, the stability indices 
reduce to one, noted a, such that there is stability for |al<1 and 
a £ -0.5. First we consider the circular plane case, where the phase-
space reduces to the plane X0-V0. 

1.1. Periodic orbits in the circular plane case 

Figure 3 shows the general shape of the orbits of family f, toge­
ther with a fictitious example of the characteristic of the family. As 
the orbits grow from little ones in the vicinity of P, the point P0 runs 
along the characteristic up to the point E, corresponding to an ejection 
orbit beyond which the orbits are no more satellite ones. Moreover, du­
ring the run of P0, the variation of X0 is monotonic, but for u. > 0.8 
in the vicinity of E. 

Figure 4 shows the evolution of the characteristic of family f when 
u increases from 0 to 1. Only a sample of our results is represented 
here, family f and its stability have been computed for 62 different 
values of u. . 

When the variation of X0 is monotonic, we can establish a map of 
stability in the plane X0- u. (see fig. 5). The thick line represents the 
ejection orbits, and the dashed thick line indicate where the variation 
of X0 becomes non-monotonic. Orbits corresponding to a =• -0.5 are in 
dashed lines, and dash-dot lines indicate the extreme of a, especially 
interresting in the hatched regions (|a I>1) because they indicate there 
the most unstable orbits. For /A<0.0477..., the orbits are continuously 
stable until ejection. From 0.0477... to u=1, the orbits are continu­
ously stable until they reach the first ocurrence of a=-1, with one or 
two intervals of stability furtherout. 

For IX =0.0477..., an unstable segment appears on the characteristic 
between two paints where a=-1, called second sort critical points; these 
points correspond to intersections with a double-periodic family, called 
family Cp . Figure 6 shows the general shape of the orbits of family <jp , 
together with a fictitious example of the characteristic of the family. 
As these orbits have two perpendicular intersections with the positive 
part of the X axis, an orbit is represented by two points in the X0-V0 
plane. As the orbits grow, the two points P. and P„ separate from P0 

and run along the characteristic to meet again in VQ , where the two 
branches of the orbit of family <p blend into one orBit of family f, but 
run two times. Moreover, during the run of P and P„, the variation of 
the quantity (X +X_)/2 is monotonic from X0. to X0?, at least up to 
uas0.13; therefore this quantity can be used as tne single quantity X0 

https://doi.org/10.1017/S0252921100062394 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100062394


EXISTENCE OF RETROGRADE SATELLITES 

for family f. 

289 

p 

/ E 

1 
Figure 3. Family f: general shape of the orbit (top) and of the 
characteristic (bottonn). 
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Xj X0t 

Figure 6. Family <p : general shape of the orbits(topJ 
and of the characteristic (bottom). 
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Figure 7 shows the evolution of the characteristic of family cp 
when fx increases from 0.0477... to 0.2, where the family has become 
almost unstable. Only a sample of our results is represented here, fami­
ly <p and its stability have been computed for 26 different values of 

/*' 
As for family f, we can establish a map of stability, with now 

(X +X )/2 as ordinate (fig. B). From 0.0477... to ;* 20.063, the orbits 
are continuously stable. For u ^ 0.063, there are two or more intervals 
of stability which decrease as It grows. The second sort critical 
points of family <p are intersections with 4-periodic families, which 
are almost unstable. 

1.2. Vertical stability of plane periodic orbits in the circular case 

Nevertheless, an actual orbit can be called stable only if it is 
stable with respect to three-dimensional perturbations. Fortunately, 
perturbations in the plane are not coupled with those perpendicular to 
the plane. Thus we can obtain the three-dimensional stability by combi­
ning results on horizontal stability with a study on vertical stability, 
for which we can also define a vertical stability index a . 

Figure 9 presents the vertical stability map of family f. the 
notations are the same as for the horizontal stability. We can combine 
horizontal and vertical stability to obtain the three—dimensional sta­
bility (fig. 10). Figure 11 presents the vertical stability -on the 
left- and the three-dimensional stability -on the right- for family G> . 

As for horizontal stability, the vertical critical points (where 
a =l) correspond to intersections with families of three-dimensional 
orbits. We are now planing to explore the three—dimensional families 
which intersect families f and Cp . 

1.3. Non-periodic orbits in the circular plane case 

Now we turn to the non-periodic plane orbits. Figure 12 shows a 
fictitious example of the shape of the subspace of the initial condi­
tions for stable orbits, which we shall call the Non-Periodic Stability 
zone. This zone is composed by a large continental region, approximate­
ly limited by the Lagrange points, and a peninsula more or less elonga­
ted, with sometimes one or more islands; there can be also lakes of 
instability enclosed in the zone. Inside the continental region, takes 
place the part of the characteristic of family f up to the first occur­
rence of a=-0.5. At this point, the peninsula is attached and surrounds 
the remaining part of the characteristic where and only where it is sta­
ble. From 0.0477... to jx £ 0.15, the family <f can more or less neutra­
lize the effects of the instability of family f. Figure 13 shows the 
evolution of the Non-Periodic Stability zone when W increases up to 1. 

Figure 14 presents some orbits along a section of the zone for 
^* =0.054 and Vo=-0.95. We see here that, for large non-periodic orbits, 
the motion can be decomposed approximately into a fast "reference mo­
tion", looking like the nearest periodic orbit, and a slow libration 
around P of the centre of the corresponding curve. 
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Figure 13.Non-Periodic Stability zone: evolution with 
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IS Ml 

Figure 14. Orbits; =0.054; Vo=-0.95; X0 from 0.3 to 0.525. 
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2. ANALYSIS OF THE LIBRATION IN HILL'S CASE 

Note: this section is detailed in (1976a) whose abstract follows. 

Numerical explorations of the restricted problem have shown that, 
for stable large non-periodic retrograde satellite orbits, the motion 
can be decomposed into a fast "reference motion" and a slow libration 
around B . We studyihere this libration in the circular plane Hill's 
case, for which the "reference motion" is elliptic. We establish the 
equations of motion for the coordinates of the centre of the ellipse. 
We find two integrals of motion: the first is the semi-major axis of 
the ellipse; the second is essentially Jacobi's integral, translated 
into the new coordinates. We give a formula for the period of the li­
bration and we find its limiting value for small libration amplitudes. 
Anumerical verification gives very good agreement for all these results. 
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