GRAVITATIONAL RESTRICTED THREE-BODY PROBLEM :
EXISTENCE OF RETROGRADE SATELLITES AT LARGE DISTANCE
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ABSTRACT

In the frame of the gravitational restricted three-body problem, we
study by numerical simulation the retrograde satellites =—and their sta-
~bility— at large distance. In the circular plane case, the stable sat-
-ellites mostly surround (in the phase-space Xe=V,) the characteristic
of a family of single-periodic orbits where this family is stable, and
librates (in the physical space) around a curve which corresponds to
the nearest (in the phase-space x,—v,) periodic orbit. An analytical
analysis of this libration is made for Hill's case. The beginning of
the study of the three-dimensional orbits is presented.

INTRODUCTION

Within the frame of the gravitational restricted three-body problem
with point masses, we study by numerical simulation the motion of a sa-
~tellite S (of infinitesimal mass) particularly at large distance of
its primary P (of normalised mass );), while P and the other massive
body B (of normalised mass 1-p0 have keplerian orbits around each
other. We use rotating-pulsating axes with origin in P, and B is fixed
on the X axis with the abscissa -1 (fig. 1)}. We note e the eccentricity
of the relative orbit of P around B, and T the true anomaly of P on its
orbit; as usual, we use T instead of the physical time as independent
variable., Then, the equations of motion for S are:

= = U,
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and
B oV (Xt 1=p =K, (X+1)=K_X)/(1+e cosT)
dr P 2 ’
=L -2u+Y (1=K, =K, )/ (1+e cosT)
dt 12 '
L -Z(K,+K_+e cosT)/(1+e cosT) (2)
a1 1702 d
with K, = (1-/.\)((x+1)2+Y2+22)"3/2,
2..,2.,2v=3/2 |
Ky = pm (X“+Y42°) ;

or, for Hill's case:

§¥ = 2v+X(3=K)/(1+e cosT),
§¥ = —2U-KY/(1+e cosT),

¢ (3)

g¥ = ~Z(1+K+e cosT)/(1+e cosT),

with K = (X+y2z2)73/2

7

The term e cosT vanishes in the circular case (i.e. e=0) and terms in
Z and W vanish in the plane case (i.e. when S must stay in the same '
plane as P and B). These eguations are integrated with a fourth—order
Runge-Kutta method, where the classical coefficients have been replaced
by those given by Ralston.

Figure 2 shows a satellite orbit which approaches near to B. This
lead us to extend the usual definition of a satellite: we shall call
satellite of P a body whose mean motion around P, averaged over a suffi-
-ciently long time, is zero in the rotating frame while its mean motion
around B is different from zero. The stability of a periodic orbit can
be defined in a more analytical way through the value of several indices
easily computed by considerations on orbits close to the periodic one.

For simplicity, S starts always from the right part of the X axis,
and perpendicularly to it, so that X,»0, Y, =0, Z, = 0and U, = O
(see fig. 1). Moreover, it has been shown that only retrograde orbits
can be found stable at large distance, and numerical results indicate
that the three-dimensional orbits are symmetrical with respect to the
X=Y plane; then we limit ourselves to V,£ 0 and W,> 0. Therefore, for
given e and/u , an orbit can be represented by a point in the phase-
space (XO,V\rol,Bo), where we can examine the subspace of initial con-
~ditions for families of periodic orbits (called their characteristic)
and for stable orbits in general.
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Figure 2. An example of large satellite orbit.
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1. STABILITY OF THE ORBITS: EVOLUTION WITH );

Note: this section is a synthesis of four papers (1974, 1975,1976b,1976c).

The fundamental role of the periodic orbits in the restricted pro-
blem is well-known since a long time. In the circular plane case,
Dr Hénon has shown that the knowledge of the monoparametric family of
single~periodic orbits symmetrical with respect to the X axis (called
family f, see fig. 3) is essential for the study of the satellite orbits
in general. Moreover, in 1974, we have found that only one other family
has some importance. For these symmetrical orbits, the stability indices
reduce to one, noted a, such that there is stability for jal <1 and
a # =0.5. First we consider the circular plane case, where the phase-
space reduces to the plane X, =V,.

1.1. Periodic orbits in the circular plane case

Figure 3 shows the general shape of the orbits of family f, toge-
ther with a fictitious example of the characteristic of the family. As
the orbits grow from little ones in the vicinity of P, the point P, runs
along the characteristic up to the point E, corresponding to an ejection
orbit beyond which the orbits are no more satellite ones. Moreover, du-
ring the run of P,, the variation of X, is monotonic, but For‘/{) 0.8
in the vicinity of E.

Figure 4 skows the evolution of the characteristic of family f when

increases from O to 1. Only a sample of our results is represented
here, family f and its stability have been computed for 62 different
values of .

When the variation of X, is monotonic, we can establish a map of
stability in the plane Xd-); (see fig. 5). The thick line represents the
ejection orbits, and the dashed thick line indicate where the variation
of X, becomes non-monotonic. Orbits corresponding to a = -0.5 are in
dashed lines, and dash-dot lines indicate the extrema of a, especially
interresting in the hatched regions (Ia|>1) because they indicate there
the most unstable orbits. For m<0.0477..., the orbits are continuously
stable until ejection. From 0.0477... to M =1, the orbits are continu-
—ously stable until they reach the first ocurrence of a=-1, with one or
two intervals of stability furtherout.

For m =0.0477..., an unstable segment appears on the characteristic
between two points where a=-1, called second sort critical points; these
points correspond to intersections with a double-periodic family, called
family P. Figure 6 shows the general shape of the orbits of family ¢,
together with a fictitious example of the characteristic of the family.
As these orbits have two perpendicular intersections with the positive
part of the X axis, an orbit is represented by two points in the X,-V,
plane. As the orbits grow, the two points P, and P, separate from P°1
and run along the characteristic to meet again in ?ﬁ s, where the two
branches of the orbit of family ¢ blend into one or‘git of family f, but
run two times. Moreover, during the run of P1 and P_, the variation of
the quantity (X +X2)/2 is monotonic from X, to X,,, at least up to
,1&0.13; there?ore this quantity can be used as the single quantity X,
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for family f.
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Figure 3. Family f: general shape of the orbit (top) and of the
characteristic (bottom).
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Figure 6. Family ¢ : general shape of the orbits(top)
and of the characteristic (bottom).
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Figure 7 shows the evolution of the characteristic of family <p
when M increases from 0.0477... to 0.2, where the family has become
almost unstable. Only a sample of our results is represented here, fami-
1y ? and its stability have been computed for 26 different values of

s As for family f, we can establish a map of stability, with now
(X,+X,)/2 as ordinate (fig. 8). From 0.0477... to m ~0.063, the orbits
are continuously stable. For f;%CLOBS, there are two or more intervals
of stability which decrease as grows, The second sort critical
points of family @ are intersections with 4-periodic families, which
are almost unstable.

1.2. Vertical stability of plane periodic orbits in the circular case

Nevertheless, an actual orbit can be called stable only if it is
stable with respect to three-dimensional perturbations. Fortunately,
perturbations in the plane are not coupled with those perpendicular to
the plane. Thus we can obtain the three-~dimensional stability by combi-
ning results on horizontal stability with a study on vertical stability,
for which we can also define a vertical stability index a .

Figure 9 presents the vertical stability map of FamiYy f. the
notations are the same as for the horizontal stability. We can combine
horizontal and vertical stability to obtain the three—dimensional sta-
bility (Fig. 10). Figure 11 presents the vertical stability -—on the
left- and the three-dimensional stability —on the right- for family P .

As for horizontal stability, the vertical critical points (where

a,, =1) correspond to intersections with families of three-dimensional
orbits. We are now planing to explore the three-dimensional families
which intersect families f and ¢ -

1.3« Non—periodic orbits in the circular plane case

Now we turn to the non-periodic plane orbits. Figure 12 shows a
fictitious example of the shape of the subspace of the initial condi-
tions for stable orbits, which we shall call the Non-Periodic Stability
zone. This zone is composed by a large continental region, approximate-—
ly limited by the Lagrange points, and a peninsula more or less elonga—
ted, with sometimes one or more islands; there can be also lakes of
instability enclosed in the zone. Inside the continental region, takes
place the part of the characteristic of family f up to the first occur—
rence of a=-0.5. At this point, the peninsula is attached and surrounds
the remaining part of the characteristic where and only where it is sta=
ble. From 0.0477... to m«0.15, the family @ can more or less neutra-
lize the effects of the instability of family f. Figure 13 shows the
evolution of the Non-Periodic Stability zone when M increases up to 1.

Figure 14 presents some orbits along a section of the zone for
M =0.054 and V,=-0.95. We see here that, for large non-periodic orbits,
the motion can be decomposed approximately into a fast "reference mo~
tion", looking like the nearest periodic orbit, and a slow libration
around P of the centre of the corresponding curve.
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stability map.

Figure 8. Family (P
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Figure 12. Non-Periodic Stability zone
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Figure 13.Non-Periodic Stability zone: evolution with /J.
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2. ANALYSIS OF THE LIBRATION IN HILL'S CASE
Note: this section is detailed in (1976a) whose abstract follows.

Numerical explorations of the restricted problem have shown that,
for stable large non-periodic retrograde satellite orbits, the motion
can be decomposed into a fast "reference motion" and a slow libration
around B,. We studyihere this libration in the circular plane Hill's
case, for which the "reference motion" is elliptic. We establish the
equations of motion for the coordinates of the centre of the ellipse.
We find two integrals of motion: the first is the semi-major axis of
the ellipse; the second is essentially Jacobi's integral, translated
into the new coordinates. We give a formula for the period of the li-
bration and we find its limiting value for small libration amplitudes.
Anumerical verification gives very good agreement for all these results.
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